Thumbnail Image

Guiding principles for promoting aquaculture in Africa - Benchmarks for sustainable development.










Moehl, J.; Brummett, R.; Kalende, M.B.; Coche, A. Guiding principles for promoting aquaculture in Africa - Benchmarks for sustainable development. CIFA Occasional Paper. No. 28. Accra, FAO. 2006. xxp.


Also available in:
No results found.

Related items

Showing items related by metadata.

  • Thumbnail Image
    Book (series)
    The value of African fisheries
    FAO Fisheries and Aquaculture Circular. No. 1093
    2014
    Also available in:

    The “The value of African fisheries” study was carried out in the framework of the New Partnership for Africa’s Development (NEPAD)-FAO Fisheries Programme (NFFP) funded by the Swedish International Development Cooperation Agency (Sida). The aim was to estimate the contribution to national and agriculture Gross Domestic Products (GDPs) and the employment generated by the whole fisheries sector, defined as including inland and marine capture fisheries, post-harvest, licensing of local fleets, and aquaculture. Information was provided by 42 experts from the 23 countries (more than 40 percent of all African States) collaborating in the study. To obtain indicative figures for the entire continent, data from the sampled countries were analysed and calibrated to extrapolate values for the non-sampled countries, which were classified into separate groups for marine fisheries, inland fisheries and aquaculture according to their geographical location or productivity. The value added by the fi sheries sector as a whole in 2011 was estimated at more than US$24 billion, 1.26 percent of the GDP of all African countries. Detailed figures by subsector highlight the relevance of marine artisanal fisheries and related processing, and also of inland fisheries, which contribute one-third of the total catches in African countries. Aquaculture is still developing in Africa and is mostly concentrated in a few countries but it already produces an estimated value of almost US$3 billion per year. As data on licence fees paid by foreign fleets were not easily available to the national experts participating in this study, an attempt was also made to estimate the value of fisheries agreements with Distant Water Fishing Nations (DWFNs) fishing in the exclusive economic zones of African States. Considering that 25 percent of all marine catches around Africa are still by non-African countries, if also these catches were caught by African States in theory they could generate an additional value o f US$3.3 billion, which is eight times higher than the current US$0.4 billion African countries earn from fisheries agreements. According to the new estimates produced by the study, the fisheries sector as a whole employs 12.3 million people as full-time fishers or full-time and part-time processors, representing 2.1 percent of Africa’s population of between 15 and 64 years old. Fishers represent half of all people engaged in the sector, 42.4 percent are processors and 7.5 percent work in aquac ulture. About 27.3 percent of the people engaged in fisheries and aquaculture are women, with marked differences in their share among fishers (3.6 percent), processors (58 percent), and aquaculture workers (4 percent).
  • Thumbnail Image
    Document
    Mapping the benefits: developing a new decision tool for tsetse and trypanosomosis interventions | La mise en carte des bénéfices: un nouvel outil de prise de décisions pour la lutte contre les glossines et les trypanosomoses 2006
    Also available in:
    No results found.

    The purpose of this study was to investigate the feasibility of linking quantitative economic variables to a geographical information system (GIS) spatial framework in order to provide new insights and reinforce the decision-making process for tsetse and trypanosomiasis (T&T) interventions. Hitherto, GIS studies have mapped a series of ecological, demographic and socio-economic indicators, but have stopped short of mapping a derived measure quantified in monetary units. Furthermore, the economic aspects of T&T control have historically been dealt with separately from their other effects, with results usually expressed in terms of benefit–cost ratios or extra income per head of livestock. Even when they have been expressed in terms of US dollars per square kilometre (US$/km2) these results have not been mapped; instead they have been used as inputs for benefit–cost type analyses. In contrast, the approach developed here combines – for the first time – economic herd models with mapping of both breed/production systems and the expansion of livestock populations under various scenarios. The first phase of the work tackled Benin, Ghana and Togo. The second phase extended the work to cover parts of Burkina Faso and Mali. A range of standardised livestock population, production and price data were collected at country, province and district level from each of these five countries, together with the most recent livestock population, cropping and disease data. These were amalgamated with the corresponding data layers derived and adapted from the Programme Against African Trypanosomiasis Information System (PAAT-IS). At the mapping stage, the data were extrapolated to cover the areas around the five countries, notably including Côte d’Ivoire for which considerable data already existed in the authors’ archives and databases. Four breed/production systems were defined and mapped: a predominantly taurine system with minimal use of animal traction; a crossbred taurine×zebu system with moderate use of animal traction; a crossbred zebu×taurine system with very high use of animal traction; and a zebu system with moderate animal traction use. By combining these definitions with the new data and the PAAT-IS data layers, a new distribution map was produced that linked trypanotolerant and susceptible cattle breeds to production systems. L’objectif de la présente étude était d’examiner la possibilité de lier des variables économiques quantitatives au cadre spatial d’un système d’information géographique (SIG) afin de fournir de nouvelles connaissances et de consolider le processus de prise de décisions dans les interventions contre les glossines et la trypanosomose. Jusqu’ici, les études de SIG ont cartographié une série d’indicateurs écologiques, démographiques et socioéconomiques mais ne sont pas allées jusqu’à mettre en carte une mesure synthétique quantifiée en unités monétaires. En outre, dans le passé, les aspects économiques de la lutte contre les glossines et la trypanosomose ont été traités séparément de leurs autres effets ; les résultats étaient généralement exprimés en termes de rapports bénéfices-coûts ou de revenus supplémentaires par tête de bétail. Même lorsque présentés en dollars par kilomètre carré ($EU/km2), ces résultats n’ont jamais été mis en carte, étant plutôt utilisés dans des analyses bénéfices-coûts. L’approche mise au point ici combine – pour la première fois – des modèles économiques de troupeaux avec une cartographie à la fois des systèmes de production/race et de l’expansion des populations de bétail selon divers scénarios. La première phase des travaux s’est concentrée sur le Bénin, le Ghana et le Togo. La seconde phase a étendu les travaux pour couvrir des parties du Burkina Faso et du Mali. Une gamme de données normalisées sur les populations, la production et les prix du bétail a été recueillie au niveau national, provincial et départemental de chacun de ces cinq pays. Les données les plus récentes sur la population de bétail, l’agriculture et la maladie ont été rassemblées. Ces données ont été amalgamées avec les couches de données correspondantes tirées et adaptées du Système d’Information du Programme de Lutte contre la Trypanosomose Africaine (PLTA-SI). Lors de la mise en carte, les données ont été extrapolées pour couvrir les régions entourant les cinq pays, y compris notamment la Côte d’Ivoire pour laquelle des données considérables existaient déjà dans les archives et les bases de données des auteurs. Quatre systèmes de production/race ont été définis et cartographiés : un système essentielle-ment taurin associé à une utilisation minimum de la traction animale ; un système de croisements taurins×zébus avec une utilisation modeste de la traction animale ; un système de croisements zébus×taurins avec une utilisation très importante de la traction animale ; et un système zébu avec une utilisation modeste de la traction animale. En combinant ces définitions avec les nouvelles données et les couches de données du PLTA-SI, une nouvelle carte de répartition, qui associe les races bovines trypanotolérantes et trypanosensibles à des systèmes de production, a été produite.
  • Thumbnail Image
    Book (series)
    Benchmarking species diversification in global aquaculture 2022
    Also available in:
    No results found.

    While diversified aquaculture could reduce both biological and financial risks, the private sector may lack incentives to diversify the species composition of aquaculture production because developing or adopting new species tends to be costly and risky. Conversely, concentrating on the most efficient species can benefit from economies of scale in both production and marketing. With ever-growing concerns over climate change, disease outbreaks, market fluctuations and other uncertainties, species diversification has become an increasingly prominent strategy for sustainable aquaculture development. Policy and planning on species diversification require a holistic, sector-wide perspective to assess the overall prospect of individually promising species that may not be entirely successful when competing for limited resources and markets. The historical experiences of species diversification in global aquaculture can provide guidance for the assessment. This paper develops a benchmarking system to examine species diversification patterns in around 200 countries for three decades to generate information and insights in support of evidence-based policy and planning in aquaculture development. The system uses “effective number of species” (ENS) as a diversity measure that is essentially equivalent to, yet more intuitive than, the widely used Shannon Index. A statistical model is established to estimate a benchmark ENS for each country and construct a benchmarking species diversification index (BSDI) to compare a country’s species diversification with global experiences. Key results are presented and discussed in the main text; and more comprehensive results are documented in Appendix II. The benchmarking system can be used in foresight analyses to help design or refine future production targets (including species composition) in policy and planning for aquaculture development; an example is provided in Appendix I to help practitioners better understand and utilize the system.

Users also downloaded

Showing related downloaded files

No results found.