Thumbnail Image

Fighting the threat against sharks and rays in the Caribbean - GCP/SLC/013/USA










Also available in:
No results found.

Related items

Showing items related by metadata.

  • Thumbnail Image
    Book (series)
    A preliminary value chain analysis of shark fisheries in Madagascar 2014
    Also available in:
    No results found.

    Madagascar’s extensive (~6,500 km) coastline comprises the most diverse and extensive shallow marine habitats in the Western Indian Ocean, supporting an estimated 123 shark and ray species. Sharks have featured in Madagascar’s fisheries for at least 100 years, with exports recorded as early as the 1920’s. Globally, shark fins are one of the most highly valued seafood items and represent a critical and significant source of cash for some of Madagascar’s isolated fishing communities. The global sh ark fin trade is estimated to be worth between US$400-500 million a year. Increases in the shark trade over the last two decades is closely linked to economic growth in China, where the market is concentrated, and the ripple effects of this increase in demand have been felt worldwide. Scientific estimates for the number of sharks killed annually can be up to 100 million individuals and sharks are on the whole overexploited. Today, thirty percent of all shark and ray species are now classified as ‘Threatened’ or ‘Near Threatened’ with extinction according to the IUCN Red List, although this number is likely to be higher given that the status of almost half (47%) of shark species cannot be scientifically assessed due to a lack of data. There is strong evidence that shark overexploitation occurs in Malagasy waters and that shark populations in the area are declining rapidly. Although reliable figures on Madagascar’s domestic shark fishery are sparse, anecdotal observations report declines in shark numbers within the last two decades. According to national studies based only on official export data, recorded shark fin exports stood at approximately 32 tonnes in 2010, a decrease from 65 tonnes in 1994. Lack of data on catches, particularly from artisanal fisheries, bycatch by licensed industrial vessels, and by illegal, unregulated and unreported (IUU) fishing by foreign industrial vessels, means these official export figures are likely to be gross underestimates of the actual pro duction. Madagascar’s shark fishery is comprised of three main fisheries according to Malagasy legislation: artisanal, traditional and industrial fisheries. Madagascar’s artisanal and traditional shark fisheries extend along the entire west coast, with the most important traditional fisheries along the southwest coast. Overfishing has led to fisher migration, spreading the fishery along the entire west coast and also much of the north. There is no established traditional shark fishery along the east coast due to adverse sea conditions, whilst the south is the least developed of all sites surveyed for this report. Throughout the country, surveyed fishers report catching shark for the purposes of income from selling fins (88%) and meat (77%), and as a source of food (31%), demonstrating the important link to the international shark fin trade. Shark fin exports reach the international market mostly through two principal buyers and exporters, namely the Sea Reine and Sin Hing, Chinese comp anies based in Antananarivo. The supply chain for shark fins is both complex and rather fluid with fishers selling either fresh (wet) or dried fins to collectors and fins graded in value according to size and quality. Some fishers bypass the local collectors and sell dried fins directly to main buyers in larger towns to obtain a better price, which can be a mark-up of 40% for high quality fins. The value of shark fins during the study period (2012) varies according to their condition (wet or dri ed), quality (four recognised grades) and their position in the supply chain. Robust data was collected for the first two levels of the supply chain but was lacking for the higher levels (main buyer to exporter). Guitarfish fins were on the whole, twice as valuable as shark fins and therefore both in demand and a fishing target. Since 2012 the average value of shark fins has dropped. Trade in shark meat is also well establishedin Madagascar, with meat sold into a supply chain that serves mainly local and national (provincial) markets but can also be exported to the Comoros. Shark meat does not fetch a high price compared to other fish or meats but can be an important supplementary source of income or nutrition in some cases. Generally fresh meat is sold and consumed locally whilst dried salted meat is bought by collectors and transported to inland urban markets in Madagascar. Some dried shark meat is also exported. ANGAP Association Nationale pour la Gestion des Aires Protégées ASH Aut orité Sanitaire Halieutique BAD Banque Africaine de Dévelopement CBD Convention on Biological Diversity CCPS Cellule de la Coordination de la Politique Sectorielle/MPRH CLB/VOI Communauté Locale de Base/Vondron’Olona Ifatony CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora COI Commission de l’océan Indien COS Certificat d’Origine et de Salubrité CSP Centre de Surveillance des Pêches CMS Convention on Migratory Species DGRH Direction de la Gestion des Ressourc es Halieutiques/MPRH DPRH Direction de la Pêche et des Ressources Halieutiques/MPRH DRPR Direction Régionale de la Pêche et des Ressources Halieutiques FAO Food and Agricultural Organization of the United Nations RFMO Regional Fishery Management Organization GEF Global Environnement Facility GTZ Gesellschaft Für Technische Zusammenarbeit IPOA Sharks – International Plan of Action for the Conservation and Management of Sharks IOTC Indian Ocean Tuna Commission IUU Illegal, Unregulated and Unreport ed JICA Japan International Cooperation Agency, Agence Japonaise de Coopération Internationale MAEP Ministère de l’Agriculture, de l’Elevage et de la Pêche MGA Malgasy Ariary MNP Madagascar National Parks (previously ANGAP) MPRH Ministère de la Pêche et des Ressources Halieutiques NGO Non Governmental Organisations SWIOFP/OISO South West Indian Ocean Fisheries Project, Programme de l’Océan Indien Sud- Occidental UNGA United Nations General Assembly WIO Western Indian Ocean WWF World Wild Fund fo r Nature 6 A preliminary value chain analysis of shark fisheries in Madagascar 7 8 A preliminary value chain analysis of shark fisheries in Madagascar Foreign commercial fishing fleets have also been prevalent in Malagasy waters since at least the 1980’s and primarily target shark and larger pelagic fish, with significant shark bycatch for those fisheries not directly targeting sharks. Almost none of the sharks caught are landed in Madagascar. IUU fishing within Madagascar’s Exclusive Economic Zone (EEZ) is a well-established issue, with the shark fishery specifically targeted by both licensed and unlicenced vessels. Despite the significant pressures on Madagascar’s shark fishery and the enormous socio-ecological and economic value of the trade, the country has no coherent or functioning shark conservation strategy or legislation. The lack of a national strategy is largely due to deficiencies in data on fishing effort, catches, landings and discards in all commercial fisheries for sh ark. This is compounded by a paucity of information on shark ecology, fisheries status and the socioeconomic value of the trade throughout Madagascar. Furthermore, in isolated coastal areas with little infrastructure, the sale of high value dried shark fins has been one of the few ways local Malagasy fishermen can earn cash. In this context, the diverse and unconnected stakeholders have no basis or motivation to enact meaningful conservation measures, particularly when economic imperatives outwe igh any other consideration. In a country as poor as Madagascar, even minor poverty relief is important, leading fishers to continue shark fishing despite low catches and diminishing returns for fishing effort, further threatening the future of the fishery. There is an urgent need to actively and aggressively manage Madagascar’s shark fishery. The rapid decline of sharks is likely to have several negative socioeconomic and ecological impacts, including the loss of livelihoods and protein for tho se people who rely on them and potentially altering the trophic structure of marine and coastal ecosystems. However, putting in place conservation measures and enforcing regulations remains a formidable challenge. Much of Madagascar’s fishery takes place in remote fishing grounds scattered over thousands of kilometres of coastline; the fishers are highly mobile and move great distances to seek productive fishing grounds; the government lacks the means to monitor these fisheries and enforce regul ations; and the markets are informal and closed. Significant steps must be taken in order to effectively prevent the collapse of Madagascar’s shark fishery. A widespread campaign to regulate both international and local shark fishing must occur simultaneously for any significant positive change to occur. For this to take place scientifically robust data must be collected over the long term. For any national conservation strategies to be implemented effectively, they should be based on data colle cted through participative monitoring and implemented at the national level. Such strategies should apply to artisanal and traditional fisheries, as well as to international commercial fishing vessels operating within the EEZ. Madagascar’s existing locally-managed marine areas are a vehicle through which coastal shark management strategies could be implemented. However an increase in both technical and logistical capacity will be required for effective management at the local, regional and natio nal level, together with strong enforcement support to LMMAs. Although it is recommended that the government develops appropriate national legislation and put in place proper monitoring and export restrictions, the onus remains heavily on the international community, with global legislation driving the regulation or lack of regulation of the global shark trade. Particular attention needs to be paid to those countries with distant water fleets / vessels operating within Madagascar’s EEZ, both leg ally and illegally. Without proper regulation of their shark fishing effort, partly through RFMO’s, little progress can be made.
  • Thumbnail Image
    Book (stand-alone)
    Identification Guide to Common Sharks and Rays of the Caribbean 2016
    Also available in:
    No results found.

    This guide includes a selection of shark and ray species occurring in the Wider Caribbean Region, that is the waters of the Caribbean Sea, Gulf of Mexico, and the waters of the Atlantic Ocean adjacent thereto. In total, 41 shark and 20 ray species selected as being most relevant to commercial fisheries or vulnerable to exploitation due to their life history characteristics, are included. Of these, 29 shark and 9 ray species are presented in a full species card and depicted with a colour illustra tion and photo. Additionally, short accounts of 12 shark and 11 ray species that are less common in the region and could be misidentified with more common species, are also included. These are depicted with a black and white illustration and key distinguishing features are highlighted allowing for easy and accurate identification in the field. This guide is intended to help fishery workers collecting catch data in the field in the identification of the sharks and rays they might encounter for th e specific purpose of improving the quality of catch and landings data.
  • Thumbnail Image
    Meeting
    Provision of scientific advice for the purpose of the implementation of the EUPOA sharks. Final Report. European Commission, Studies for Carrying out the Common Fisheries Policy (MARE/2010/11 - LOT 2) 2013
    Also available in:
    No results found.

    The scope of the European Union Plan of Action for Sharks covers directed commercial, by-catch commercial, directed recreatiol, and by-catch recreatiol fishing of any chondrichthyans within European Union waters. It also includes any fisheries covered by current and potential agreements and partnerships between the European Union and third countries, as well as fisheries in the high seas and fisheries covered by RFMOs maging or issuing non-binding recommendations outside European Union waters. S cientific advice for the purpose of the magement of shark species in the high seas is carried out mainly via the Scientific Committees of the relevant Regiol Fisheries Magement Organisations (RFMO), as well as through specific projects by tiol institutes, and other research organisms. However, the level of knowledge concerning many shark populations in the high seas of the Atlantic, Indian and Pacific Oceans is far from satisfactory. It is therefore necessary to identify gaps in the current know ledge of fisheries, biology and ecology of sharks that should be filled in order to support advice on sustaible magement of elasmobranches' fisheries and undertaking studies to fill those gaps. Therefore, the objective of this project is to obtain scientific advice for the purpose of implementing the EUPOA on sharks as regards the facilitation of monitoring fisheries and shark stock assessment on a species-specific level in the high seas. The study is focused on major elasmobranch species caught by both artisal and industrial large pelagic fisheries on the High Seas of the Atlantic, Indian and Pacific area, which are currently monitored and potentially maged by respective Tu RFMOs. Specifically, firstly the study aims to collate and estimate historical fisheries data especially on species composition of catches, catches and effort, size frequencies in order to identify the gaps in the current availability of fishery statistics as well current knowledge biology and ecology of sharks tha t should be filled in order to support the scientific advice provided to RFMOs on sustaible magement of elasmobranch fisheries. And secondly, the project aims to review and prioritise the gaps identified to develop a research program to fill those gaps in support for the formulation of scientific advice for magement of sharks. The data and knowledge gaps identified through Phase I will allow focusing and prioritising the future research. From this summarisation of Phase I it will be clear as to what data is available for providing magement advice for shark species, and where gaps in the data render this task difficult. In a second step, recommendations for data collection improvements as well as research necessities and activities will be described. The data collected in Phase I of the project gives a complete picture of the current data availability of information about catch and effort, observer programs, size frequency information, biological information and fishery indicators that may support the assessment of major shark species in Tu RFMOs. In spite of the importance of shark catches by industrial fleets, they have traditiolly consisted of bycatch of commercial fisheries and sharks are most often discarded or finned. Therefore, most of the times, shark catches are not recorded, especially with the required level of resolution, and catches must be estimated by statistical procedures based on observer data, fishing effort and different covariates. Moreover, the informatio n recorded is not usually RFMO) databases. The information on shark bycatch is scarce and their estimates found in the literature are not homogenous which made the raising and/or estimates of ratios (by-catch/target catch) uncertain due to various assumptions made (e.g. conversion of the estimates in number of individuals into weight without any information on the mean size per species). In summary, the main difficulties and data gaps identified in the project can be described as follows: there is a lack of shark reporting in artisal and coastal fisheries; there is a lack of shark reporting in industrial fisheries and when is reported usually is not broken down by species; there is a lack of any size frequency data; there is a lack of regiol biological/ecological information for sharks; there are difficulties to access to the data both at RFMO level and at a country level; species misidentification which affect the collection of fishery statistics; low observer coverage for most of the fleets/areas; difficulties with the use of logbook data for shark assessment (misidentification, underreporting, change in targeting practice). The work carried out in first phase of the project focuses on the collection of fishery information publicly available, mainly in the website public domain of the RFMOs in the Indian, Pacific and Atlantic Ocean as well as in the Mediterranean Sea (ICCAT- GFCM, IOTC, IATTC, and WCPFC) but also on information available in the literature, most of which com es from documents presented at the scientific meetings or workshops of RFMOs. The RFMO data administrators were also contacted in order to obtain any additiol fishery statistics data. Similarly, information from flag states, and from EU- member states, was requested in order to improve the information available on discards levels, size frequencies and biological information. Apart from RFMO official statistics, and in order to get more accurate and altertive catch data, shark catch estimations f or the most recent period were appraised based on fleet specific ratios of shark catch over tu (or target) catches. This was done in a two step process, first a general ratio between shark catches over tu (target) catch was applied to estimate total shark catches for major fisheries and, then, the relative proportion by species in the catch was applied to estimate shark catches by species. Those ratios were obtained from the literature search and/or data from observer programs available in the R FMO or in the literature. This exercise allows identifying the fleets that could be mainly responsible for the catch of the main shark species included in the study based on the best assumption of the shark catch over target species catch ratios derived from the literature but also allows identifying the main impacted shark specis by fisheries in each areas as well as the main origin of underreporting. In the Atlantic and Pacific (east and west), the Longline fleet targeting sharks, swordfish an d/or tropical tus is the most important métier catching sharks; which contributes with 59 %, 86 % and 95 % to the total shark catches respectively. On the contrary, the picture in the Indian Ocean is different where gillnet (GN - sensu lato) are contributing with 61 % of the total shark catch in comparison to 18 % for longliners. In general, the species composition of the sharks in different métiers is similar in all Oceans as well as in the Mediterran Sea. For example, Longline (LL - sensu lato ) impacts mainly blueshark and shortfin mako and in a minor extend hammerhead, thresher, silky and oceanic whitetip sharks; whereas Gillnet (GN - sensu lato) are impacting mainly silky, thresher, Oceanic whitetip, and shortfin mako sharks. The catch of silky and oceanic whitetip shark for the longline fleet in the West Pacific is higher than other longline fleets of other Oceans because they are operating in more equatorial waters. Although, in all the Oceans, the contribution to the total catch of Purse seines is minor (maximum of 5 % of total catch in the West Pacific); the species composition of purse seines catch is clearly domited by silky and oceanic whitetip sharks. In all Oceans the main species impacted is blueshark with around 65-75 %, with the exception of the Indian Ocean and Mediterranean Sea, of the total shark catch. The contribution of the rest of the species can vary depending on the relative contribution of different fleets as well as the spatial distribution of the d ifferent fleets. However, in general the blueshark catch is then followed by shortfin mako, hammerhead, silky, thresher, Oceanic withetip shark. In the Indian Ocean, the blueshark contribution to total shark catch is around 35 % followed by silky shark (21 %), thresher (16 %), Oceanic whitetip (11 %), shortfin mako (10 %) and hammerheads (6 %). And in the Mediterrenean, blueshark contribution is around 50 % while other species make up the rest: thresher sharks (25 %), mako sharks (13.3 %), tope shark (6.1 %), rays (3.5 %), and porbeagle (1 %). The comparison between the declared value and the estimated value can be considered as a figure for undereporting. For example, it is worth mentioning that the total average amount of the investigated species estimated is 1.5, 13 and 7 times higher than the average amount declared in the Atlantic Ocean, Mediterranean Sea and Indian Ocean, respectively. However, as the estimation carried out in this alysis was based on ratio of shark catch over to tal target catch there is high uncertainty on fil estimations coming from different sources; such as métier classification, from target species quantities declared and from the shark/target catch ratio used to estimate the shark species investigated; which recommend to take these estimations with caution. It was not possible to apply this methodology to the Eastern and Western Pacific due to the lack of access to disaggretate tu/target species catches from the IATTC/WCPFC public databases. And t he data above should be considered in the light of the different species productivity and susceptibility of a given species to a giving métier. This is important to take into account because in some cases a minor catch of one species from all fleets, or one fleet in particular, can have a great impact if the species in question is more vulnerable showing low productivity and high susceptibility to the fleet(s). So, it is important to consider the results above in the framework of Ecological Risk Assessment (ERA) which can help to identify priorities for observer programs/research efforts. Filly, data gaps identified in relation to shark fishery statistics have been summarized with the aim to develop a research framework that would allow filling those gaps in order to assess and mage the shark population worldwide in a sustaible manner. The design of such programme is benefited and integrates all the information collected through phase I. For example, the data and knowledge gaps identif ied and listed/inventoried through Phase I allows focusing and prioritised the future research. From this summarisation of Phase I it is clear as to what data is available for providing magement advice for shark species, and where gaps in the data render this task difficult. At this stage, recommendations for data collection improvements as well as research necessities and activities are described. As such, the review of existing information; as well as the identification of information gaps, ma in shark species impacted and main métier responsible for major shark catch; presented above provides the basis for development of a research program and priorities for the assessment of the status of sharks in Tu RFMOs. As it is not possible to develop a research program for all the Tu RFMOs, a general framework to develop the research program in support of the scientific advice for shark magement is proposed; which includes: (1) a research framework to identify the main species and fleets that needs to be prioritized for the collection of fishery data and information in order to assure the assessment of principal shark species regiolly in the Tu RFMOs; (2) a general recommendations for all Tu RFMOs to improve the data collection to fill the gaps identified above; and (3) options for magement and mitigation measures for sharks. The research framework is proposed to be organized in three steps: (i) estimation of shark catches by species using the method proposed here which allows ident ifying the most impacted shark species and the métier most affecting those species; (ii) a prelimiry Ecological Risk Assessment (or other prelimiry assessment based on fishery indicators) by fleets which allows to identify the most vulnerable species to focus the efforts in conjunction with point (i); and (iii) specific recommendations of how to apply possible magement measures, to improve data collection and assessment of those fleets/species identified as priorities based on points (ii) and (i ii). The implementation of the three steps is highly related. The project also recommends actions to fill the identified gaps structured in sections as data collection, data reporting, data resolution, data access, and assessment. As the data collected through phase I give a complete picture of what are the main fleets targeting the more important shark species caught in the Tu RFMOs, both EU and other countries catching shark, as well as the extent of their volume; this exercise also helps to i dentify the different species for which more focus is needed and those that are supposed to be caught in a lesser extent. For example, this helps to focus the target or more important fleets to monitor and design specific representative observer schemes for those fleets as necessary. Having in mine the data gaps for major fisheries impacting pelagic sharks stocks in the different t-RFMOs Conventions areas as well as the most important metier catching sharks and most impacted shark species; the p roject proposes some possible solutions and recommendations for the implementation of observers programmes on those fisheries, aiming to improve shark data collection, mely regarding shark catch and discards: species composition; vessel mortality; size and sex data. Magement measures are essential when a given stock is seriously affected by the fishing activity and are aimed at limiting the impact of this activity. The election of a measure will depend on the stock status, on the behavior of the species, on the species being target or not, etc.; but the project summarizes several options of magement and mitigation measures applicable to shark species.

Users also downloaded

Showing related downloaded files

No results found.