


## ASSESSMENT OF FOREST DEGRADATION BY LOCAL COMMUNITIES: THE CASE STUDY OF GHANA



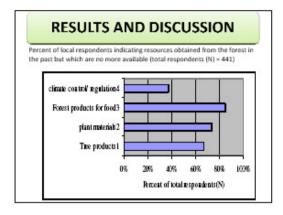
### INTRODUCTION

- · Degradation of forests in Ghana is alarming
- Forest land declined from 8.1 million ha to 2.1 million ha within the last century
- Remaining forested areas are in poor condition



- Degradation impact negatively on human livelihood and the environment
- Therefore urgent measures needed to curb continuous degradation
- Hence an ITTO-funded project implemented by the Forestry Research Institute of Ghana (FORIG) to rehabilitate some degraded forests with collaboration of local communities
- However, due to limited resources proposed project sites had to be prioritized based on the level of degradation
- To ensure active local participation & transparency, indicators for assessing degradation were developed in collaboration with the local communities

### Development of indicators


- · PRA and workshops were used
- · Questions focused on:
  - present state of forests as compared to about 20 years ago.
  - products obtained from the forest some years back and which are no more available.
  - fertility of the land at present as compared to some 20 years ago, and
  - present state of streams and rivers in the forests compared to some years ago
- Answers compiled and list of final indicators agreed upon through four separate workshops with local communities

### Indicators used for assessment of degradation

- State of flora resources: timber and NTFPs that communities depend on (Biodiversity)
- State of streams/rivers in the forest (Protective functions)
- State of fire incidence and soil fertility (Health of the forest)

# Method for assessment

- Vegetation survey for the assessment biodiversity
- Habitat assessment method for assessment of protective function
- History of fire incidence for state of health of the forest



# Indicators of degradation provided by local communities

- · Fire: presence of burnt areas and fire adapted grasses,
- · soil erosion due to burning of grasses;
- Fire related suspended particulate matter;
- · Reduction in soil fertility
- · Reduced water supply and quality;
- · Reduction in forest food, medicines and herbs;
- · Decrease in game, wild animals and birds;
- Reduction in materials for shelter and households;
   Reduction in income from NWFPs
- · Reduction in rainfall amount and pattern;
- Destruction of plantations;
- · Reduction in provision of services (e.g. shade and wind breaks);
- · Vegetative cover destruction:

### Summary list of final indicators of degradation

#### No Indicator

- I Number of plant species in the forest
- 2 Level of soil fertility as indicated by the presence of indicator plants
- 3 State of riparian vegetation
- 4 Number of plant species used as Non-Timber Forest Products
- 5 State of fire attack in the forest

Field inventory were based on these indicators



### CONCLUSION

- The approach relies on skills that are locally available in many communities and indicators based mainly on visual assessments
- Case study demonstrates high potential for active involvement of local communities in the assessment of degradation
- This assessment could be replicated in other areas upon improvement in local capacity
- However, the only constraint against such replication and capacity building are financial resources

### RECOMMENDATION

- Need to build capacity of local communities
- Tailor-made manual for local communities be produced
- Guidelines for the development of indicators for assessment need to be made
- Approach could be improved using statistical analyses and additional indicators/data including participatory mapping



Land Degradation Assessment in Drylands (LADA): A focus on the local level assessment

by
Sally Bunning FAO, Land and Water Division,
Natural Resources and Environment Department

for the Teichnical Meeting on A&M of Forest Degradation 8-11 September 2000

#### WHAT ARE WE ASSESSING ?

#### Land degradation (LADA definition):

The reduction in the capacity of the land to perform ecosystem functions and services that support society and development"

#### Status and Trends of degradation (& improvement):

- Soil properties and soil erosion
   Water quality and quantity
- · Vegetation/land use and biodiversity

#### Causes & Drivers: focus on human induced degradation (SLM)

- land use management practices
   capacity (knowledge, equipment, access to services...)
- · policies and legislation (tenure, market, PES...)

#### Impacts on

- · Ecosystem services: Environmental, Productive & Socioeconomic
- · Livelihoods: Natural, Physical, Human, Social & Financial assets

#### Assessment Process, Methods and Tools

#### Participatory Process

#### Multi-scale

- Global level
- · National level
- Local Level

#### Integrated (human and environmental)

- · Socioeconomic (livelihoods and vulnerability analysis)
- Biophysical: soil, water, vegetation/biodiversity; on-site and off-site (wider-watershed/ landscape level)
- · DPSIR and Ecosystems analysis

#### OBJECTIVES & OUTCOMES OF LOCAL LEVEL LADA

#### **OBJECTIVES**

- 1. to establish a baseline of LD information at local scale
- to provide basis for a (future) LD monitoring (geo-referenced system)
   to validate the LD Hot Spots (GLADA-NDVI) and national LD
- assessment
  4. to enable causal analysis of land degradation and human/socio economic factors (Drivers Pressures State Impacts Responses)
  5. to identify remedial action for sustainable land management (SLM).

#### OUTCOMES

- Methods and Tools
- LADA-Local manual (parts 1 and II)
- Documentation of SLM measures (using WOCAT tools, incl costs and benefits)
- Curriculum for training (in LADA countries and by UNCCD member

#### Degradation types: National (LADA/WOCAT) and local

- Wo offsite effects (sediments, flooding. -

- E: Wind erosion Et loss of topsoil by wind

#### C: Soil chemical deterioration

# chemical de binoration - fertility decline and reduced OM - content not by erection e.g. by leaching, fertility mining, exidation and volatisation (N)

consistion (n)

Ca - additication (lowering of soil pH)

Ca - soil pollution with taxic materials

Cs - sail risation/akalinisation of topsoil
leading to a productivity decline

- P: Soil biophysical deterioration
  Fo compaction: by trampling or machineryweight i frequent use
  FN sealing of priors and creation of 
  imprevious layer at soil surface obstructing 
  infiltration of narwater
  FW waterlogging, human induced 
  hydromorphism jessel, paddy fields)
  FS subsidence of organic soils, settling of 
  soil

  - soil
    Pu loss of bio-productive function due to construction, mining etc.

V:Vegetation and blodiversity degradation Vr - scluction of vegetation cover Vs - quality & species composition decline (above and below ground)
Vq - reduced biomass/production due to clear

## tolling, forest fire, etc.

H: Water degradation
Ha - aridification/soil moisture problem Hp - water quality decline (pollution) Hq - water quantity decline (groundwater, surface water)

#### Rapid assessment of vegetation + land use

- Obtain an overview of vegetation and land use patterns
- 2. Make a rapid assessment of vegetation in each LUT

  - plant and litter cover
     structure and composition
     habitat and species diversity

  - 4. plant health'vigour 5. productivity
- Develop initial ideas on relationships between vegetation and LD/SLM practices:
- practices:

   effects of vegetation degradation on erosion, soil quality, the water cycle, biomass! productrivity; and livelihoods (food, other products, vulnerability) effects of SLM practices on vegetation resources and productivity

  → to help select detailed assessment sites

#### 4. Conduct Detailed assessment of status and trends

- scoring of pasture quality/condition forest/woodland status and trends
- natural vegetation in croplands

#### Focus group discussion on vegetation resources

- 1. Identify plant indicators change in pasture quality (3) + soil quality (3).
- 2. Information on the grazing regime and stocking rate
- 3. Information on fires, drought risk/resilience and coping strategies
- 4. Information on laws and regulations that affect vegetation quality
- 5. Describe the reasons for current vegetation status (and change dynamics) back up from household interviews, technical specialists, secondary information

#### Analysis of Effects on Ecosystem Services LADA (N+L)

- P Productive services

   P1 production (quantity + quality) incl. effects on biomass; and assoc. risks

   P2 water (quantity + quality) for human consumption, animals and vegetation

   P3 land availability

Need to develop a

scoring system for

LADA- L for assessing

ecosystem

services/

- E Ecological services (regulating + supporting)
   E1 water cycle (hydrological sigme)
   E2 organic carbon content (soll/vegetation)
   E3 soil cover (vegetation, mulch)
   E4 condition of soil surface (e.g. crusting)

- E5 nutrient cycling E6 soil formation E7 biodiversity
- E8 effects on greenhouse gas emissions

#### S- Socio-economic services + human well being

- \$1 spiritual, aesthetic, cultural landscape, heritage value, recreation, tourism
   \$2 education and knowledge (e.g. indigenous)
- + S3 conflicts
- 33 commiss
   S4 tood security, health and poverty
   S5 infrastructure private and public (buildings, roads, dams, etc)

#### CHALLENGES AND CONCEPTS

As with forest degradation assessment

Degradation is a process so we need to assess

- type and swerity of land degradation (observation)
   land condition (quality and quantity of soil, water and biological resources)
  (measurement and observation)
- (measurement and observation)

   change / trend over recent past e.g. 10 years (information from land users, technical sectors, policy makers (take into account varying perceptions and also look at historical context to understand land users behaviour and policy decisions) backed up by LUGC analysis at national level

   Impacts (human; environmental) and thereby determine remedial measures

Problem of Baseline : so comparison is important in the field to compare degraded and well managed land (e.g. between fields, farms, catchments)

 Aim : not the assessment itself but the capacity to use results to inform decision making (by land users, technical sectors, policy makers) and action to improve land resources and ecosystem management (Prevent; Mitigate; Restore/rehabilitate)

#### Closing remarks

- · LADA local is being adapted and validated in range of situations
- Manual available
- Requests for scaling up (How can we collaborate with FO) Technical collaboration between LADA and FO forest
- degradation process
- Suggestion to prepare a forest degradation module for LADA

Details on local, national and global level assessment process on website www.fao.org/nr/lada

Please see also the LADA fliers