Previous Page Table of Contents Next Page


8.27 LENGTH COHORT ANALYSIS (LCA)


(7.9.2)

GROUP I

The following table presents the annual catch length composition, of a cohort of a resource with L = 130 cm and K = 0.1 year-1.

Length
classes (cm)

Catch, CI
(million)

6-

1823

12-

14463

18-

25227

24-

8134

30-

3889

36-

2959

42-

1871

48-

653

54-

322

60-

228

66-

181

72-

96

78-

16

84-

0

The natural mortality coefficient was estimated as being M = 0.3 year-1.

1. Using the Pope method, and adopting E = 0.5 as being the exploitation rate in the (78-) length class of the catch, estimate the number of survivors at the beginning of each length class, the fishing mortality coefficient F and the exploitation rate E in each class.

2. Calculate the mean number of survivors of the cohort.

GROUP II

The following tables 1 and 2 present the basic information on a hypothetical stock during the years 1985 to 1994.

1. Apply the slicing technique to the Catch matrix and comment on the validity of applying cohort analyses by ages.

2. Estimate the matrices [F] and [N] by length classes and years.

3. Calculate the matrix [Fsep] and comment on the hypothesis that the exploitation pattern can be considered to be constant during those years.

Table 1. Growth parameters of the von-Bertalanffy curve, L and K Natural Mortality Coefficient, M and constants a and b of the weight/length relation

Growth

Natural Mortality

Weight/length relation
wi = a. (Li)b

L (cm)

42

M (year-1)

0.8

a

0.0023

K (year-1)

0.5



b

3

Table 2. Catch matrix in thousands of individuals, by length classes and years in the period 1985-94

Age
(sliced)

Length classes
(cm)

Years

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

0

20-

35

41

30

17

49

69

34

61

46

29

21-

338

400

292

167

472

662

327

593

442

276

22-

805

952

699

400

1127

1575

777

1404

1053

657

23-

1500

1766

1317

757

2108

2923

1436

2574

1962

1220

24-

1901

2222

1702

985

2688

3678

1795

3175

2485

1535

25-

2034

2357

1872

1093

2902

3900

1886

3276

2659

1627

26-

1898

2175

1806

1067

2739

3600

1722

2925

2482

1502

1

27-

1951

1817

1228

1416

1445

2932

3376

1695

1785

2376

28-

1664

1529

1091

1276

1250

2467

2801

1369

1523

1999

29-

1382

1251

948

1125

1053

2018

2258

1071

1265

1636

30-

1127

1003

812

980

873

1619

1782

818

1031

1312

31-

900

787

684

841

710

1269

1372

607

823

1029

32-

694

595

560

702

558

959

1017

432

635

778

2

33-

809

565

290

389

834

511

759

832

221

518

34-

584

399

226

310

618

361

522

544

160

365

35-

403

267

170

240

439

242

340

335

110

245

36-

262

168

122

178

294

152

207

191

72

154

3

37-

165

168

66

71

175

214

93

128

75

46

38-

86

84

40

45

96

107

44

55

39

23

Consider La = 20 cm and ta = 0

(Extracted from: Cadima, E. & Palma, C.,1997. Cohort Analysis from annual length catch compositions. Working document presented to the Working Group of the Demersal Stocks Assessment of the South Shelf, held in Copenhagen from 1-10 September, 1997.)


Previous Page Top of Page Next Page