

- Under the Kyeto Protocol: a framework forest definition and no forest degradation definition with an activity based approach - Under the expected REDO mechanism: forest definition? and forest degradation definition? with an activity based approach - In the context of UNFCCC there are no definitions that explain changes occurring within a land use category

Carbon stock changes: five pools

• Above-ground biomass
• Below-ground biomass
• Deadwood
• Litter
• Soil $\Delta C = \Delta C_{AB} + \Delta C_{BB} + \Delta C_{DW} + \Delta C_{LI} + \Delta C_{SO}$

"Stock Difference" method $\Delta C = C_2 - C_1$ $\Delta C = \text{change of carbon stock}$ $C_2 = \text{carbon stock at time 2}$ $C_1 = \text{carbon stock at time 1}$ for one year: $\Delta C = (C_2 - C_3)/(t_2 - t_3)$

Gain-Loss (default) method for Biomass ΔC_B = ΔC_G - ΔC_L ΔC = change of carbon stocks in biomass ΔC_G = increase due to biomass growth ΔC_L = decrease due to biomass loss

Integrating Forest Transects and Remote Sensing data to Quantify Carbon Loss due to Forest Degradation: a case study of the Brazilian Amazon Technical meeting on Forest Degradation FAO FOIM 8-10 September 2009
Rome, Italy

Carlos M. de Souza Jr. 1*, Mark A. Cochrane², Marcio H. Sales¹, André L. Monteiro¹, Danillo Mollicone³

1. Instituto do Nomen e Mato Ambieste da Arrasola-Insaos Cabo Peorts 3001, Beller, Pp. Brassl. 60613-397

2. Geographic Information Science Center of boofence (GISCE)
South Distorts State University

3. Max Planck Institute for Bogs othersity, Nani, Germany

Objetives

- Present a brief review of how remote sensing has been used to detect and map forest degradation.
- Show how carbon stocks of degraded forests can be characterized using rapid forest transect surveys.
- Demonstrate how field data of forest carbon stocks can be integrated with optical remotely sensed data to regionally characterize forest degradation.
- Discuss the challenges to integrating field-derived carbon estimates with remotely sensed data.

Dynamic of Forest Degradation Degrataion signal changes fast. There is a synergism of forest degradation processes that can reduces more C stocks of degraded forests. Reccurrent forest degratation is expected and creates even more loss of C stocks. Annual monitoring is required to keep track of forest degrataion process.

Challenges to Monitor Forest Degradation and C Stock Changes

- Monitoring forest degradation requires welldocumenting forest disturbance history, specifically recurrent degradation events and time since last disturbance.
- High spatial variability of forest biomass requires site-specific calibration of RS and AGLB.
- Monitoring degradation requires annual acquisition of satellite images because the rapid changes in degraded forests inhibit detection and mask out the intensity of the degradation after one year

Challenges to Monitor Forest Degradation and C Stock Changes

- Optical remote sensing techniques presented in this study cannot be applied in regions with intense cloudy conditions.
- Correlation of NDFI and AGLB of intact forest and forest degradation classes collapses after one year after the degradation event because the NDFI degradation signal disappear fast.