

Agroecology in Action: Climate Change Mitigation and Plant Diversity Conservation in **Tropical Homegardens**

Subhrajit Saha¹, P. K. Ramachandran Nair², Vimala D. Nair³

¹Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA; ²School of Forest Resources and Conservation, and ³Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA

Introduction

- > Climate Change Mitigation and Biodiversity Conservation: Two major environmental challenges
- ➤ Homegarden (HG) Agroforestry System: Indigenous agroecosystem with multistory combinations of trees and crops, sometimes with domestic animals; which follows the principles of agroecology and sustains millions of rural people in the tropics (Gliessman, 1990).
- > Study Objectives: To, 1) measure the plant biodiversity of HGs, 2) measure and compare the HG SOC stocking with other land-use systems, and 3) understand the relationship between plant diversity and SOC sequestration.

Methodology

- **Location:** Thrissur, Kerala, India (Inceptisol) (Fig.1)
- > Five Land-use: Forest, rubber and coconut plantation, rice-paddy and HGs (Fig.2, 3, and 4).
- **Four Depths:** (0–20, 20–50, 50–80, 80–100 cm).
- **▶ HGs:** Large (>0.4ha) and Small (<0.4 ha).
- > SOC Measurement: FLASH EA1112NC elemental analyzer.
- ➤ Measurement of plant-stand characteristics (Table 1).
- ➤ Lower case letters indicate differences at 0.05 probability level.

Fig.1: Study Location in India

Fig.2: Atypical homegarden, Kerala, India

Fig.3: A. Forest, B. Coconut, C. Rubber, D. Rice-paddy Systems

Fig.4: Soil samples are being collected from an HG under the study.

Results

- Total number of economic plant species in Kerala HGs: 106
- Small HGs: Higher mean species density and tree density (Table 1)
- Higher species density Higher SOC (Fig.5).
- Higher tree density Higher SOC (Fig.6).
- Higher Margalef Index Higher SOC.
- Total SOC Stocking: Forests> Small HG > Rubber > Large HG > Coconut> Rice-paddy (Fig.7).

Table 1: Homegarden, Plant-Stand Characteristics

	Plant-Stand	Large HG	Small HG
	Characteristics	(>0.4 ha)	(< 0.4 ha)
).	Total no. of Species	105	96
	Mean no. of Species/ HG	37	33.5
	Mean Plant Density (no. of plants 100 m ⁻²)	11.14	14.42
	Mean Species Density (no. of species 100 m ⁻²)	0.71b [‡]	1.61a
	Mean Tree Density (no. of trees100 m ⁻²)	5.84b	7.51a
	Mean Tree Species Density (species 100 m ⁻²)	0.41	0.95
	Mean Margalef Index	5.74	5.94
	Mean Shannon Index	2.27	2.38

Fig.5: SOC and Plant Species Density

Fig.6: SOC and Tree Density

Fig.7: SOC in different land-use in Kerala, India

Discussion

- Forest-like structure and composition of HGs enable them to have high biodiversity and SOC comparable to forests.
- High species assemblage in HGs results better resources-utilization (Tilman et al., 1997) and greater NPP (Vandermeer, 1989), which may contribute to higher SOC sequestration.

Conclusions

- The principles of agroecology: Predominant in tropical homegardens.
- > The plant species assemblage in HGs: Biodiversity conservation.
- Food crops in HGs: Food security.
- > HG SOC stocking: High climate change mitigation potential.
- Agroecological significance: Plant biodiversity and climate change mitigation, a mutually beneficial relationship.

References

Agroecology: Researching the Ecological Basis for Sustainable Agriculture, pp. 160–168. Ecological Studies 78, University of California, Santa Cruz, CA

Tilman, D., Lehman, C.L., Thomson, K.T. 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad.

Gliessman S.R. (ed.) 1990. Integrating trees into agriculture: the homegarden agroecosystem as an example of agroforestry in the tropics.

Sci. (USA) 94: 1857 – 1861. Vandermeer, J. 1989. The ecology of intercropping. Cambridge University Press, Cambridge, 249 p.