Thumbnail Image

Agricultural Finance Revisited: Why?







Also available in:

Related items

Showing items related by metadata.

  • Thumbnail Image
  • Thumbnail Image
    Book (stand-alone)
    Revisiting Garden-Based Learning in Basic Education 2004
    Also available in:
    No results found.

  • Thumbnail Image
    Document
    Revisiting leaf microstructural and physical properties for high-efficiency depositional niches of particulate matters
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    Current problems and potential solutions to reduce suspended particulate matter (PM) are enormous scientific challenges. Indeed, reducing the vehicle or industrial-driven PM particles still need a guide to discerning an economically viable solution for highly urbanized areas. Therefore, a better understanding of PM capture processes and pathways from both leaf surfaces and waxes would allow for the development of long-term air purification potential and efficiency in the improvement of urban greenspace. Functional traits as biofiltration for airborne PM particle control were calculated using the following species of Aesculus turbinata, Chionanthus retusus, Ginkgo biloba, Liriodendron tulipifera, Magnolia denudata, Styphnolobium japonicum, Taxus cuspidata, Buxus koreana, Euonymus japonicus, and Rhododendron schlippenbachii. Variation in PM adsorption amounts per unit area could be related to the difference in air pollutant concentrations, weather conditions, tree canopy, and adaxial/abaxial leaf surfaces. Leaf micromorphological traits among tree and shrub species were related to PM adsorption; however, the leaf accumulation-PM removal efficiency could be generated through a collaboration of leaf hydrophobic nature and complex surface microstructures such as trichomes. Furthermore, PM retention capacities of leaf surfaces as the main depositional niches for PM particles can be a very important indicator as a valid means to enhance long-term sustainability of context-specific vegetation barriers for urban air pollution abatement. In conclusion, these findings will provide a reference for urban planning and design and can help to develop the improvement of future urban greenspace based on local conditions. Acknowledgments: This study was carried out with the support of ‘A Study on Mechanism and Function Improvement of Plants for Reducing Air Pollutants’ (Grant No. FE0000-2018-01-2020) from National Institute of Forest Science (NIFoS), Republic of Korea. Keywords: Sustainable forest management, Human health and well-being, Adaptive and integrated management, Biodiversity conservation, Climate change ID: 3486769

Users also downloaded

Showing related downloaded files

No results found.