Thumbnail Image

Sucrose, photosynthetic photon flux density, & CO2 concentration affect growth & development of micropropagated mountain ash

XV World Forestry Congress, 2-6 May 2022










Also available in:
No results found.

Related items

Showing items related by metadata.

  • Thumbnail Image
    Article
    Micropropagation of bamboo in the green pathway to the growth and sustainability: snags and keys
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    The fastest growing plant in the world, bamboo is an ideal investment for ecosystem management. Potentials of the bamboo restoring the degraded lands are already established. This plant can easily colonized in disturbed land because of its adaptability and nutrient conservation ability. This plant can protect steep slopes, soils, water ways, prevents soil erosion, sequester carbon and brings many other ecosystem benefits. The impact of bamboo growth on the soil may be different at their species level and it is expected that there is a large increase in the microbial biomass, particularly, in the rhizosphere zone as they do not provide only a larger root surface area but enhances the soil fertility. Here micropropagation has a great role by producing a huge quantity of propagules with ideal characteristics for specific area. This paper was mentioned about the different constraints related to establish an efficient protocol for bamboo micropropagation and some solutions for them. Key words: Bamboo; Land restoration; micropropagation. ID: 3486685
  • Thumbnail Image
    Document
    Effects of drought stress and nitrogen fertilization on growth and physiological characteristics of Pinus densiflora seedlings under elevated temperature and CO2 concentrations
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomena has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertilization according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2- Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5°C; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering (control versus drought), fertilization (control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and soil water content (SWC) were measured to examine physiological responses and growth. Relative SWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertilization were high before drought yet decreased rapidly after 13 days under drought. The fastest mortality showed in aCeT but the longest survival was observed in eCeT. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertilization were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simlulated environmental stressors. Keywords: Climate change ID: 3621653
  • Thumbnail Image
    Article
    Environmental stresses do not always adversely affect seedling growth
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    Excessively high temperatures and droughts after winter dormancy breaking can affect the growth and mortality of seedlings. An open-field experiment was conducted to understand the growth and mortality of Larix kaempferi seedlings to spring warming and drought treatments, and further to explore if seedlings could recover the growth capability when the treatments ceased. One-year-old seedlings were subjected to two temperature levels (ambient temperature and infrared heater warming of 4 °C compared to ambient temperature) and two precipitation levels (ambient precipitation and drought) for four weeks. Warming and drought treatments decreased the height and root collar diameter of seedlings throughout the period. After the cessation of treatments, mortality rates continued to increase in the drought-treated plots until the end of the growing season in November; the combination of warming and drought treatments had the highest mortality rates, followed by the drought treatment, the control, and the warming treatment. However, the combination of warming and drought treatments increased the biomass accumulation, seedling height, and root collar diameter at the end of the growing season. This indicates that the reduced number of seedlings per plot due to the increased mortality may reduce the negative effects of warming and drought on seedling growth through alleviating resource competition among seedlings. This study shows the growth of Larix kaempferi seedlings could decline under warmer and drier conditions, and such effects are likely to be mitigated by the decreased density due to the increased mortality rates. Keywords: climate change; drought; growth; Larix kaempferi; mortality ID: 3622945

Users also downloaded

Showing related downloaded files

No results found.