The plants that feed the world
Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture
The plants that feed the world
Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture

Colin K. Khoury, Steven Sotelo, Daniel Amariles and Geoff Hawtin
Contents

Acknowledgements vii
Acronyms and abbreviations ix
Executive summary xi
1. Introduction 1
 1.1. The International Treaty on Plant Genetic Resources for Food and Agriculture and development of this study on The plants that feed the world: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture 1
 1.2. Relevant background on plant genetic resources for food and agriculture 5
 1.2.1. The diversity of crop plants 5
 1.2.2. A brief history of global efforts on PGRFA conservation and use 7
2. Methodology and data sources summary 11
3. Results 17
 3.1. Use of food and agricultural crop plants 17
 3.1.1. Use of food and agricultural crop plants in terms of global production, trade and contribution to food supply 17
 3.1.2. Research significance of food and agricultural crop plants 25
 3.1.3. Public interest in food and agricultural crop plants 27
 3.2. Interdependence regarding food and agricultural crop plant genetic resources 31
 3.2.1. Significance of each crop in terms of agricultural production, trade and contribution to food supplies, outside its geographic origins and primary region(s) of diversity 31
 3.2.2. Change in significance of each crop in terms of agricultural production, trade and contribution to food supplies, outside its geographic origins and primary region(s) of diversity 34
 3.3. Demand for food and agricultural crop plant genetic resources 34
 3.3.1. Demand for food and agricultural crop plant genetic resources in terms of germplasm distributions 34
 3.3.2. Demand for food and agricultural crop plant genetic resources in terms of varietal registrations and releases 44
 3.4. Supply of food and agricultural crop plant genetic resources 48
 3.4.1. Supply of food and agricultural crop plant genetic resources in terms of germplasm collections 48
3.4.2. Supply of food and agricultural crop plant genetic resources in terms of germplasm collection coverage in the Multilateral System of the International Treaty

3.4.3. Supply of food and agricultural crop plant genetic resources in terms of germplasm collection coverage of crops’ primary region(s) of diversity

3.4.4. Supply of food and agricultural crop plant genetic resources in terms of botanic garden germplasm collections

3.4.5. Supply of food and agricultural crop plant genetic resources in terms of Global Biodiversity Information Facility research records

3.4.6. Supply of genetic sequence data (GSD) and other related data for food and agricultural crop plants

3.5. Security of food and agricultural crop plant genetic resources

3.5.1. Security of food and agricultural crop plant genetic resources in terms of safety backup of germplasm collections at the Svalbard Global Seed Vault

4. Discussion

4.1. Implications regarding the International Treaty on Plant Genetic Resources for Food and Agriculture and its Multilateral System of Access and Benefit-sharing

4.2. Information gaps and recommendations on data enhancements

References

Annex 1. Extended methodology and data sources

A1. Crop list
 A1.1. Crop list compilation
 A1.2. Crop list data processing and information additions
 A1.3. Crop list results

A2. Crop metrics
 A2.1. Domain: Crop use
 A2.2. Domain: Interdependence regarding food and agricultural crop plant genetic resources
 A2.3. Domain: Demand for food and agricultural crop plant genetic resources
 A2.4. Domain: Supply of food and agricultural crop plant genetic resources
 A2.5. Domain: Security of food and agricultural crop plant genetic resources

A3. Crop indicator calculation across metrics

A4. Metric limitations and other potential sources of information
 A4.1. Existing metric data limitations and gaps
 A4.2. Other potential metrics and sources of information

A5. Extended methodology and data sources references
List of figures

Figure 1: Food and agricultural crops studied in this analysis
12

Figure 2: Use of crops in global agricultural production as measured in terms of production quantity
18

Figure 3: Geographic spread of crops in global agricultural production as measured in terms of the proportion of countries in which the crop is significant compared with the total number of countries reported in FAOSTAT (a total of 205 countries were reported in the production data)
20

Figure 4: Geographic evenness of crops in terms of agricultural production in different world regions
22

Figure 5: Research significance of crops as measured in terms of Google Scholar citations based on appearance of the common name of the crop in the article title
26

Figure 6: Significance of each crop in terms of agricultural production outside its geographic origins and primary region(s) of diversity
32

Figure 7: Demand for crop genetic resources as measured in terms of germplasm distributions under the SMTA of the International Treaty
35

Figure 8: Geographic evenness in demand for crop genetic resources as measured in terms of regional balance in receipt of germplasm distributions under the SMTA of the International Treaty
40

Figure 9: Demand for crop genetic resources as measured in terms of germplasm distributions of accessions reported by WIEWS
42

Figure 10: Varietal registrations as reported by UPOV
44

Figure 11: Varietal releases as reported by WIEWS
46

Figure 12: Supply of crop genetic resources as measured in terms of ex situ germplasm collections
49

Figure 13: Coverage of crop genetic resources within the International Treaty’s Multilateral System as measured by direct notation in global ex situ collections databases
51

Figure 14: Supply of crop genetic resources in botanic garden collections
57

Figure 15: Supply of GSD and other related data on crops
63

Figure 16: Safety backup of crop genetic resources at the Svalbard Global Seed Vault
66

Figure A 1: Examples of crops in general Food Supply commodities, and those within general Production commodities
101
List of boxes

Box 1: The oil crop revolution	28
Box 2: Plant-based protein and meat substitutes and analogues	29
Box 3: What are the crops of the future?	30
Box 4: The many crops that feed the world	37
Box 5: PGRFA and climate change adaptation	38
Box 6: PGRFA and climate change mitigation	54
Box 7: Building capacity to use PGRFA	55
Box 8: PGRFA and the future of biofuel crops	59
Box 9: Digital Sequence Information: the importance of access to data and the challenges regarding benefit-sharing	60
Box 10: An ultimate safety net: The Svalbard Global Seed Vault	68
Box 11: The need for a back-up facility network for vegetatively propagated and recalcitrant seeded crops	69
We acknowledge the many decades of work by countless colleagues worldwide that have resulted in the generation and ongoing curation of the variety of databases and information sources drawn upon in this study. We thank the individuals and institutions involved for their efforts in making available high-quality data on food and agricultural crop plants and their plant genetic resources for food and agriculture (PGRFA).

The lead authors of this study were Colin K. Khoury, San Diego Botanic Garden, Encinitas, the United States of America; International Center for Tropical Agriculture (CIAT),* Cali, Colombia; Steven Sotelo, CIAT,* Cali, Colombia; Daniel Amariles, CIAT,* Cali, Colombia; and Geoff Hawtin, Independent Advisor to the Alliance of Bioversity International and CIAT and to the Global Crop Diversity Trust, Portesham, the United Kingdom. Jasmine Wibisono, Center for Environmental Policy, Bard College, Annandale-On-Hudson, the United States of America, authored two of the vignettes. Pablo Gallo, Bioversity International,* Rome, created the figures and design and the layout of the publication was done by Nadia Pellicciotta. Editing was done by Clare Pedrick.

We sincerely thank the key experts on plant genetic resources and information systems who participated in an expert workshop organized in July 2019 at the headquarters of the Food and Agriculture Organization of the United Nations (FAO) in Rome and who provided invaluable input to the research undertaken for this study.

We are grateful to Luigi Guarino and Peter Giovannini of the Global Crop Diversity Trust, Bonn, Germany, and to Tobias Kiene and Álvaro Toledo from the Secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA), Rome, for their important comments and guidance throughout the project. We also thank Francisco López, Daniele Manzella and Stefano Divalenti from FAO for their valuable inputs. Clive Stannard played a key role in the initial steps to conceptualize this initiative.

This study was undertaken as part of a research project coordinated by the Secretariat of ITPGRFA and generously funded by the FAO’s Flexible Multi-Partner Mechanism and the Government of Norway.

Corresponding author: Colin K. Khoury, ckhoury@sdbgarden.org

*Bioversity International and the International Center for Tropical Agriculture (CIAT) are part of the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT). https://alliancebioversityciat.org
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>access and benefit-sharing</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>Crop Trust</td>
<td>Global Crop Diversity Trust</td>
</tr>
<tr>
<td>CWR</td>
<td>crop wild relative</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>CIAT</td>
<td>International Center for Tropical Agriculture</td>
</tr>
<tr>
<td>DSI</td>
<td>digital sequence information</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>FAO Food and Agricultural Statistics Database</td>
</tr>
<tr>
<td>GBIF</td>
<td>Global Biodiversity Information Facility</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GRIN</td>
<td>Germplasm Resources Information Network</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GSD</td>
<td>genetic sequence data</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>IBPGR</td>
<td>International Board for Plant Genetic Resources</td>
</tr>
<tr>
<td>IPCC</td>
<td>International Panel on Climate Change</td>
</tr>
<tr>
<td>ITPGRFA</td>
<td>International Treaty on Plant Genetic Resources for Food and Agriculture</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>N₂O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>NUS</td>
<td>neglected and underutilized species</td>
</tr>
<tr>
<td>PGRFA</td>
<td>plant genetic resources for food and agriculture</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goal</td>
</tr>
<tr>
<td>SGSV</td>
<td>Svalbard Global Seed Vault</td>
</tr>
<tr>
<td>SMTA</td>
<td>Standard Material Transfer Agreement</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>UPOV</td>
<td>International Union for the Protection of New Varieties of Plants</td>
</tr>
<tr>
<td>WIEWS</td>
<td>(FAO) World Information and Early Warning System on plant genetic resources for food and agriculture</td>
</tr>
</tbody>
</table>
Executive summary

Information on the use of food and agricultural crops and on interdependence regarding, demand for, supply of, and security of their genetic resources is needed to prioritize conservation and utilization efforts. This information is increasingly available but is scattered through several information systems, databases and scientific literature. The study *The plants that feed the world: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture* intends to bring together and make widely available pertinent information from these different sources. The aim is to develop a set of reproducible metrics that provide an evidence base for the international plant genetic resources community to prioritize conservation and utilization activities. Measured periodically, these metrics can also provide insights on change over time in the use of crops and issues regarding interdependence on, demand for, supply of, and security of their genetic resources.

The main global database sources for this study included: FAO’s Food and Agricultural Statistics Database (FAOSTAT), the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS), the Data Store of the International Treaty on Plant Genetic Resources for Food and Agriculture, the International Union for the Protection of New Varieties of Plants (UPOV)’s PLUTO Plant Variety Database, the Genesys Plant Genetic Resources portal (Genesys PGR), Botanic Garden Conservation International’s PlantSearch database, the Global Biodiversity Information Facility (GBIF), the Svalbard Global Seed Vault’s Seed Portal, Google Scholar, Wikipedia (pageviews), and the National Center for Biotechnology Information (NCBI)’s Entrez database. Metrics were generated for a total of 355 food and agricultural plants. This list is inclusive of all those covered in FAOSTAT, in Annex I of the International Treaty on Plant Genetic Resources for Food and Agriculture (the International Treaty), and of CGIAR mandate major crops, as well as other crops deemed internationally significant. A total of 98 global-level metrics were calculated, including 51 metrics on crop use and 22 metrics on interdependence regarding; 7 metrics on demand for; 16 metrics on supply of; and 2 metrics on security of crops’ plant genetic resources.

The data on crop use show that hundreds of different crops are widely grown, traded, present in food supplies, and researched around the world.
Crops that are valuable internationally are found in all the main crop-use types examined in this study: ten food categories (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable crops) as well as fibre, forage, and industrial crops.

The data also show that crop use is not static and that a plant’s utilization can vary widely, both spatially and temporally. Crops that were not considered important on a global or regional scale a few decades ago have become widely utilized today. Likewise, plants that are currently grown only on a small scale could become major crops of the future, although it is impossible to predict with high accuracy which crops will flourish, and which will decline in use. The certainty is that the spectrum of globally and regionally important crops will change, possibly substantially, over time. Several boxes have been included throughout the study on contemporary issues related to the conservation and use of plant genetic resources for food and agriculture (PGRFA), in order to further showcase how the management of plant genetic diversity is evolving.

The data further show that for almost all the most utilized crops, there is a high level of interdependence among countries with respect to their PGRFA. Many of the crops studied have high estimated interdependence values, as well as large directly quantified germplasm distributions to recipients in many different countries and regions. This is true not only for the staple food crops, but also for a broad variety of other plants of various crop-use types. All metrics studied showed a wide variation among crops in terms of the amount of PGRFA held ex situ and hence that is available for use. For some crops, especially major, orthodox seed producing commodity crops, there are very large, readily available collections. However, for other crops, collections may be less available or much smaller, including for many of those that cannot be conserved as seed and must be maintained in vivo (in field collections) or in vitro (in specialized laboratory or cryopreservation facilities). Agricultural research institutions and botanic gardens appear to complement one another by focusing their conservation efforts on different crops.

The data also show that there are significant gaps in many ex situ collections, whether maintained by agricultural research institutions or botanic gardens. The availability of botanical research specimens and genetic sequence data (GSD) and other related data are likewise highly variable among crops, with abundant resources for many crops, but substantial gaps for many others.

With respect to the security of PGRFA, while much has already been duplicated in the Svalbard Global Seed Vault, particularly for major cereals, pulses and a few other crop types, the data show that many of the
world’s *ex situ* accessions are not documented as safety duplicated. Given the importance of safety duplication, special attention should be given to securing those accessions not currently safety duplicated, including collections that must be maintained *in vivo* or *in vitro*.

The findings of the study have significant implications that could be applied to the future development of the International Treaty’s Multilateral System of Access and Benefit-sharing (Multilateral System) and the crops listed in its Annex I, as well as, potentially, Article 15 collections. As this study has shown, the contribution of crops to food security and interdependence, the two criteria used to design the Multilateral System, are dynamic, with many crops that are important for food security and sustainable agriculture today not currently included in Annex I. Moreover, additional crops will almost certainly become more important than they are currently. Given the critical role that the use of PGRFA can play in helping to ensure food security, sustainable agriculture, and climate adaptation and mitigation, and the value of facilitated access to PGRFA under the International Treaty to achieve those aims, it is hoped that the findings of this study will prove useful in helping to guide discussions on coverage of the Multilateral System.
1. Introduction

1.1. The International Treaty on Plant Genetic Resources for Food and Agriculture and development of this study on The plants that feed the world: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture

The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA, also called the International Treaty) is the FAO international agreement for the conservation and sustainable use of plant genetic resources for food and agriculture (PGRFA) and the fair and equitable sharing of benefits arising out of their use.

The International Treaty relates to PGRFA, so its scope includes the genetic diversity of all the plants used for food and agriculture. Conserving and using this diversity is essential to guarantee food security and sustainable agriculture today and in the future. The provision of baseline data, metrics and indicators on this diversity is essential for decision-makers at global, regional and national levels to develop strategies to ensure the adequate conservation and use of these plant genetic resources. Through its Article 5, the International Treaty calls for an integrated approach to the exploration, conservation and use of PGRFA.

The Secretariat of the International Treaty has established partnerships with the CGIAR Centers, the Global Crop Diversity Trust (Crop Trust), and the botanic garden community around a common interest – that of strengthening the provision of data and science to inform policy-making regarding PGRFA.
The Governing Body of the International Treaty recommended the Secretariat and the Crop Trust to further enhance its collaboration and complementarity on scientific and technical matters, including through improved linkages in the updating and implementation of Global Crop Conservation Strategies. The Secretariat previously worked closely together with CIAT and the Crop Trust in preparation of the study *Estimation of countries’ interdependence in plant genetic resources provisioning national food supplies and production systems* (Research Study 8) (Khoury et al., 2015). The present analysis is a follow-up to the previous partnership, under a plan to be published jointly as a flagship background study for the global PGRFA community. This analysis furthers these longstanding partnerships, as well as forming new ones, particularly with the botanic garden community and especially the San Diego Botanic Garden in the United States of America.

An update on the ongoing collaboration was provided to the Governing Body of the International Treaty in November 2019, at its Eighth Regular Session. Through Resolution 10/2019, para.12, the Governing Body welcomed “the collaboration between the Secretary, the Crop Trust and the International Center for Tropical Agriculture (CIAT) to identify and systematize baseline data of a wide range of crops and their genetic resources that is essential for decision-makers at global, regional and national levels in order to develop strategies to ensure the adequate conservation and use of these plant genetic resources for food and agriculture, including Crop Strategies, and recommend[ed] that the background study resulting from such collaboration and underlying baseline information be made available in a user-friendly manner as soon as possible, including for consideration by the Governing Body at its Ninth Session.” (FAO, 2019b).

Information on food and agricultural plants is increasingly available, but is scattered through several information systems, databases and the scientific literature. Data on the status of cultivation, trade and contribution to food supply of the most important crops worldwide is provided by FAOSTAT, while FAO’s WIEWS provides information about the PGRFA conserved and distributed by national and international gene banks around the world. Several other information systems, including Genesys PGR, Botanic Garden Conservation International’s PlantSearch, GBIF and the Svalbard Global Seed Vault’s Seed Portal also provide data on the supply and/or security backup of PGRFA. The Data Store of the International Treaty and WIEWS, meanwhile, provide information on the exchange of PGRFA, while WIEWS and UPOV’s PLUTO Plant Variety Database offer information on varietal registrations and/or releases. Various other information systems provide data on these and other metrics related to PGRFA at regional, national and local levels. The scientific literature supplements these information sources with data and analyses at different scales and time frames.
The study *The plants that feed the world: Baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture* intends to bring together and make widely available, for the first time, pertinent information from these different sources to provide baseline metrics and indicators of the use of food and agricultural crop plants worldwide, as well as information regarding interdependence regarding, demand for, supply of, and security of their genetic resources. The aim is to develop a set of metrics and indicators that provide an evidence base for the international PGRFA community to prioritize conservation and availability for use among crops and PGRFA activities. The methodologies allow these metrics and indicators to be reproducible, in order to enable the identification of change over time in status and trends for PGRFA. In addition, the methodologies have been developed to enable future use of data and tools for national-level decision-makers on International Treaty implementation, leveraging the knowledge gained at global level for use at national scale.

The study is one of the main products of this collaborative initiative. The full list of products of this partnership include:

1. this background study paper summarizing and analysing the baseline information gathered;
2. a full description of the methodologies and materials used for this study and all metrics calculated (provided in Annex 1 of this study);
3. the full data, code and results, which will be made available through the International Treaty website and other means, to enable future use by the PGRFA community and partner organizations (the full data contain more metrics than the ones highlighted in this study, as described in the methodology section);
4. an interactive website of the results, including visualizations of the metrics and infographics arising from the study, which will be available through FAO; and
5. use of PGRFA metrics for individual crops in the development of Global Crop Conservation Strategies, which are facilitated by the Crop Trust.

The information being made available is intended to be used by a wide range of experts and researchers in plant genetic resources. By pooling information on plant genetic resources from a broad range of sources, and making these data available in a user-friendly manner, the initiative will enable researchers to access a wide variety of pertinent metrics in one combined resource. It is important to highlight that the present work does not create new information systems, but gathers and processes in a standardized manner data from various relevant systems. It does not substitute PGRFA indicators (such as those for Sustainable Development Goal [SDG] Targets 2.5 or 15.6) gathered through country-driven efforts or the Global Crop Conservation Strategies facilitated by the Crop Trust that provide a comprehensive overview for specific crops. Moreover, while these data will be critical for developing future strategies for conservation and use of plant genetic resources, they are most appropriately complemented by other sources of information and analysis.
that cannot be made available in the form of reproducible metrics, as evident in the development of the Global Crop Conservation Strategies.

This initiative has developed an initial methodology and set of metrics with the intention of creating a benchmark that can be replicated periodically (every 5–10 years). Such an iterative process would provide valuable insights into how metrics change for individual crops. While changes for some crops (in particular, major staples) and some metrics are likely to remain relatively consistent, it is probable that changes for various other crops and metrics will evolve significantly, demonstrating the dynamism in the conservation, use and availability of plant genetic resources.

1.2. Relevant background on plant genetic resources for food and agriculture

1.2.1 THE DIVERSITY OF CROP PLANTS

There are more than 350,000 currently described plant species (Antonelli et al., 2020), with thousands of newly identified species still being added to the global list every year (Cheek et al., 2020). Of these known plants, more than 7,000 documented species (Antonelli et al., 2020) and perhaps up to 30,000 plants in total (Wilson, 1992) may be considered edible by humans, with at least 7,000 having been cultivated to some degree for food and agricultural purposes (Khoshbakht and Hammer, 2008; Leibniz Institute of Plant Genetics and Crop Plant Research, 2022).

Yet only a small fraction of these plants feed humanity at the present time. Statistical information published by FAO, both for individually measured crops and those included within generalized commodity categories – in combination assumedly representing much of the human diet worldwide – is recorded for approximately 255 plants. These include around 26 cereals, 17 roots and tubers, 26 pulses, 44 vegetables, 69 fruits, 14 nuts, 28 oils, 24 herbs and spices, 3 sugars, and 4 stimulant crops. More extreme calculations of the same data, generally focused on contribution to calories, lead to assertions that as few as a handful of staple crops provide the bulk of the world’s food (FAO, 2019).

Regardless of the precise number, this relatively short list of highly globalized crops has clearly come to dominate food supplies worldwide, leading to increasing homogeneity in the global diet (Khoury et al., 2014, 2016). Diversity within these crops – both in terms of their varieties and the genetic and phenotypic variation...
within and among them – is widely considered to have declined in farmers’ fields over the past 100 years (FAO, 2019; Khoury et al., 2021). Both trends are commonly cited as central reasons why the conservation and sustainable use of PGRFA is essential to the future of humanity.

In order to have a more comprehensive account of contemporary food and agricultural plants, additional information is required. FAO statistics also report (production and/or trade) information for 20 fibre crops, 3 forages, and 9 industrial crops. A survey of the International Treaty’s Annex I and CGIAR mandate crops adds dozens of additional forages and a few more food crops, while accounts of other globally significant fruits, vegetables, roots and tubers, and herbs and spices easily add a further 30 crops. By our calculations, this more inclusive scope of food and agricultural plants totals around 350 crops (including forages); these are the focus of investigation within this study.¹

The crops studied here represent those for which considerable amounts of information regarding their use exists, and is relatively readily available, as well as important metrics around demand for, supply of, and security of their PGRFA (see the extended Methodology and data sources Annex 1 for a full description). That said, two observations should be noted.

First, these cultivated plant species have ‘wild cousins’ that are referred scientifically as crop wild relatives (CWR). As sources of new genetic diversity, CWR have been used for many decades for plant breeding, contributing a wide range of beneficial traits. Their utilization is expected to increase as a result of ongoing improvements in information on species and their diversity and advances in breeding tools (Castañeda-Álvarez et al., 2016). A curated database on the taxonomy, distributions, and genetic relationships regarding crop wild relatives of many of the world’s food and agricultural crops is available through the United States Department of Agriculture’s (USDA) Germplasm Resources Information Network (GRIN) Global Taxonomy (USDA NPGS, 2022), building on efforts made by national and international partners over the previous decade.

Second, it must be noted that many hundreds or even thousands of food and agricultural plants significant to specific regions and localities around the world are outside the scope of this study. The Mansfeld’s world database of agriculture and horticultural crops contains information on 6 100 crop plant species, including forages, but excluding forestry and ornamental plants (IPK Gatersleben, 2022). Such crops are often called ‘neglected and underutilized species’ (NUS), among other terms, although they are important, and thus hardly neglected by the communities to which they are significant; it should also be noted that various crops within the 355 studied here may be considered by some as NUS.

¹ See https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/plant_genetic_metrics for the full crop list.
Beyond what is traditionally recognized as food and agriculture, a wide diversity of other plants is also cultivated for ornamental, medicinal, forestry, restoration and other purposes. These are also beyond the scope of this study.

1.2.2 A BRIEF HISTORY OF GLOBAL EFFORTS ON PGRFA CONSERVATION AND USE

Plant genetic resources for food and agriculture, including seeds and other reproductive propagules of food and agricultural crop plants and their wild relatives, are critically important resources underpinning the productivity, quality, sustainability, resilience and adaptive capacity of food and agricultural systems (Hoisington et al., 1999; Esquinas-Alcázar, 2005; Gepts, 2006). Farmer varieties (landraces) and their wild relatives have been the basis of agricultural production for more than 10 000 years (Larson et al., 2014). These plants began to be recognized by scientists as valuable resources in the late nineteenth and early twentieth centuries (Baur, 1914; Zeven, 1998), in parallel with the rediscovery of Mendel's laws of inheritance and the subsequent development of modern genetics (Harwood, 2016; Khoury et al., 2021). *Ex situ* repositories (gene banks) were subsequently established to maintain genetic resource (germplasm) collections to support the breeding of new crop varieties (Vavilov, 1926; Lehmann, 1981; Saraiva, 2013).

In parallel, concerns began to be raised over the loss of crop diversity from farmers’ fields and from wild habitats due to rapid agricultural, environmental, socioeconomic and other changes (Baur, 1914; Harlan and Martini, 1936). These concerns were voiced by FAO and elsewhere, in light of the large-scale replacement of traditional crop varieties by modern cultivars worldwide during the Green Revolution (Bennett, 1964, 1968; Frankel and Bennett, 1970; Frankel, 1974; Pistorius, 1997; Fenzi and Bonneuil 2016) and as a result of increasing awareness of the susceptibility of modern crop cultivars to pests and diseases as a consequence of their genetic uniformity (Tatum, 1971; National Research Council, 1972; US Senate, 1980).

Several initiatives and conferences at FAO and in related organizations resulted in the expansion of efforts around the world to collect and maintain plant genetic resources *ex situ* (Plucknett et al., 1987). The International Board for Plant Genetic Resources (IBPGR) was established by the CGIAR in 1974, with FAO as its administrative host, to coordinate a global initiative to conserve threatened genetic resources. Collaborating with national and other partners, IBPGR supported the collecting of more than 200 000 samples of landraces, crop wild relatives and other materials in 136 countries between 1975 and 1995, and helped to establish international gene bank collections to maintain these samples (Thormann et al., 2019).
Over the course of the 1980s and 1990s, while national, regional and international *ex situ* collections were amassed, there was growing concern about the vulnerability of these collections, due largely to insufficient funding and infrastructure. Gene banks were encouraged to duplicate their holdings to mitigate these challenges, as well as to protect them from natural disasters, war and civil strife (Holden, 1984; Lyman, 1984; Peeters and Williams, 1984).

By that time, PGRFA were increasingly recognized by the international community as important not only for breeding, but also for underpinning the resilience and adaptive capacity of agrarian communities and their agroecosystems (Mijatović et al., 2013; Fenzi and Bonneuil, 2016; Sirami et al., 2019). *In situ/on-farm* conservation support increased (Brush, 1991; Wood and Lenne, 1997; Bellon, 2004), though some questioned its efficacy in the face of widespread environmental and societal change (Frankel and Soule, 1981; Zeven, 1996; Peres, 2016).

In the 1990s, concern about the loss of biodiversity, in all its forms, became a global priority and resulted in the adoption of the Convention on Biological Diversity (CBD), which mandated its conservation, sustainable use, and the fair and equitable sharing of the benefits arising from such use (CBD, 1992). With the coming into force of the CBD, earlier international agreements on plant genetic resources (for example, FAO, 1983) were renegotiated, resulting in the adoption in 2001 of the legally binding International Treaty on Plant Genetic Resources for Food and Agriculture, also known as the International Treaty (FAO, 2002). The objectives of the International Treaty are the conservation and sustainable use of PGRFA and the fair and equitable sharing of the benefits arising out of their use, in harmony with the CBD, for sustainable agriculture and food security (FAO, 2001). The International Treaty establishes a Multilateral System of Access and Benefit-sharing, covering the PGRFA listed in Annex I of the International Treaty (64 major crops and forages), established according to criteria of food security and interdependence.

In 2004, the Crop Trust was established by FAO and the CGIAR to help secure and provide long-term funding for the *ex situ* conservation of PGRFA (Esquinas-Alcázar, 2005). The Crop Trust is an essential element of the funding strategy of the International Treaty and operates in accordance with the overall policy guidance to be provided by the Governing Body of the International Treaty.

By the end of 2020, 5.7 million accessions of plant genetic resources for food and agriculture were reportedly conserved under medium or long-term conditions in 831 genebanks by 114 countries and 17 regional and international research centers (FAO, 2021b). Safety duplication of a substantial proportion of this diversity is accomplished among gene banks and at the global backup in the Svalbard Global Seed Vault (Westengen et al., 2013), where more than 11 million samples are now duplicated (Norwegian Ministry of Agriculture and Food, 2022; NordGen, 2022). Genetic resources are also conserved by botanic
gardens, universities, non-profits, community seed banks, local conservation networks, and private companies, while plant breeding and other research programmes also store genetic resources, at least for short periods (Miller et al., 2015; Vernooy et al., 2017). Various initiatives continue to focus on in situ and/or on-farm conservation (for example, FAO, 2022; Stenner et al., 2016; AGUAPAN, 2021; Global Environmental Facility, 2021). Many hundreds of thousands of plant genetic resource samples are distributed annually by national and international institutions (Halewood et al., 2020; Lusty et al., 2021; Khoury et al., 2022).

These efforts to support PGRFA conservation and use have been both substantial and global, but gaps continue to persist (FAO, 2010; Castañeda-Álvarez et al., 2016; Khoury et al., 2021, 2022; Ramirez-Villegas et al., 2022). Two Global Plans of Action for Plant Genetic Resources for Food and Agriculture have been adopted by FAO Councils to address these gaps (FAO, 1996; FAO, 2011). In recent decades, the CBD and the United Nations Sustainable Development Goals have also set targets for enhanced conservation of plant genetic resources (CBD, 2002, 2010; United Nations, 2015). Current negotiations aim to renew these targets, which were not met by the original (2020) deadline (Díaz et al., 2020).
THE PLANTS THAT FEED THE WORLD

- **Small area - Many households**
 - Soybeans
 - Millet
 - Sorghum

- **Large area - Few households**
 - Cotton

- **Lost Diversity**
 - Flower millet
 - Pearl millet

Small area - Few households
- A variety of seeds and grains, including:
 - Sorghum
 - Maize
 - Beans
 - Millet
2. Methodology and data sources summary

Crop-level metrics on the use of food and agricultural plants worldwide and interdependence regarding, demand for, supply of, and security of their genetic resources were created through the compilation, processing and standardization of data from a wide number of pertinent global information databases and data sources, supplemented by information from regional, national and local datasets and published literature. Emphasis was placed on curated, openly accessible, comprehensive data sources likely to be available in updated forms in the future, so that these methodologies can be reproduced to discern change over time.

The main global database sources for this study included: FAOSTAT, WIEWS, the Data Store of the International Treaty, UPOV’s PLUTO Plant Variety Database, Genesys PGR, Botanic Garden Conservation International’s PlantSearch database, GBIF, the Svalbard Global Seed Vault’s Seed Portal, Google Scholar, Wikipedia (pageviews), and NCBI’s Entrez database.

These metrics were organized into five domains – crop use, interdependence (regarding genetic resources), demand (for genetic resources), supply (of genetic resources), and security (of genetic resources). Within these domains, individual metrics were further categorized within related groups and thematic components.

Crop-level results are available for each metric and as average values across groups, components and domains. These results were produced in real value, indicator value (values generally between 0 and 1, often in proportion to all other crops), and normalized indicator value forms (normalized across pertinent crops for each metric, with the bottom crop at 0 and the top crop at 1). All indicator and normalized indicator values were calculated with low numbers (close to 0) representing a low or poor status, and high numbers (close to 1) representing a high or good status.
Metrics were generated for a total of 355 food and agricultural plants (Figure 1), a list which is inclusive of all those covered in FAOSTAT, in Annex I of the International Treaty, and of CGIAR mandate crops, as well as other crops deemed internationally significant per our methodologies, and for which sufficient data were available.¹

FIGURE 1: Food and agricultural crops studied in this analysis

¹ See https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/plant_genetic_metrics
METHODOLOGY AND DATA SOURCES SUMMARY

Root and Tuber
- Achira
- Arracacha
- Arrowroot
- Cassava
- Chufa
- Jerusalem artichoke
- Maca
- Mashua
- Mauka
- Oca
- Plantains
- Potatoes
- Sago palm
- Sweet potatoes
- Taro
- Ulluco
- Yacon
- Yams
- Yautia, cocoyam

Stimulant
- Cocoa
- Coffee
- Mate
- Tea
- Tobacco

Sugar
- Maize
- Maple sugar
- Sugar beets
- Sugarcane

Vegetable
- African eggplant
- Artichokes
- Asparagus
- Bamboo shoot
- Beets
- Bitter gourd
- Black nightshade
- Black saltify
- Butternut squash
- Cabbages
- Cabbages and other brassicas

Fibre
- Abaca
- Agave
- Albardine
- Caesarweed
- Carneros Yucca
- Caroza
- Cotton
- Devil's cotton
- Esparto
- Flax
- Giant cabuya
- Jute
- Kenaf
- New Zealand flax
- Ramie
- Roselle
- Sisal
- Snake plant
- Sunn hemp
- Velvet leaf

Forage
- Aeschynomene
- Agropyron
- Alyssum
- Alyssum
- Andropogon
- Arrhenatherum
- Astragalus
- Astragalus
- Brachiaria
- Calopogonium
- Centrosema
- Clovers
- Coronilla
- Dactylis
- Desmodium
- Fescue
- Galactia
- Hedysarum
- Indigofera
- Lespedeza
- Lespedeza
- Loliu
- Lotus
- Macroptilium
- Mellilotus
- Mentha
- Mentha
- Onobrychis
- Ornithopus
- Phalaris
- Phleum
- Poa
- Prosopsis
- Pueraria
- Rhynchosia
- Salsola
- Sesbania
- Stylosanthes
- Tripasum
- Vetch
- Zornia

Source: Authors' own elaboration.
These crops were categorized into 13 crop-use types, including 10 food uses (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable), as well as fibre, forage, and industrial crops. Indicator values and normalized indicator values were calculated both across all crops, and across each of the crops within each crop-use type. Figures in the results section of this study show metrics per crop-use type, for eight crop-use types of particular interest to each metric.

A total of 98 global-level metrics were calculated, including 51 metrics on crop use (within 6 components and 15 groups); 22 metrics on interdependence (within 2 components and 6 groups); 7 metrics on demand (within 4 components and 4 groups); 16 metrics on supply (within 6 components and 7 groups); and 2 metrics on security (within 1 component and 1 group).

Not all possible metrics where systematic information potentially exists were explored. Metrics on demand for PGRFA as measured by patent applications remain to be investigated and possibly developed. Many other sources of information were explored during this study, but were not integrated into the analysis, due to insufficiency or inaccessibility of the data. Other potential sources of data were noted, but not explored in depth for this current analysis. A process of production of results at a national rather than global scale was also investigated for pertinent metrics, but these are not reported here. A full description of methods and materials for this study, as well as other sources of information explored or noted as potentially useful, is available in Annex 1 of this study.²

² All data, codes and results are available at: https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/plant_genetic_metrics
3. Results

3.1. Use of food and agricultural crop plants

3.1.1 USE OF FOOD AND AGRICULTURAL CROP PLANTS IN TERMS OF GLOBAL PRODUCTION, TRADE AND CONTRIBUTION TO FOOD SUPPLY

A total of 280 crops assessed in this study are reported in FAOSTAT production metrics (277 in the value of production metric), either specifically or within general crop commodities. Likewise, 239 of the crops are reported in FAOSTAT trade metrics, and 252 crops are reported in FAOSTAT food supply metrics, again either directly or within general commodities. After disaggregating values for general commodities (such as ‘Vegetables, freshnes’ in production metrics and ‘Vegetables, Other’ in food supply metrics) into their specific crop components, the contribution of each assessed crop to global agricultural production (in terms of harvested area [ha], production quantity [tonnes], and production value [current thousand USD]); to global trade (in terms of export quantity [tonnes], export value [1 000 USD], import quantity [tonnes], and import value [1 000 USD]); and to the global food supply (in terms of calories [kcal/capita/day], protein [g/capita/day], fat [g/capita/day], and food weight [g/capita/day]) was calculated as an annual average value between years 2015 and 2018.

The most utilized crops in terms of global production (tonnes) for eight different crop-use types of interest are presented in Figure 2. The results are presented as the proportion of the value of the crop, compared with all crops per crop-use type.
In terms of the most utilized crops across all metrics and all crop-use types, the range of metrics generally provides a consistent picture of the primary reliance in global production systems, trade and food supplies on major cereal, oil, and root and tuber crops such as wheat, rice, maize, soybean, oil palm, potato and cassava. Specific metrics further provide insights into the importance of other crops for those particular uses. For example, metrics based on weight, including global production (tonnes) and food supply quantity (g/capita/day), also document the global use of (heavy) fruits such as tomato, citrus, onion and apple, while the protein metric in global food supplies further documents the importance of pulse crops. Production value and trade value metrics, meanwhile, also document the global use of sugar, fruit, herb and spice, and stimulant crops (such as tobacco, cocoa, and coffee). As a whole, significant crops in terms of global agricultural production, trade and food supplies evidently included a broad range of plants from a variety of crop types.

FIGURE 2: Use of crops in global agricultural production as measured in terms of production quantity

- **CEREAL**
 - Maize
 - Wheat
 - Rice
 - Barley
 - Sorghum
 - Millets
 - Teff
 - Oats
 - Triticale
 - Rye

- **OIL**
 - Maize
 - Oil palm
 - Soybeans
 - Rapeseed and mustards
 - Cotton
 - Coconuts
 - Sunflowers
 - Groundnuts
 - Olives
 - Sesame

- **FRUIT**
 - Bananas
 - Mandarines
 - Oranges
 - Watermelons
 - Apple
 - Grapes
 - Guavas
 - Mango
 - Mangosteen
 - Melons

- **PULSE**
 - Soybeans
 - Beans
 - Groundnuts
 - Pea
 - Chickpeas
 - Cowpeas
 - Lentils
 - Faba beans
 - Pigeonpeas
 - Lupins
NOTES: Metrics are presented per crop as a proportion of total production across all crops within each crop-use type. The subfigures display the ten crops with largest use values per crop-use type. For crops such as maize or soybean with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. Values for general crop commodities such as ’Roots and tubers, nes’ are presented as the value of each specific crop included within the commodities (each of these crops has the same value), not as a sum across all crops; due to space limitations, each individual crop within these commodities could not be listed within the figure. ’Roots and tubers, nes’ includes arracacha, arrowroot, chufa, Jerusalem artichoke, maca, mashua, mauka, oca, sago palm, and ulluco; ’Nuts, nes’ includes butter-nut, macadamia nut, pecan, pili nut, and pine nut.

Global aggregate agricultural production, trade, and food supply statistics are useful to identify the most utilized crops globally, but do not provide clear information on the geographic extent or evenness of the use of crops worldwide. To understand the current extent of geographic spread of these assessed crops, for each crop we calculated the number of countries for each production, trade, and food supply metric in which the crop is produced, traded, or used in the food supply at a significant scale, using national-scale data from FAOSTAT. For our purposes, significance meant being within the top
95 percent of crops reported used in the country for the production, trade, or food supply purpose.

The most geographically widespread crops in terms of global production (tonnes) for eight different crop-use types of interest are presented in Figure 3. The results are presented as the proportion of countries in which the crop is significant compared with the total number of countries reported in FAOSTAT (a total of 205 countries were reported in the production data, 198 countries in the trade data, and 173 countries in the food supply data).

In terms of the most geographically widespread crops across all metrics and all crop-use types, the range of metrics again provide a fairly consistent picture of the primary reliance in global production systems, trade, and food supplies on major cereal, oil, pulse, and root and tuber crops. Additional crops, not as visible in global summary statistical data, are also evidently widespread for certain metrics such as production quantity, as well as for fat, calories, and food weight metrics.

FIGURE 3: Geographic spread of crops in global agricultural production as measured in terms of the proportion of countries in which the crop is significant compared with the total number of countries reported in FAOSTAT (a total of 205 countries were reported in the production data)
Notes: The figures display the ten crops with largest geographic spread values per crop-use type. For crops such as maize or soybean with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. Values for general crop commodities such as ‘Nuts, nes’ represent the value of each specific crop included within the commodities (each of these crops has the same value), not as a sum across all crops; due to space limitations, each individual crop within these commodities could not be listed within the figure. ‘Nuts, nes’ includes butter-nut, macadamia nut, pecan, pili nut, and pine nut; ‘Roots and tubers, nes’ includes arracacha, arrowroot, chufa, Jerusalem artichoke, maca, mashua, mauka, oca, sago palm, and ulluco.

To understand the current evenness or balance worldwide of production, trade, and food supply uses for each crop, we compared each crop’s production, trade, and contribution to food supply across world regions. The most geographically even/balanced crops in terms of global production (tonnes) for eight different crop-use types of interest are presented in...
In terms of the most geographically even/balanced crops across all metrics and all crop-use types, the range of metrics provides somewhat different insights than those offered by the global summary and geographic spread analyses. Note that those crops with the highest evenness values are not necessarily the most utilized around the world, but simply those with the greatest balance in use across world regions.

For production metrics, many fruit, vegetable, and pulse crops, as well as cereals such as wheat, maize, oats, sorghum and barley, are produced quite evenly across world regions. For trade, various fruit and nut crops, as well as tobacco, are quite evenly exported, while assorted fruit, vegetable, and herb and spice crops, as well as wheat, tobacco and oil palm, are among those most evenly imported. In contribution to regional food supplies, the most balanced crops across world regions appear to be mainly fruits and vegetables.

These geographic spread and evenness assessments complement the global value metrics by providing additional insights on extent and balance of use worldwide. This may be particularly useful as a means by which to highlight crops that are produced, traded and/or consumed extensively worldwide, yet in relatively small quantities. For crops with significant use in many countries, and/or with considerable evenness in use across world regions, perhaps particularly regarding production, these metrics may indirectly indicate a strong degree of interdependence among countries and regions regarding PGRFA.
Notes: The results are presented based on a mathematical metric of evenness called the Gini coefficient, in this case with values close to 100 representing high evenness in production across regions, and those close to 0 representing unevenness. The figures display the ten crops with highest evenness values per crop-use type. For crops such as maize or soybean with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. Values for general crop commodities such as ‘Berries, nes’ represent...
the value of each specific crop included within the commodities (each of these crops has the same value), not as a sum across all crops; due to space limitations, each individual crop within these commodities could not be listed within the figure. ‘Berries, nes’ includes huckleberry, mulberry and myrtle; ‘Fruit, fresh nes’ includes azaarole, babaco, elderberry, jujube, litchi, loquat, medlar, pawpaw, pomegranate, prickly pear, service tree, strawberry tree and tamarind; ‘Spices, nes’ includes bay leaf, dill, fenugreek, saffron, thyme and turmeric; ‘Nuts, nes’ includes butter-nut, macadamia nut, pecan, pili nut and pine nut; ‘Oilseeds, nes’ includes beech nut, candlenut, carapa, chontadura, mahuwa, noog, oiticica, perilla, physic nut, pongamia oil, purging croton and shala tree; ‘Pulses, nes’ includes grasspea, jack bean, jicama, lablab, sword bean, velvet bean and winged bean; ‘Roots and tubers, nes’ includes arracacha, arrowroot, chufa, Jerusalem artichoke, maca, mashua, mauka, oca, sago palm and ulluco.

Information on crops’ contributions to national food supplies over the circa 50 years from 1961 to 2009, based on FAOSTAT data, indicates that considerable change has occurred in terms of the diversity and abundance of crops globally. Khoury et al. (2014) documented an increasing richness of internationally traded crop commodities in national food supplies, and greater evenness in the contribution of the individual commodities to these supplies. While major cereals and sugar continued to be dominant, oil crops in particular increased enormously in their availability in food supplies, while regionally important staple cereals and starchy root and tuber species became further marginalized. These shifts have led to significantly greater similarities (homogeneity) among national food supplies around the world.

This current assessment demonstrates that further change in the use of crops worldwide, not only in terms of contribution to food supplies, but also regarding agricultural production and trade, is visible even within the four years analysed (2015 to 2018). The results are presented as the relative change in the value of each crop from 2015 to 2018. Note that those crops with the greatest relative change are not necessarily the most utilized around the world, but simply those with the greatest growth (or decline) in use over the period.

In terms of the crops that have changed the most in the period, each of the metrics provides different insights, including not only for those crops with the greatest positive change, but also those with the most marked declines (although for all metrics, there were many more crops that increased in use in the time period than there were crops that declined). Increases in production systems were especially visible for many herb and spice, nut, fruit, and pulse crops, while decreases were evident in an assortment of crops and crop-use types. Increases in food supply metrics were particularly visible in crops such as coffee, cocoa, sunflower, date, and various herbs and spices, while declines were seen in various root
and tuber crops such as sweetpotato, cassava and potato, as well as for sorghum, among others. Declines in trade were also visible for crops such as sorghum and cassava.

3.1.2 RESEARCH SIGNIFICANCE OF FOOD AND AGRICULTURAL CROP PLANTS

Global tracking systems of research publications provide insights into the degree of research activity for the crops assessed. We calculated the number of research publications for each crop found in the Google Scholar online system, published between 2009 and 2019, by querying the titles of research articles based on each crop’s common name(s), genus and taxon (scientific) name (separately). Likewise, we queried the PubMed Central online archive of biomedical and life sciences journal literature for full-text results for each crop, based on its scientific name.

The most researched crops in terms of publications in Google Scholar based on appearance of the common name of the crop in the article title, for eight different crop-use types of interest, are presented in Figure 5. The results are presented as the proportion of the number of publications of the crop, compared with all crops per crop-use type.

All 355 assessed crops were found to have research publications. Across the crops, these totaled a sum of 1,162,595 publications if queried by crop common name(s), 1,440,652 publications if queried by genus, and 387,407 publications if queried by taxonomic name in Google Scholar. In PubMed Central, a total of 2,401,453 publications were found across all crops.

Assessing research activity results across all crops, crop-use types and search criteria, publication focus on crops appears to parallel statistics on use of crops in global production systems, trade and food supplies. This said, other areas of focus were also evident. These include on industrial, fibre, and multi-use crops such as rubber, hemp and sugar beet, on model crops in science such as tobacco, on traditional crops with increasing research interest for alternative applications such as kola nut and physic nut, and on an assortment of fruits such as citrus (various), mango and papaya. These research trends may be associated with a wide variety of factors, including the development of new industries, scientific innovations and public research funding priorities. As a whole, significant crops in terms of research publications evidently include a very broad range of plants from a variety of crop-use types.
FIGURE 5: Research significance of crops as measured in terms of Google Scholar citations based on appearance of the common name of the crop in the article title.
3.1.3 PUBLIC INTEREST IN FOOD AND AGRICULTURAL CROP PLANTS

Internet search and engagement activity may serve as useful information regarding public interest in food and agricultural crop plants. We calculated the degree of public interest in learning about assessed crops based on the number of pageviews of the Wikipedia website for the entirety of the year 2019, querying Wikipedia by each crop’s common name(s), genus, and taxon (scientific) name (separately). The results are presented as the proportion of the number of pageviews of the crop, compared with those for all crops.

All 355 assessed crops were found to have pages on Wikipedia viewed by the public. Across the crops, these totaled a sum of 120 743 389 pageviews if queried by crop common name(s), 30 621 492 pageviews if queried by genus, and 24 758 059 if queried by taxonomic name.

Assessing pageview results across all crops, crop-use types and search criteria, public interest in crops is clearly not solely focused on global staple cereals and other dominant crops in global production systems, trade and food supplies. Instead, views of Wikipedia pages on fruits and vegetables (such as artichoke, avocado, bitter gourd, cabbage, citrus [various crops], durian, jackfruit, passion fruit, pawpaw, persimmon, strawberry and tomatillo) were among the most common, as well as those for herbs and spices (such as cardamom, coriander, lavender, peppermint, saffron, thyme, turmeric and vanilla), plants used to make alcoholic
beverages or for stimulant or narcotic uses (agave, coffee, cocoa, elderberry, maca and poppy), and a variety of other plants (such as citronella, faba bean, hemp, quinoa, pyrethrum, snake plant and tallowtree). These public interest trends may be associated with a wide variety of factors, including world events, media articles, interest in cultivation or nutritional values and social influencer activity. As a whole, significant crops in terms of public interest evidently include a very broad range of plants from a variety of crop-use types.

Box 1: The oil crop revolution

While changes over time in the crops contributing to the human diet are not comprehensively documented, evidence suggests both that enormous change has occurred historically, and that this trend continues in the present. Assessing the crops that contributed to national food supplies worldwide from 1961 to 2009, Khoury et al. (2014) documented an increasing richness of internationally traded crop commodities in national food supplies, and greater evenness in the contribution of the individual commodities to supplies, including a diminished dominance of the formerly most important staple, as a result of economic development, demographic change and globalization.

Oil crops in particular increased in terms of their availability in food supplies during this time, while regionally important staple cereals and starchy root and tuber species became further marginalized. These shifts have led to greater similarities (homogeneity) among national food supplies around the world, most probably accompanied by losses of locally unique crop species diversity (Khoury et al., 2021). Greater numbers of commodity crops in national food supplies have been primarily attributed to increased international trade (Aguiar et al., 2020), even as diversity in import partners may have narrowed (Kummu et al., 2020), potentially indicating both increasing interconnectedness among, and vulnerabilities within, national food systems.

Among the changes in global crop diversity evident in the past half-century, the expansion of oil crops stands out as the most significant. In just two decades (1990 to 2010), the world’s production of the two most dominant oil crops – soybean and oil palm – more than doubled (Byerlee et al., 2016). The palm oil trade is the third biggest of all crop commodities, with products from this tropical crop now distributed in almost all the world’s countries. Soybean, meanwhile, has risen to the top of this list due to increased demand both as a consumable oil, as well as for animal feed and other purposes (Byerlee et al., 2016). This rapid expansion in oil crops has led to human health and social concerns due to widespread overconsumption (Popkin, 2006; Pingali, 2007; Kearney, 2010; Byerlee et al., 2016). Major environmental challenges have also been created, including extensive deforestation (Vijay, 2016), and significant greenhouse gas emissions (Alcock et al., 2022). Further, and unlike the Green Revolution, where production changed worldwide (Pingali et al., 2012), cultivation of these ‘oil crop revolution’ crops has thus far been more restricted geographically, with a handful of countries including Brazil, Argentina, Malaysia, and Indonesia, in descending order, providing most of the increase in supply (Byerlee et al. 2016).

Current projections indicate that soybean, oil palm and other major oil crops, including sunflower, groundnut and rapeseed and mustard, are likely to continue to expand in global food supplies (Pacheco et al., 2017) and in terms of the geography of their production, for example with strong growth projected in Africa (Byerlee et al., 2016). A major challenge will be managing this growth, while necessarily moving towards greater product quality and environmental sustainability (Byerlee et al., 2016; Voora et al., 2020). Expanding the use of diverse PGRFA in these crops is important to this future growth, including in combating emerging pests and diseases, increasing resource-use efficiency, raising yields and creating faster production, adapting to new production areas, and deriving healthier oil products (Byerlee et al., 2016; Alcock et al., 2022).

The use of oil crop PGRFA will also be essential to ensure further diversification in the number of important crops in the sector. Although different regions have their preferred consumable oils, vegetable oils are typically comparable substitutes for one another (Byerlee et al., 2016). Rapid recent growth in the supply of avocado oil (Flores et al., 2019) and various tree nut oils (Jinadasa et al., 2022) provides evidence for further opportunities for new oil crops, while also highlighting the need for emphasis on product quality and minimization of environmental impacts (Green and Wang, 2020; Maestri et al., 2020; Cervantes-Paz and Yahia, 2021).

Source: Authors’ own elaboration.
Box 2: Plant-based protein and meat substitutes and analogues

While legume and other high-protein crops have played a primary role in human nutrition since the dawn of agriculture, they have been given a new boost through the development of plant-based meat substitutes and analogues (Lemken _et al._, 2019; Tziva _et al._, 2020; Cusworth _et al._, 2021; Ferreira _et al._, 2021). This trend, and the underpinning momentum towards healthier food as well as environmental sustainability that has motivated it, has opened up new opportunities for the cultivation of these plants, which were for some time considered mainly foods for those who could not afford meat (Castro-Guerrero _et al._, 2016).

Modern meat analogues are plant-based replacements of animal meat, developed to mimic the taste and texture of ground beef, sausage, chicken and other meat products (Kyriakopoulou _et al._, 2019). These analogues typically have high water concentrations, consist of 10–25 percent vegetable protein, and have small proportions of flavours, fats/oils, and binding and colouring agents (Egbert and Borders, 2016). Modern meat analogues may represent an easier opportunity for meat consumers to reduce their meat consumption than to transition directly to traditional plant-based protein crops and products (Kumar _et al._, 2017; Hoek _et al._, 2011), although they present some deficiencies in terms of protein balance and quality compared with their animal protein equivalents (Gorissen _et al._, 2018; Hertzler _et al._, 2020).

For meat analogue purposes, pea protein is a current frontrunner in terms of functional properties and a wide range of potential product applications (Krefting, 2017; Kyriakopoulou _et al._, 2019; Boukid _et al._, 2021). Peas have several favourable attributes as a plant-based protein source: the crop has a high protein digestibility-corrected amino acid score, is easily broken down into its functional components of protein, starch and fibre, and its cultivation is considered environmentally-friendly. Current pea production occurs in more than 100 countries, and the global pea protein market was worth USD 1.8 billion in 2021; this is projected to reach USD 4.5 billion by 2027 (IMARC, 2022).

While peas have recently risen in research focus and consumer popularity due to the burgeoning meat substitute and analogue markets, their further potential depends, in part, on the conservation, access to, and use of the crop’s PGRFA, all of which have current gaps (Coyne _et al._, 2020). The same is often true of other major pulses (Ferreira _et al._, 2021; Bauchet _et al._, 2019; Considine _et al._, 2017) and certainly so for the many dozens of lesser-known leguminous crops that could play a larger role in human protein provision, given further research and action, both in terms of supply and demand (Cheng _et al._, 2019; Popoola _et al._, 2022).

Beyond legumes, there continues to be significant interest in the further development of alternative plant-based protein sources within the larger transition towards healthier and more sustainable food. Algal proteins have high protein content and a wide range of useful functional properties such as gelation, water and fat absorption, emulsification, and foaming capacity (Chronakis and Madsen, 2011), as well as extremely fast production cycles (Bleakley and Hayes, 2017). Intriguingly, algal proteins can balance those amino acids present in pulses and other plants, as the limiting amino acids in many legumes include methionine, cysteine and tryptophan, while those in algal protein species are mainly histidine and isoleucine (Wang _et al._, 2021). The future of plant-based protein in the human diet appears to be bright, with extensive research needed to bring this potential to fruition.

Source: Authors’ own elaboration.
Box 3: What are the crops of the future?

What people will eat in the future is a topic that has captured the imagination of both the scientific community (Manners and van Etten, 2018; Gregory et al., 2019; Yu and Li, 2022) and the public (Gertzman, 2015; Beggs, 2022; Briggs, 2022). The assumption – well founded, if historical and current trends continue (Popkin, 2006; Kearney, 2010; Khoury et al., 2014; Vermeulen et al., 2020) – is that the foods that humans eat are likely to change further to a significant degree in the coming decades.

From the human health perspective, crops with greater nutritional quality or density than current staples are often listed as candidates for becoming the crops of the future. Emphasis has mainly been placed on greater consumption of vegetables, fruits, nuts and seeds (Alae-Carew et al., 2020). Alternatives to major cereals with high nutrient density are also commonly proposed, for example other traditional cereals such as millet and sorghum (Saleh et al., 2013; Anitha et al., 2019), and pseudocereals such as quinoa (Bazile et al., 2016) and amaranth (Baraniak and Kania-Dobrowolska, 2022). Less globalized foods with high nutritional quality, including crops such as bambara groundnut (Vigna subterranea [L.] Verdc.) and other legumes, African eggplant (Solanum aethiopicum L.), and minor millets are also often listed (Gregory et al., 2019) even if they are not yet widely available outside their regions of origin. Varietal diversity has also been proposed as a pathway towards increasing nutritional quality, including crops such as amaranth (Alae-Carew et al., 2020), and minor millets are also often listed (Gregory et al., 2019) even if they are not yet widely available outside their regions of origin. Varietal diversity has also been proposed as a pathway towards increasing nutritional quality, as micronutrient levels can vary widely between crop varieties (Marles, 2017; de Haan et al., 2019). Micronutrient density can be increased significantly by breeding ‘biofortified’ varieties (Bouis and Saltzman, 2017).

As overconsumption of calories, fat and salt is increasingly understood to lead to diet-related non-communicable diseases, including heart disease, Type-2 diabetes, and some forms of cancer (Popkin, 2006), foods that are low in macronutrients relative to other nutritional factors have come to be proposed as candidate crops of the future. While vegetables and fruits have again been the major area of focus, many other crops may contribute significantly to satisfying hunger without contributing excessive calories. Two root and tuber crops in the sunflower family (Asteraceae) with high levels of sweet, non-digestible oligosaccharides and inulin – yacon (Smallanthus sonchifolius [Poepp.] H. Rob.) and Jerusalem artichoke (Helianthus tuberosus L.) – serve as examples (Choque Delgado et al., 2013; Judprasong et al., 2018). Foods without gluten or other ingredients considered by some consumers – and often proposed by their influencers – as detrimental to their health are also gaining in popularity (Jones, 2017; Niland and Cash, 2018), leading to new opportunities for alternative cereal crops and other plants.

Environmental, climate change, and various labour and other social factors also combine with health concerns to motivate proposals for the crops of the future. While new ways to produce animal products are being innovated (Stephens et al., 2018), plant-based alternatives to meat and dairy are continuously rising in terms of variety and availability (Haas et al., 2019; Clay et al., 2020) (see also Box 2). High sustainability and ‘climate-smart’ crops are often discussed in comparison with current staple commodities (Jarvis et al., 2012).

The specific crops and varieties that will emerge as the ‘crops of the future’ are not straightforward to predict. While a general move towards greater consumption of minimally-refined plant-based foods, and especially more vegetables and fruits, is widely advisable (Katz and Meller, 2014), the true human health, sustainability and other impacts of different crops and the foods made from them depend on a wide variety of factors (Katz and Meller, 2014), with many likely trade-offs between health, environmental and social goals (Chalupa-Krebzdak et al., 2018; Béné et al., 2019; Scheelbeek et al., 2020). What is certain is that both supply and demand changes can lead to significant shifts in consumption (Vermeulen et al., 2020). Equally certain is that the conservation, availability and use of PGRFA will critically determine the potential of different crops to sustainably nourish humanity (Sellitti et al., 2020), as well as to adapt to changing environmental conditions (Alae-Carew et al., 2020).

Source: Authors’ own elaboration.
3.2. Interdependence regarding food and agricultural crop plant genetic resources

3.2.1. SIGNIFICANCE OF EACH CROP IN TERMS OF AGRICULTURAL PRODUCTION, TRADE AND CONTRIBUTION TO FOOD SUPPLIES, OUTSIDE ITS GEOGRAPHIC ORIGINS AND PRIMARY REGION(S) OF DIVERSITY

Information on national agricultural production, trade and the contribution of crops to food supplies may be used to indicate potential interdependence among countries and regions regarding PGRFA. Khoury et al. (2015, 2016) linked the origins and primary regions of diversity of food and agricultural crops, defined as “areas typically including the locations of the initial domestication of crops, encompassing the primary geographical zones of crop variation generated since that time, and containing relatively high species richness in crop wild relatives” with their current (years 2009 to 2011) use around the world in national agricultural production and food supplies. Production systems and food supplies were found to comprise a wide range of crops deriving from many different primary regions of diversity, indicating a thoroughly interconnected global food system regarding the geographic origins of food plants. As a global average across countries, 71.0 percent of total production quantity, 64.0 percent of harvested area, and 72.9 percent of production value were of crops whose origins and primary regions of diversity were not in the same region as where currently produced; likewise, 65.8 percent of plant-based calories, 66.6 percent of protein, 73.7 percent of fat, and 68.7 percent of food weight were derived from crops whose origins and primary regions of diversity were in other regions on the planet from where currently available for consumption.

Building on this previous work, the current assessment calculates the significance of each crop in terms of agricultural production, trade and contribution to food supplies, outside its geographic origins and primary region(s) of diversity. The underlying assumption is that if a crop has considerable use outside its origins and primary region(s) of diversity, then that use is likely to be dependent on PGRFA acquisition from elsewhere, including origin regions. Thus, a crop with a high level of use outside its origins and primary region(s) of diversity is likely to be one where there is considerable interdependence globally for its PGRFA.

Using the same 2015 to 2018 FAOSTAT data described in the crop-use domain, the highest interdependence crops in terms of global production for eight different crop-use types of interest are presented in Figure 6.
results are presented as the proportion of the production of each crop outside its origins and primary region(s) of diversity, compared with total production of the crop worldwide.

 Across all metrics and all crop-use types, the foremost insight from the analysis of estimated interdependence regarding PGRFA in terms of global production, trade and contribution to food supply is that the great majority of crops have high estimated interdependence values. Note that these values do not directly indicate the extent of crop utilization around the world, but simply identify the high degree of use outside crops’ origins in the context of crops’ total use worldwide.

 In terms of the crops with the highest interdependence values, these include plants from all the crop-use types, and also differ across metrics – essentially the high interdependence crops are a global cornucopia of plants. On the other hand, those with the lowest interdependence values are more clearly discerned, as the crops that are primarily still cultivated in their primary region(s) of diversity (such as mate, karite nut, gooseberry and currant, cinnamon and yautia/cocoyam) and/or are significant in food supplies mainly within their primary region(s) of diversity (such as yam, various millets, date and olive). We note that the aggregation of FAOSTAT values in general crop commodities makes calculation of accurate interdependence values for those crops listed within these general commodities particularly challenging.

FIGURE 6: Significance of each crop in terms of agricultural production outside its geographic origins and primary region(s) of diversity
Notes: The results are presented as the proportion of the production of each crop outside its origins and primary region(s) of diversity, compared with total production of the crop worldwide. The subfigures display the ten crops with the largest values per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.

Source: Authors' own elaboration.
3.2.2 CHANGE IN SIGNIFICANCE OF EACH CROP IN TERMS OF AGRICULTURAL PRODUCTION, TRADE AND CONTRIBUTION TO FOOD SUPPLIES, OUTSIDE ITS GEOGRAPHIC ORIGINS AND PRIMARY REGION(S) OF DIVERSITY

Information on change in the degree of estimated interdependence among countries regarding PGRFA over the circa 50 years from 1961 to 2009, based on FAOSTAT data, has indicated that use of crops outside their origins and primary region(s) of diversity increased in concert with economic and agricultural development and the globalization of food systems. Estimated interdependence regarding production value and production quantity, as well as fat and food weight in food supplies, increased the most among measurable metrics (Khoury et al., 2015, 2016).

This current assessment demonstrates that further change in the significance of crops outside their origins and primary region(s) of diversity is visible even within the four years analysed (2015 to 2018). The results are presented as the relative change in the proportion of the use of each crop outside its origins and primary region(s) of diversity, compared with total use of the crop worldwide, over this period.

3.3. Demand for food and agricultural crop plant genetic resources

3.3.1. DEMAND FOR FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF GERMPLASM DISTRIBUTIONS

Global tracking of germplasm distributions provides insights into demand for PGRFA worldwide. The Data Store of the International Treaty provides information on germplasm distributions made under the Standard Material Transfer Agreement (SMTA) that have been reported to the Governing Body. This dataset records numbers of samples distributed by any provider, including gene banks, breeding programmes and other organizational types, as reported to the Data Store; it is primarily composed of distributions made by CGIAR gene banks and breeding programmes. We calculated an average annual number of germplasm distributions for each crop worldwide from 2015 to 2019.
The most distributed crops, for eight different crop-use types of interest, are presented in Figure 7. The results are presented as the proportion of distributions of the crop, compared with total distributions of all crops per crop-use type.

The PGRFA of a total of 142 different crops assessed in this study were reported as distributed in the Plant Treaty Data Store dataset, with a total of 505,786 samples distributed across all these crops, as an annual average over the period 2015 to 2019. Across all crop-use types, cereals such as wheat, maize, rice, barley, pearl millet, sorghum, oat and triticale were among the most distributed, followed by a broad range of crops in different crop-use type categories, including pulses (such as chickpea, lentil, common bean, faba bean, cowpea, pigeon pea, groundnut, grasspea and soybean), vegetables (such as cabbage, lettuce, chilli and pepper, eggplant and tomato), and roots and tubers (such as potato and cassava). While seed propagated crops dominate the list, the crops with considerable distributions also include vegetatively propagated crops. Also evident in this dataset was a wide variation in numbers of distributions across the entire set of crops. As a whole, significant crops in terms of global germplasm distribution evidently include a broad range of plants from a variety of crop types.

FIGURE 7: Demand for crop genetic resources as measured in terms of germplasm distributions under the SMTA of the International Treaty
Notes: Metrics are presented per crop as a proportion of total distributions across all crops within each crop-use type. The subfigures display the ten crops with highest distributions per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. No distributions of germplasm of nut crops were recorded in the dataset.

Global summary germplasm distribution statistics are useful to identify the most distributed crops globally, but do not provide information on the geographic extent or evenness of demand for PGRFA worldwide. To understand the current extent of geographic spread of demand for PGRFA of assessed crops, for each crop we calculated the average annual number of countries to which the crop was distributed, using the same 2015 to 2019 distributions data from the Data Store of the of the International Treaty. The results are presented as the proportion of countries receiving the crop compared with the total number of countries reported in the Data Store during the period (a total of 179 recipient countries were reported in the dataset).
Box 4: The many crops that feed the world

The list of crops produced within many countries and regions, and consumed by the majority of humanity, is much longer than just wheat, rice, maize and a few other staple cereal, pulse and root and tuber crops. Oil crops such as soybean, oil palm, sunflower and groundnut, for example, represent not only the most important contributors to fat from plants in global food supplies, but now rank among the top ten crops in terms of contribution to total calories (see Box 1).

The list of crops on which the world fundamentally depends for its food also extends to many vegetable, fruit, nut and seed, herb and spice, and stimulant crops. Onion, for example, is an important production crop (tonnes produced) in 92 countries (45 percent of total countries), behind only maize, potato, tomato, cabbage, canola, and wheat in terms of number of important producing countries. It is a significant contributor to the food supplies (quantity in grams) of 150 countries (86.9 percent), including being an important crop in terms of import value in 116 countries (58.3 percent). Tomato is an important production crop in 114 countries (55.6 percent of countries) and is a significant contributor to the national food supply (weight in grams) of 155 countries (89.6 percent), including being an important crop in terms of import value in 140 countries (70.8 percent). Chili and pepper (Capsicum crops), meanwhile, are important production crops in 56 countries (27.1 percent). Consumed daily by approximately one-quarter of the world’s population (Halikowksi Smith, 2015), chili and pepper are significant contributors to the national food supply (quantity in grams) of 17 countries (10 percent) and are important crops in terms of import quantity in 82 countries (41.5 percent). All three of these essential gifts to the world’s cuisines in terms of flavour, acidity, micronutrients and other nutritional and cultural aspects have very high interdependence values, as measured by the substantial degree of production, trade and contribution to food supplies outside their regions of origin.

Other crops widely consumed around the world are very rarely considered in discussions about genetic resource interdependence and, further, are essentially absent from reported food and agricultural statistics. These include crops consumed in relatively small quantities, but present in an enormous diversity of processed products as thickeners or stabilizers, such as gum arabic. (various wild-harvested species of Acacia Mill. and occasionally Combretum Loefl., Albizia Durazz., and other leguminous tree genera) and guar gum (cultivated cluster bean [Cyamopsis tetragonoloba (L.) Taub.) (Mudgil et al., 2014), among others.

Finally, while most of the long list of crops that interconnect the world have contributed to global production, trade and food supplies for centuries, various other crops are rapidly expanding in terms of the number of countries producing the plants and the consumers eating them. Quinoa (Chenopodium quinoa Willd.), which has grown from a regionally important crop to one cultivated in more than 100 countries within the past half-century (Bazile et al., 2016), is a case in point. Other examples of crops that appear to be spreading include chia (Salvia hispanica L.) (Bochicchio et al., 2015) and rocket (various Eruca Mill. and Diplotaxis DC. spp.) (Yaniv et al., 1998). As indicated in FAOSTAT, in terms of growth in global production quantity (tonnes) solely within recent years (2015 to 2018), hemp, chickpea, cowpea, avocado, hop, raspberry, many herbs and spices, and various other crops may also be on a steep upward trajectory.

While most of the global food and agricultural crop production, trade and contribution to food supplies, as measured by those metrics reported in FAOSTAT, are of crops currently listed in Annex I of the International Treaty, and are thus included in its Multilateral System, the remaining share is not. This proportion is substantial; for example, approximately 41.0 percent of total global production quantity and 28.7 percent of calories in global aggregate food supplies are of crops not listed in Annex I (Khoury et al., 2015). The most obvious gaps include oils (groundnut, oil palm, rapeseed and mustard, and soybean) and sugars (sugar beet and sugar cane).

If, instead, a comparison was made of the crops listed in Annex I versus all crops making a significant contribution to global production, trade and food supplies (even if only those crops for which global statistical information is available), current Annex I crops would appear to reflect global food and agriculture much more poorly. Among those on the long list of globally important crops not currently on Annex I are almond, amaranth, apricot, avocado, blueberry, buckwheat, cashew, cherry, chili and pepper, coffee, coffee, cotton, cranberry, cucumber, date, fig, garlic, ginger, grape, guava, hazelnut, kiwi fruit, lettuce, mango, melon, millets (various), olive, onion, papaya, passionfruit, peach and nectarine, pepper (Piper L.), pineapple, plum, pistachio, pumpkin, quinoa, raspberry, sesame, spinach, tea, tomato, walnut, watermelon and zucchini.

Source: Authors’ own elaboration.
that the world is rapidly warming is now in little doubt. According to the Annual Report of the National Centers for Environmental Information for 2021, the years 2013–2021 all rank among the ten hottest years on record (NOAA, 2022). Not only are temperatures increasing, but weather patterns are shifting, and the frequency of extreme weather events is on the rise. The effects of changing climates on the environments in which crops grow are many and varied. While some higher latitude regions might benefit from longer growing seasons (King et al., 2018) and possibly increased carbon dioxide (CO₂) fertilization (Degener, 2015), overall, climate change is expected to have a negative impact on global agricultural production (IPCC, 2019). A greater frequency of early-, mid- or late-season droughts, more intense rainstorms leading to waterlogging or flooding, higher or lower than ‘normal’ temperatures at different plant growth stages, and a greater occurrence of high winds will all take their toll.

In addition to the direct effects of climate change, agriculture will increasingly have to contend with other related effects such as a shifting spectrum of economically damaging pests (Skendžić et al., 2021), diseases (Luck et al., 2011; Velásquez, 2018) and weeds (Vilà et al., 2021), as well as rising water tables, soil erosion, salt intrusion, and damage to infrastructure (IPCC, 2019). For most farmers, the coming decades will require having to continually adapt to evolving conditions.

Although increasingly reliable climate modeling will facilitate the development of coping strategies (Joshi et al., 2015), given the inherently uncertain nature of future climates, a broad range of strategies will be needed in the transition to climate-smart agriculture. These will involve technological, socioeconomic and policy changes. Practices such as planting dates, irrigation regimes, and pest and disease management will all have to be adapted, updated and adjusted (Rosenstock et al., 2016).

Whatever the agricultural strategy, almost all interventions will depend, to a greater or lesser extent, on the availability of appropriate PGRFA. This will be the case whether efforts are made to increase resilience through the deployment of greater spatial or temporal diversity (Lin, 2011), or by introducing and/or breeding new crops or varieties that are better able to cope with changing environmental and agronomic conditions (Joshi et al., 2017). Crops that have an enhanced ability to withstand high temperatures, drought, waterlogging, or high levels of soil salinity, or that can resist or tolerate new pests and diseases, will all be critical (Galluzzi et al., 2020).

There are many ways in which PGRFA can contribute to ensuring that agriculture will be able to meet future food demands, for example:

- Introducing new varieties of currently grown crops that are better adapted to new climatic regimes from areas that have, or had in the recent past, an analogous climate and similar agroecological conditions (Bos et al., 2015; Joshi et al., 2017). However, these new varieties must meet local cultural preferences.

- Breeding new varieties of locally important crops to be better adapted to new abiotic and biotic conditions, while at the same time maintaining or enhancing their productivity and preferred food and agronomic characteristics (Mickelbart et al., 2015; Rane et al., 2021). In recent years there has been a growing interest in looking for genes that contribute to climate resilience, not only in cultivated germplasm of crop species, but also in related cultivated species and in wild relatives (Redden et al., 2015; Cortés and López-Hernández, 2021). Genes for heat and drought tolerance, for example, have been successfully transferred from the tepary bean (Phaseolus acutifolius) to the more widespread common bean (Phaseolus vulgaris) (Burbano-Erazo et al., 2021). Given the ongoing and rapid nature of climate change, it is important to make every effort to speed up these breeding processes and ensure a continuous pipeline of new varieties (Atlin et al., 2017).

- Introducing new crops from regions with analogous climates. Growing new and different crops presents an opportunity to adapt agriculture to changing conditions. As temperatures rise, it will become increasingly possible, even necessary, to grow crops that were previously only to be found in warmer climes. The following crops, for example, have been proposed for large-scale production in the United Kingdom in the future: almond, avocado, butternut squash, durum wheat, grape, kiwi, navy bean, nectarine, olive, peach, sunflower, soybean, tea and wasabi (Pole and Mills, 2008). However, while switching to new crops...
In terms of the crops with the greatest geographic spread regarding country recipients of germplasm, across all crop-use types, the most widely distributed crops generally paralleled the results for total samples distributed. Global staple cereals such as wheat, rice, maize and barley were distributed to an average of 100.3, 68.8, 65.3 and 58.8 countries per year, respectively, with pulses such as chickpea, faba bean, lentil and common bean also distributed to many countries. Also evident in this dataset was wide variation in numbers of recipient countries across the entire set of crops. As a whole, significant crops in terms of geographic extent of germplasm distributions include a broad range of plants from a variety of crop types.

To understand the current evenness or balance worldwide of PGRFA distribution for each crop, we compared its quantities of germplasm received across world regions, using the same 2015 to 2019 distribution data from the Data Store of the International Treaty. The most geographically even/balanced crops in terms of germplasm distribution, for eight different crop-use types of interest, are presented in Figure 8. The results are presented based on a mathematical metric of evenness called the Gini coefficient, in this case with values close to 100 representing high evenness in receipt of quantities of germplasm samples across regions, and those close to 0 representing unevenness. Note that those crops with the highest evenness values are not necessarily the most distributed around the world, but simply those with the greatest balance in quantities of distributions received by all world regions.

Box 5: PGRFA and climate change adaptation

as temperatures rise may be a viable option for many temperate areas of the world, it may be less appropriate for those mainly tropical regions that are already only able to grow the most heat-tolerant crops.

- Domesticating and introducing new crop species from the wild. *De novo* domestication could, in certain circumstances, help agriculture to adapt, despite the complexity of having to overcome many biological, physical, economic and cultural barriers. Increasingly, scientists are looking for plant species that could become new crops (von Wettberg et al., 2020). *Vigna stipulacea*, for example, has fast growth and broad resistance to pests and diseases (Takahashi et al., 2019), and several species of *Salicornia* L., a potential vegetable crop, can be grown in hot regions with saline soils, where little else will survive (Patel, 2016).

The examples listed above represent a progression in terms of their ease of development and likelihood of adoption by farmers and consumers. Changes that cause the least disruption to existing practices and preferences are the most likely to be adopted (Rickards and Howden, 2012), actualizing the transformational changes required for agriculture to adapt to new and evolving climates in the coming decades. These processes may also differ with reference to the existing Multilateral System of the International Treaty, with accessing PGRFA of major staple cereals, pulses, and some other crops already well incorporated, while the PGRFA of many proposed ‘crops of the future’ (see Box 3) are currently outside the scope of the Multilateral System.

Source: Authors’ own elaboration.
In terms of the crops with the greatest regional balance regarding receipt of germplasm, across all crop-use types, the most evenly distributed crops also approximately paralleled those most distributed in terms of quantities of samples and geographic spread. Examples of additional crops with relatively high evenness included banana, eggplant, alfalfa, and sweetpotato. Also evident in this dataset was wide variation in evenness of distributions across the entire set of crops. These geographic spread and evenness assessments complement the global value metrics by providing additional insights on the extent and balance of demand for germplasm worldwide. For crops with significant distributions to many countries, and/or with considerable evenness in receipt of germplasm samples across world regions, these metrics directly indicate a strong degree of interdependence among countries and regions regarding these PGRFA.

FIGURE 8: Geographic evenness in demand for crop genetic resources as measured in terms of regional balance in receipt of germplasm distributions under the SMTA of the International Treaty
Notes: Metrics are presented per crop as based on a mathematical metric of evenness called the Gini coefficient, in this case with values close to 100 representing high evenness in receipt of quantities of germplasm samples across regions, and those close to 0 representing unevenness. The subfigures display the ten crops with highest evenness in distributions per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. No distributions of germplasm of nut crops were recorded in the dataset.

As a complementary metric on global germplasm distributions, we calculated an average annual number of germplasm distributions for each crop worldwide from 2014 to 2019, using data from WIEWS, both in terms of numbers of accessions (unique populations/collecting events conserved *ex situ*) and of samples (individual packets of seeds or other propagules). This dataset primarily records distributions of germplasm from national gene banks, as reported by national focal points to FAO.
The most distributed crops in terms of accessions, for eight different crop-use types of interest, are presented in Figure 9. The results are presented as the proportion of distributions of the crop, compared with total distributions of all crops per crop-use type.

The PGRFA of a total of 256 different crops assessed in this study were reported as distributed in the WIEWS dataset, with a total of 865,479 accessions distributed across all crops and all years. Across all crop-use types, major cereals such as wheat, rice, barley, maize, oat and sorghum were among the most distributed of accessions, followed by a broad range of crops in different crop-use types, including pulses (such as common bean, chickpea, pea, cowpea, faba bean and lentil), vegetables (such as cabbage, tomato and chilli and pepper), fruits (such as orange, pear and apple) and roots and tubers (such as potato). While seed propagated crops dominate the list, crops with considerable distributions are also likely to include vegetatively propagated crops. Also evident in this dataset was wide variation in numbers of distributions across the entire set of crops. As a whole, significant crops in terms of global germplasm distribution evidently include a broad range of plants from a variety of crop types.
Note: Metrics are presented per crop as a proportion of total distributions of accessions across all crops within each crop-use type. The subfigures display the ten crops with highest distributions per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.
3.3.2 DEMAND FOR FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF VARIETAL REGISTRATIONS AND RELEASES

Global tracking of crop varietal registrations and releases provides further insights into global demand for PGRFA. We calculated an average annual number of varietal registrations for each crop worldwide from 2014 to 2018 using data from UPOV. Crops with the greatest number of varietal registrations, for eight different crop-use types of interest, are presented in Figure 10. The results are presented as the proportion of registrations of the crop, compared with total registrations of all crops per crop-use type.

Varietal registrations of a total of 194 different crops assessed in this study were reported in the UPOV dataset, with a total of 21,169.8 registrations made on average annually for the crops as a whole. Across all crop-use types, in terms of crops with large numbers of varietal registrations, a variety of crops and crop-use types were among the most significant. These included various cereals (maize, wheat and barley), vegetables (cabbage, tomato, beet, lettuce, chilli and peppers, and cucumber), sugar crops (sugar beet), oil crops (rapeseed and mustard, sunflower and soybean), pulses (pea, soybean and common bean), roots and tubers (potato), and forages (Lolium, fescue and clover). Also evident in this dataset was wide variation in numbers of varietal registrations across the entire set of crops. As a whole, significant crops in terms of global varietal registrations evidently include a broad range of plants from a variety of crop types.

FIGURE 10: Varietal registrations as reported by UPOV

<table>
<thead>
<tr>
<th>CEREAL</th>
<th>OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Maize</td>
</tr>
<tr>
<td>Wheat</td>
<td>Rapeseed and mustards</td>
</tr>
<tr>
<td>Barley</td>
<td>Sunflowers</td>
</tr>
<tr>
<td>Oats</td>
<td>Soybeans</td>
</tr>
<tr>
<td>Rye</td>
<td>Cotton</td>
</tr>
<tr>
<td>Rice (Asian)</td>
<td>Flax</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Hemp</td>
</tr>
<tr>
<td>Buckwheat</td>
<td>Olives</td>
</tr>
<tr>
<td>Quinoa</td>
<td>Poppies</td>
</tr>
<tr>
<td>Proso millet</td>
<td>Sesame</td>
</tr>
</tbody>
</table>
Notes: Metrics are presented per crop as a proportion of total registrations across all crops within each crop-use type. The subfigures display the ten crops with most registrations per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.
In a complementary metric on new crop varieties, we calculated an average annual number of varietal releases for each crop worldwide from 2015 to 2019, using data from WIEWS. These data provide information in terms of counts of varieties released of different crops by country, as reported by national focal points to FAO. Crops with the greatest number of varietal releases globally, for eight different crop-use types of interest, are presented in Figure 11. The results are presented as the proportion of releases of the crop globally, compared with total releases of all crops globally per crop-use type.

Variatel releases of a total of 204 different crops assessed in this study were reported in the “WIEWS varietal release” dataset, with a total of 5,933.3 releases made on average annually for the crops as a whole. Across all crop-use types, in terms of crops with large numbers of varietal releases, a variety of crops and crop-use types were among the most significant. These included various cereals (maize, wheat, sorghum, rice and barley), vegetables (tomato, cabbage, lettuce, chilli and pepper, cucumber, onion, beet and carrot), oil crops (soybean, sunflower, and rapeseed and mustard), roots and tubers (potato), fruits (melon, watermelon, apple, and peach and nectarine), pulses (common bean, soybean and pea), sugar crops (sugar beet), and forages (loliurn and fescue). Also evident in this dataset was wide variation in numbers of varietal releases across the entire set of crops. As a whole, significant crops in terms of global varietal registrations include a broad range of plants from a variety of crop types.

FIGURE 11: Varietal releases as reported by WIEWS
Notes: Metrics are presented per crop as a proportion of total releases across all crops within each crop-use type. The subfigures display the ten crops with most releases per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.
3.4. Supply of food and agricultural crop plant genetic resources

3.4.1. SUPPLY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF GERMPLASM COLLECTIONS

Global tracking of ex situ crop collections holdings provides insights into the global supply of PGRFA. We calculated the number of ex situ germplasm accessions maintained worldwide for each crop, combining data from WIEWS, Genesys PGR and GBIF (‘living specimens’ only included from GBIF). Assessments were made both at the taxon/crop level, as well as at the genus level, the latter to be inclusive of supply of associated genetic resources, including crop wild relatives.

Crops with the greatest PGRFA supply, in terms of numbers of accessions of the taxon/crop held in ex situ facilities reported in these databases, for eight different crop-use types of interest, are presented in Figure 12. The results are presented as the proportion of accessions of the crop, compared with total accessions of all crops per crop-use type.

Accessions of a total of 354 different crops assessed in this study were reported in the combined ex situ collections dataset, with a total of 3,724,231 accessions at the taxon/crop level and 7,973,490 accessions at the genus level in ex situ collections, as a sum of all crops. Across all crop-use types, in terms of crops with the greatest supply of PGRFA, those crops with the greatest numbers of accessions included cereals (wheat, rice, barley, sorghum, oat and various millets), pulses (common bean, soybean, chickpea, pea, groundnut, cowpea, lentil, faba bean and pigeon pea), forages (clover, alfalfa and Lolium), vegetables (cabbage, tomato, and chilli and pepper), fruits (grape and apple), fibres (flax and cotton), and roots and tubers (potato). Also evident in this dataset was wide variation in numbers of ex situ accessions across the entire set of crops. As a whole, significant crops in terms of global ex situ supply evidently include a broad range of plants from a variety of crop types.
FIGURE 12: Supply of crop genetic resources as measured in terms of ex situ germplasm collections

CEREAL
- Wheat
- Rice (Asian)
- Barley
- Maize
- Sorghum
- Pearl millet
- Oats
- Finger millet
- Proso millet
- Rye

OIL
- Maize
- Soybeans
- Groundnuts
- Flax
- Cotton
- Rapeseed and mustards
- Sesame
- Sunflowers
- Safflower
- Castor bean

FORAGE
- Clovers
- Alfalfa
- Lolium
- Fescue
- Dactylis
- Vetch
- Phleum
- Poa
- Lotus
- Melilotus

PULSE
- Common bean
- Soybeans
- Chickpeas
- Peas
- Groundnuts
- Cowpeas
- Lentils
- Faba beans
- Pigeonpeas
- Mung bean

FRUIT
- Grapes
- Apple
- Pears
- Melons
- Watermelons
- Cherries
- Plums
- Pluots and nectarines
- Apricot
- Currants

ROOT AND TUBER
- Potatoes
- Cassava
- Sweetpotatoes
- Yams
- Oca
- Taro
- Ulluco
- Mashua
- Arracacha
- Jerusalem artichoke
3.4.2 SUPPLY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF GERMPLASM COLLECTION COVERAGE IN THE MULTILATERAL SYSTEM OF THE INTERNATIONAL TREATY

An estimation of the degree to which the global supply of PGRFA is included within the Multilateral System of the International Treaty was calculated using the same combined WIEWS, Genesys PGR, and GBIF dataset. Coverage was first assessed based on direct notation in the datasets regarding inclusion in the Multilateral System, with accessions with no information in these fields considered to be not included in the Multilateral System. Since a large proportion of accessions (approximately 53 percent) had no direct notation, a second methodology was employed based on a combination of the Contracting Party status of the country where the ex situ collections were held, or if the institute was an international centre (CGIAR or other), and the list of crops covered in the Multilateral System (i.e. Annex I, as well as Article 15, of the International Treaty). As above, values were calculated both at the taxon/crop and genus level.

Crops with the greatest proportions of their PGRFA supply considered to be included in the Multilateral System, using the direct notation methodology at the taxon/crop level, for eight different crop-use types of interest, are presented in

Notes: Metrics are presented per crop as the proportion of accessions of the crop, compared with total accessions of all crops per crop-use type. The subfigures display the ten crops with most accessions per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.
Figure 13. The results are presented as the proportion of accessions of the crop included in the Multilateral System, compared with total global accessions of the same crop.

A total of 247 different crops assessed in this study were found to have ex situ accessions included in the Multilateral System if assessed by direct notation, with a sum of 762,695 accessions in the Multilateral System if calculated at the taxon/crop level, and 1,704,166 accessions in the Multilateral System if calculated at the genus level. If assessed by country/institute status/Annex I list, a total of 79 different crops assessed in this study were found to have ex situ accessions included in the Multilateral System, with a sum of 2,137,646 accessions in the Multilateral System if calculated at the taxon/crop level and 3,866,570 accessions in the Multilateral System if calculated at the genus level.

Across all crop-use types, in terms of crops with the greatest proportion of supply of PGRFA considered covered in the Multilateral System, crops included a very diverse set of plants from all crop-use types. As measured by direct notation, up to 89.2 percent of collections of forage crops such as *Galactia*, 80.7 percent of *Stylosanthes*, and 71.7 percent of *Indigofera*, were covered in the Multilateral System. As measured by country/institute status/Annex I list, up to 100 percent of various citrus and forage (*Salsola*) collections were considered part of the Multilateral System. Note that these are all relative proportions per crop. In terms of absolute numbers of accessions per crop considered part of the Multilateral System, the crops with the largest representation in the Multilateral System generally paralleled overall ex situ supply. Also evident in this dataset was wide variation in numbers and proportions of ex situ accessions included in the Multilateral System, across the entire set of crops.

FIGURE 13: Coverage of crop genetic resources within the International Treaty’s Multilateral System as measured by direct notation in global ex situ collections databases
Notes: Metrics are presented per crop as the proportion of accessions of the crop considered covered in the MLS, compared with total accessions of the same crop. The subfigures display the ten crops with most coverage in the MLS per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.
3.4.3 SUPPLY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF GERMLASM COLLECTION COVERAGE OF CROPS’ PRIMARY REGION(S) OF DIVERSITY

An estimation of the degree to which the global supply of PGRFA represents the range of diversity present in each crop’s primary region(s) of diversity was calculated using the same combined WIEWS, Genesys PGR and GBIF dataset. Coverage was assessed by identifying the number of accessions originally collected within the primary region(s) of diversity and comparing this with the harvested area (ha) of the crop (FAOSTAT data) within the primary region(s) of diversity. As above, values were calculated both at the taxon/crop and genus level. The results are presented as the proportion of accessions of the crop per unit area in the primary region(s) of diversity.

A total of 248 different crops assessed in this study were found to have ex situ accessions originally collected from their primary region(s) of diversity. In terms of crops considered best represented regarding coverage of their primary region(s), these include a broad range of crops of different crop-use types, such as pawpaw, jojoba, canary seed, kiwicha, oca, amaranth, ulluco, kaniwa, beet, sweetpotato, jicama, mashua, lupin, dill, roselle, arracacha, cherimoya, faba bean, and many others. Also evident was wide variation in estimated coverage of crops’ primary region(s) of diversity, across the entire set of assessed crops in this study.

3.4.4 SUPPLY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF BOTANIC GARDEN GERMLASM COLLECTIONS

Significant ex situ germplasm collections of PGRFA are maintained outside those national, regional and international gene banks mainly represented in global databases such as FAO WIEWS and Genesys PGR – for example in botanic gardens. To assess the degree to which PGRFA of the assessed crops are represented in the world’s botanic gardens, information on botanic institutes holding collections of each crop was calculated from the Botanic Garden Conservation International’s PlantSearch database, both at the taxon/crop and genus level.

Crops with the greatest PGRFA supply in botanic gardens, as calculated at the taxon/crop level, for eight different crop-use types of interest, are presented...
The International Panel on Climate Change (IPCC) has estimated that agriculture is directly responsible for up to 8.5 percent of all greenhouse gas (GHG) emissions, with a further 14.5 percent arising from land-use change, mainly due to deforestation in the conversion of wildlands to agricultural fields (Shukla et al., 2019). While agriculture must adapt to the effects of a warming climate (see Box 5), it is equally important that every effort be made to reduce its carbon and other major GHG footprints. This can be achieved in two main ways, by: a) increasing the amount of carbon captured; and b) reducing the amount of GHG emitted. A third, more controversial approach by which agriculture can contribute to reducing anthropogenic GHG emissions is through increased production of biofuel (see Box 8).

While a range of agronomic and other measures can significantly reduce agriculture's carbon footprint, the use of PGRFA to breed new and productive but also climate-friendly varieties should not be overlooked. Increasing carbon capture can be achieved, for example, by:

- Breeding larger plants with more extensive and deeper root systems, that have greater above-ground biomass or that are better suited to production in high carbon (C)-capture cropping systems; such measures are only effective, however, if the carbon remains locked up for a considerable period, for example by contributing to a sustained increase in soil carbon. Some major new initiatives are exploring the breeding of crops for greater C-capture (for example, Salk Institute for Biological Studies, 2022).

- Planting more perennial crops, which generally capture more carbon than annuals, due to their larger root systems and greater overall biomass. There is thus a significant potential to increase soil carbon by replacing annual crops with perennials and by incorporating woody perennials in agroforestry systems (Scherr and Sthapit, 2008). It may be feasible to convert annual crop species into perennials, for example maize, oat, rice, rye, sorghum, soybean, sunflower and wheat (Cox et al., 2002; Porterfield, 2019). In the Yunnan Province of China, a perennial rice cultivar (PR23) has been successfully developed through a cross between annual cultivated rice (Oryza sativa L.) and a perennial wild relative from Africa (Oryza longistaminata A. Chev. & Roehr.) (The Land Institute, 2022).

Reducing agricultural GHG emissions can be achieved, for example, by:

- Reducing the need for artificial nitrogen (N) fertilizer, the use, or overuse, of which is one of the main causes of GHG emissions from agricultural production. These arise both as CO$_2$ from fertilizer manufacture, transport and application, and as nitrous oxide (N$_2$O) from the denitrification of nitrate by microorganisms in the soil. While recognizing the importance of N fertilizer in maintaining productivity, and hence reducing the need to farm additional land, every effort should be made to produce and use it as efficiently as possible. PGRFA can play an important role in helping to reduce the use of N fertilizer by breeding varieties that can uptake and use N more efficiently. Genetic advances in nitrogen-use efficiency appear possible in many crops (ISAAA, 2014; Lammerts van Bueren and Struik, 2017).

- Reducing nitrous oxide emissions. N$_2$O is about 300 times more potent as a greenhouse gas than CO$_2$ over a 100-year period. Some 62 percent of the world’s anthropogenic N$_2$O is from agricultural production and an additional 26 percent comes from land clearing and biomass burning (EDGAR, 2022). Reducing N fertilizer application is key to cutting N$_2$O emissions. Other approaches are also being explored. Brachialactone, for example, a chemical released from the roots of forage Brachiaria species, can significantly reduce nitrification by microorganisms in the soil, resulting in less N$_2$O release (Subbarao et al., 2009). It should be possible to genetically enhance this effect, as well as to find or enhance compounds having a similar effect in other crops.

- Enhancing biological nitrogen fixation. Food and forage legumes draw a large proportion of their N needs directly from the atmosphere through a symbiotic association with bacteria of the genus Rhizobium. Residual N from legume cultivation can also contribute to meeting the needs of companion crops or subsequent crops in the rotation. Currently, around 30 food legume and 20 forage legume species are used extensively in agriculture (as tracked by
RESULTS

FAOSTAT and/or Annex I of the International Treaty; a greater use of these, and possibly other species, would help to reduce the overall need for artificial N fertilizer. The amount of nitrogen ‘fixed’ can also be increased through genetic improvement of legume crops or their Rhizobium symbionts (Provorov, 2003). Several breeding programmes worldwide aim to increase the amount of N fixed by non-leguminous species, in particular maize, rice, sorghum and wheat (Rosenblueth et al., 2018).

- Reducing methane emissions from rice paddies. Methane (CH\textsubscript{4}) has about 25 times the potency of CO\textsubscript{2} as a greenhouse gas over a 100-year period. Some 40 percent of all anthropogenic methane emissions are caused by agriculture, of which rice paddies contribute about 8 percent and ruminant livestock about 32 percent (UNEP, 2021). Reduced CH\textsubscript{4} emissions from paddy fields could result from breeding rice varieties that perform well under reduced flooding or that release less C below ground, thereby reducing methanogenesis by soil microorganisms (Aulakh et al., 2001).

- Reducing methane emissions from livestock. Several approaches are currently being explored, for example, identifying and/or breeding plant-based feeds that have lower fibre or higher polyphenolic content, both of which have anti-methanogenic properties (Jayanegara et al., 2009) (see Box 2).

- Reducing carbon emissions through breeding of crops requiring shorter cooking times and thus less cooking fuel. Promising steps have been taken in this direction for crops such as common bean (Wiesinger et al., 2021).

Box 6: PGRFA and climate change mitigation

In 1983, the FAO Conference adopted the International Undertaking on Plant Genetic Resources, a voluntary agreement that was adhered to by 113 countries. The objective of the Undertaking was to promote international collaboration “to ensure that plant genetic resources of economic and/or social interest, particularly for agriculture, will be explored, preserved, evaluated and made available for plant breeding and scientific purposes...” and furthermore that such resources “should be available without restriction.” (FAO, 1983).

The Undertaking also recognized that the global playing field was far from level and that unrestricted access to plant genetic resources was largely of benefit to those countries and institutions that had the capacity to use them. Article 6 therefore stated that international cooperation “will, in particular, be directed to ... establishing or strengthening the capabilities of developing countries ... with respect to plant genetic resources activities, including plant survey and identification, plant breeding and seed multiplication and distribution, with the aim of enabling all countries to make full use of plant genetic resources for the benefit of their agricultural development...” (FAO, 1983).

However, despite this stated intention and significant advances in many middle-income countries, only relatively limited progress was made in the 1980s and 1990s in advancing the capacity of the lowest-income countries to make use of PGRFA (FAO, 1997). Thus, the need to strengthen capacity was again reiterated in the text of the International Treaty on Plant Genetic Resources for Food and Agriculture that superseded the Undertaking, when it came into force in 2004.

Article 13.1 of the International Treaty states: “The Contracting Parties recognize that facilitated access to plant genetic resources for food and agriculture which are included in the Multilateral System constitutes itself a major benefit of the Multilateral System ...” (FAO, 2002). However, in the absence of the ability to use the genetic resources to which countries have facilitated access, such resources are of limited value. Thus, Article 13.2 lists training and capacity building among the priority elements of benefit-sharing within the Multilateral System. Article 7.2a of the International Treaty, meanwhile, provides that international cooperation between Contracting Parties shall particularly be directed to “establishing

Box 7: Building capacity to use PGRFA

In 1983, the FAO Conference adopted the International Undertaking on Plant Genetic Resources, a voluntary agreement that was adhered to by 113 countries. The objective of the Undertaking was to promote international collaboration “to ensure that plant genetic resources of economic and/or social interest, particularly for agriculture, will be explored, preserved, evaluated and made available for plant breeding and scientific purposes...” and furthermore that such resources “should be available without restriction.” (FAO, 1983).

The Undertaking also recognized that the global playing field was far from level and that unrestricted access to plant genetic resources was largely of benefit to those countries and institutions that had the capacity to use them. Article 6 therefore stated that international cooperation “will, in particular, be directed to ... establishing or strengthening the capabilities of developing countries ... with respect to plant genetic resources activities, including plant survey and identification, plant breeding and seed multiplication and distribution, with the aim of enabling all countries to make full use of plant genetic resources for the benefit of their agricultural development...” (FAO, 1983).

However, despite this stated intention and significant advances in many middle-income countries, only relatively limited progress was made in the 1980s and 1990s in advancing the capacity of the lowest-income countries to make use of PGRFA (FAO, 1997). Thus, the need to strengthen capacity was again reiterated in the text of the International Treaty on Plant Genetic Resources for Food and Agriculture that superseded the Undertaking, when it came into force in 2004.

Article 13.1 of the International Treaty states: “The Contracting Parties recognize that facilitated access to plant genetic resources for food and agriculture which are included in the Multilateral System constitutes itself a major benefit of the Multilateral System ...” (FAO, 2002). However, in the absence of the ability to use the genetic resources to which countries have facilitated access, such resources are of limited value. Thus, Article 13.2 lists training and capacity building among the priority elements of benefit-sharing within the Multilateral System. Article 7.2a of the International Treaty, meanwhile, provides that international cooperation between Contracting Parties shall particularly be directed to “establishing
Box 7: Building capacity to use PGRFA

or strengthening the capabilities of developing countries and countries with economies in transition with respect to conservation and sustainable use of PGRFA.

The second Global Plan of Action for PGRFA (FAO, 2011) likewise emphasizes the importance of building capacity to make use of materials in the Multilateral System, with 5 of the 18 priority activities focusing on strengthening institutional capacity and promoting greater international collaboration to support national programmes. One priority activity specifically aims to build and strengthen human resource capacity.

While it is difficult to obtain accurate figures on how much institutional capacity has strengthened over recent years, and conversely how much remains to be done, available data would indicate there is still a considerable way to go. For example:

- Low-income economy countries, as classified by the World Bank, received the lowest proportion of total germplasm distributions between 2012 and 2019, made using the Standard Material Transfer Agreement of the International Treaty, totalling 10.8 percent of all distributions worldwide. This said, lower middle-income economies received the highest amount (38.7 percent of total), with upper middle- and high-income countries receiving somewhere in between (26.7 percent and 23.8 percent, respectively). Those 45 countries identified by the United Nations as least developed countries were the recipients of 11 percent of total distributions; those 32 classified as landlocked developing countries received 12.5 percent of the total; and those 30 classified as small island developing states received 0.3 percent of the total (Khoury et al., 2022).

- In the WIEWS database providing data from 2012 to 2014, three of the 27 countries listed by the World Bank as having low-income economies provided data on the number of their cereal breeders: Ethiopia, Madagascar and Uganda. They reported an average of 2.7 breeders per country. By contrast, the seven countries with high-income economies (Australia, Italy, Japan, Estonia, France, Germany and the United Kingdom) reported an average of 21.7 cereal breeders per country. This means that, taking population size into account, the low-income countries had less than 30 percent of the number of cereal breeders per head of population compared with the high-income countries. Yet according to the World Bank Development Indicators for 2019 (World Bank, 2022b), their agricultural sectors were 17 times more significant as a percentage of national gross domestic product (GDP).

- Another indicator of a country's status with respect to its plant breeding capacity is the ratio of public to private breeders. Although there are obvious exceptions, with some countries investing heavily in their public plant breeding sector, for most free market economies, increased economic development has tended to lead to an increase in private sector plant breeding. This is reflected in the WIEWS 2012 to 2014 data for cereal breeders: in the three reporting countries having low-income economies, less than 25 percent of the plant breeders were in the private sector, while about 80 percent of the cereal breeders in the seven high-income countries were working in the private sector.

- Membership of UPOV is an indicator that a country has a sufficiently advanced plant breeding and seed sector to want to take advantage of Plant Breeders Rights. While there are political and other reasons why a country might not wish to join, it is notable that of the 27 countries classified by the World Bank (World Bank, 2022a) as having low-income economies in 2021–2022 (having an annual per capita GDP of less than USD 1 045), none are members of UPOV. Furthermore, of the 55 countries classified as lower-middle income (having an annual per capita GDP of between USD 1 046 and USD 4 095) only 9 are members. Indeed, of the 76 UPOV country members, more than 85 percent are classified as having upper-middle- or high-income economies.

Despite gaps in accurate and up-to-date information, it is clear from available data that many countries still lack the ability to benefit significantly from having access to the vast genetic diversity that is available to them in the Multilateral System under the International Treaty.

Source: Authors’ own elaboration.
The results are presented as the proportion of unique botanic collection records for each crop, compared with total unique botanic collection records across all crops in each crop-use type.

A total of 354 different crops assessed in this study were reported to be conserved in botanic institutions. In terms of crops represented in the greatest numbers of botanic institutions, the results are very different from the statistics for ex situ gene bank collections. A wide variety of mainly perennial crops and their genera are in the highest number of botanic institutions, with the top crops including apple, beech nut, pear, sugar maple, currant, chilli and pepper, hazelnut, lavender, plum, clover, elderberry, rosemary and cabbage. These crops represent the spectrum of crop-use types, and mainly appear to reflect plants chosen for display in garden settings rather than predominantly for PGRFA purposes. Also evident was wide variation in numbers of botanic institutions across the entire set of crops assessed in this study. As a whole, assessed crops held in botanic gardens evidently include a broad range of plants from a variety of crop-use types, and these differ widely from those conserved in national and international gene banks.
Notes: Metrics are presented per crop as the proportion of unique botanic garden records for each crop, compared with total unique botanic garden records across all crops in each crop-use type. The subfigures display the ten crops with most records per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.

Source: Authors’ own elaboration.
While humanity has burned wood and other forms of plant biomass from time immemorial, interest in its conversion into gaseous or liquid fuel (biofuel) has taken off in recent decades as attention has focused on finding alternatives to fossil fuels. Hailed by some as a significant contributor to reducing overall GHG emissions, the net reductions in such emissions are frequently less than hoped for, and in some situations may even be negative (Jeswani et al., 2020).

The real potential of biofuel is likely to be highly plant- and process-specific. The net reduction in emissions of biofuel compared with fossil fuel depends on many factors, including the type of crop and the nature and amount of energy required for its production, processing and transport. Recent efforts to compare the environmental impacts of biofuels using whole Life Cycle Assessment methodologies (from production to final use) have shown a very wide range of potential impacts (Reijnders, 2021).

Biofuel crops are also feared to be unwanted competitors with food crops for land and other resources (Muscat et al., 2020). Two main approaches are being explored to minimize resource competition between biofuel and food crops: a) producing biofuels from crop residues and other by-products; and b) growing biofuel crops on marginal lands that are unsuitable for food production (or forestry).

While many food crops have been considered for use as biofuel material (including maize, canola, sugar beet, sugar cane, coconut, oil palm and soybean), it is their residues (straw, husks etc.), that provide a much less controversial source of biofuel feedstock. The lignocellulose in such residues represents a potentially important source of energy, even though more processing is required than for starch or sugar to produce the sugar monomers required for fermentation into fuel. It thus makes sense to breed varieties of food crops that have more and better-quality straw and other by-products that can be used to produce biofuel after the food harvest. Present-day varieties of many crops with high lignocellulosic straw biomass tend to have a low grain yield potential. However, it may be possible to break this association through further genetic improvement (Dash et al., 2021).

Many possibilities exist for developing biofuel crops for cultivation in areas not suitable for food crop production. C4 carbon fixation grasses, characterized by a high productivity and resource-use efficiency, are among the most productive plants and most promising as cellulosic biofuel materials. *Miscanthus* spp., switchgrass (*Panicum virgatum* L.), Napier grass (*Cenchrus purpureus* [Schumach.] Morrone, syn. *Pennisetum purpureum* Schumach.) and sweet sorghum (*Sorghum bicolor* [L.] Moench) have received research attention. All could be significantly enhanced as biofuel feedstocks through improvements to their yield, stress tolerance and the content and composition of their lignin, cellulose and hemicellulose. To maximize biomass yield, absence of flowering and grain set are considered desirable traits (Jakob et al., 2009).

An alternative to cellulosic by-products is the use of vegetable oil to produce fuel (biodiesel). This may be equally or even more problematic to actualize at scale. Vegetable oils tend to make up only a small proportion of most crop residues. Using commercially grown oil crops competes with food production, and in some cases, such as palm oil production, is associated with environmental and GHG emissions concerns. Some plants have shown promise for oilseed production from marginal areas, for example *jatropha* (*Jatropha curcas*). However, large-scale production has thus far met with mixed success (Lahiry, 2018).

Despite various concerns, the production and use of biofuels is continuing to expand worldwide, especially for transport and circumstances where renewable electricity is not an option. According to the International Energy Agency (IEA, 2021), in 2019, worldwide biofuel production reached 161 billion litres (43 billion gallons), up 6 percent from 2018, and biofuels provided 3 percent of the world’s fuels for road transport. Given the ongoing imperative of cooperating globally in order to limit greenhouse gas emissions, the exchange of PGRFA for biofuel use, including possibly under the Multilateral System, may warrant further exploration by the international community.

Box 8: PGRFA and the future of biofuel crops

Source: Authors’ own elaboration.
Box 9: Digital Sequence Information: the importance of access to data and the challenges regarding benefit-sharing

Since the Convention on Biological Diversity (CBD) was established in 1992, the international community has had legally binding arrangements for negotiating access to, and sharing the benefits derived from the use of biodiversity. Through the CBD’s 2010 Nagoya Protocol, and the International Treaty on Plant Genetic Resources for Food and Agriculture, mechanisms for access and benefit-sharing (ABS) of physical crop genetic resources have been carefully formalized. Other international agreements dealing with ABS include the Pandemic Influenza Preparedness Framework, the Antarctic Treaty, and the Biodiversity Beyond National Jurisdiction negotiations under the auspices of the United Nations Convention on the Law of the Sea (Aubry et al., 2021; Rohden and Scholz, 2021).

These ABS instruments are complex, and their negotiations have been, and remain, among the most contentious of topics within the agreements (Aubry, 2019; Rohden and Scholz, 2021; Wynberg et al., 2021). Their varied interpretations and implementation across the world create confusion for practitioners and policy-makers alike, including who is subject to their conditions, how ABS can be bilaterally negotiated, and how biodiversity outside the time frame of the instruments is governed (Bagley et al., 2020; von Wettberg and Khoury, 2021).

Further complicating matters is the potential that information generated through research that is important to the use of genetic resources, such as genotypic or phenotypic data on crops, may soon be subject to ABS requirements, alongside the physical genetic resources. The generation, storage, exchange and use of these data – which are often called Digital Sequence Information (DSI) in policy negotiations – have all advanced rapidly over recent decades (Arora and Narula, 2017; Crossa et al., 2017; Mir et al., 2019), but potentially relevant ABS mechanisms have not kept pace. A concern has begun to be voiced that without updating ABS mechanisms, the increasing use of this information may diminish the power of ABS frameworks governing only physical genetic resources. This has now come to a head, with the CBD, the International Treaty and other agreements actively discussing ABS for DSI.

These discussions could have major consequences regarding the international flow of information relevant to plant breeding and the conservation of PGRFA. New mechanisms may create increased benefit-sharing deriving from the use of DSI, but may also hinder crop research. Since this data began to be generated in large quantities in the 1970s and 1980s, they have commonly been held in open access platforms (Benson et al., 2018; Sayers et al., 2019; Laird et al., 2020), and many crop researchers take the accessibility of DSI data for granted (Woeffe et al., 2011). These formats have in many ways powered the genomics revolution (Molloy, 2011; Pinnow et al., 2011; Gallagher et al., 2020).

In recent years, a series of background papers and published research articles has attempted to clarify the issues around DSI and the potential and constraints regarding ABS (Rohden and Scholz, 2021; von Wettberg and Khoury, 2021). From this body of evidence, several major themes emerge.

First, the continued lack of clarity about the subject itself needs to be resolved. DSI (along with ‘genetic sequence data’, ‘PGRFA information’ and various other terms) as placeholders have been in use in the CBD and International Treaty for a number of years, but none represents an ideal moniker for the range of sequence data (DNA, RNA, proteins, etc.), phenotypic and morphological information, passport or provenance data, and other information potentially intended to be included in negotiations (Laird and Wynberg, 2018; Cowell et al., 2021; Rohden and Scholz, 2021).

Second, rapid exchange of DSI has provided enormous societal benefits globally (Rohden et al., 2020). Perhaps the most visible recent example is the development and sharing of SARS-CoV-2 sequence information, leading to the rapid development of COVID-19 vaccines around the world and critical information on the virus’s diversity and adaptive capacity (Maxmen, 2021).

Third, due to the importance of access to DSI and the lack of clarity around definitions and scope of this data and possible ABS obligations, constraints or nuanced complications regarding exchange are likely to be very difficult to implement and have considerable negative impacts, including on crop research (Bagley et al.,
Box 9: Digital Sequence Information: the importance of access to data and the challenges regarding benefit-sharing

2020; Iob and Botigue, 2021; Rourke, 2021; Vogel et al., 2021). Multilateral or fully open systems of exchange are generally considered to be preferable for scientists and for managers of genetic resources (Brink and van Hintum, 2021; Cowell et al., 2021).

Finally, the potential of DSI to contribute to food security and sustainable agriculture is of course dependent on the capacity to make use of these ever larger and more complicated datasets. This capacity, as with other aspects of utilization of PGRFA, still varies widely across institutions, countries and regions (see Box 7) (Rohden et al., 2020). Further capacity building is critically needed for the benefits of DSI to be more widely and equitably realized (Rohden et al., 2020; De Jonge et al., 2021; Rouard et al., 2021).

Source: Authors’ own elaboration.
3.4.5 SUPPLY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF GLOBAL BIODIVERSITY INFORMATION FACILITY RESEARCH RECORDS

The Global Biodiversity Information Facility (GBIF) is the world’s leading global repository for openly accessible biodiversity resources, including research specimens such as herbarium records and their associated data. We calculated research record supply of assessed crop PGRFA based on records reported in GBIF, both at the taxon/crop level and the genus level. The results are presented as the proportion of records of the crop in GBIF, compared with total records of all crops in GBIF.

Research samples of a total of 321 different taxa/crops and 348 crop genera assessed in this study were reported as available in GBIF, with a sum total of 95,876 records across all crops at the taxon/crop level and 310,985 records across all crops at the genus level found in GBIF. Across all crops and crop-use types, in terms of crops with the greatest numbers of GBIF research samples, these include cereals (such as sorghum, maize, rice, pearl millet, wheat, barley and finger millet), pulses (such as common bean, cowpea, groundnut, bambara bean, lupin, faba bean and pigeon pea), roots and tubers (such as sweetpotato, cassava, yam and potato), vegetables (such as eggplant, okra, chilli and pepper, cabbage and tomato), and forages (such as clover, alfalfa and vetch). Also evident was wide variation in numbers of samples in GBIF across the entire set of assessed crops in this study. As a whole, assessed crops with considerable GBIF records evidently include a broad range of plants from a variety of crop-use types.

3.4.6 SUPPLY OF GENETIC SEQUENCE DATA (GSD) AND OTHER RELATED DATA FOR FOOD AND AGRICULTURAL CROP PLANTS

Understanding the availability of nucleotide, protein, structure, genome, genes and other related information provides insights into the global supply of genetic sequence data (GSD) and other data related to PGRFA. Policy discussions are ongoing about availability of this data (see Box 9) are ongoing, where the term Digital Sequence Information (DSI), which attempts to encapsulate all these data and potentially other forms of data on PGRFA, still requires a definition.

We calculated the supply of GSD and other related data at four levels – nucleotide, protein, genome and gene – based on information held for each crop taxon in the National Center for Biotechnology Information (NCBI)’s Entrez database. This database comprises one of the three global GSD and other related data repositories, which are connected within the International Nucleotide Sequence Database Collaboration. The other two repositories are the DNA Data Bank of
Japan and the European Molecular Biology Laboratory - European Bioinformatics Institute; these share data across their platforms.

Crops with the greatest supply in terms of nucleotide sequences, as calculated at the taxon/crop level, for eight different crop-use types of interest, are presented in **Figure 15**. The results are presented as the proportion of nucleotide resources of the crop, compared with total nucleotide resources of all assessed crops.

GSD and other related data entries of a total of 352 different taxa/crops assessed in this study were reported in the NCBI database, with a sum of 68,674,745 nucleotide sequences, 47,801,011 protein sequences, 317 genomes, and 6,434,966 gene sequences available. Across all crops and crop-use types, in terms of crops with the greatest numbers of nucleotide sequence resources, these included cereals (such as wheat, maize, barley, rice and sorghum), vegetables (such as cabbage, tomato, beet, chilli and pepper, turnip and onion), pulses (such as soybean, groundnut, chickpea and common bean), tobacco, forages (such as lolium, clover and alfalfa), oil crops (such as soybean and rapeseed and mustard), fruits (such as various citrus crops, as well as grape), and a variety of other crops such as cotton, hop, sugar beet and agave. Those crops with the greatest amounts of GSD resources varied by the four metrics (nucleotide, protein, genome and gene). Clearly evident was wide variation in numbers of GSD resources across the entire set of assessed crops as well as across the GSD metrics in this study. As a whole, assessed crops with considerable GSD resources evidently include a very broad range of plants from a variety of crop-use types.

FIGURE 15: Supply of GSD and other related data on crops

![Graph showing supply of GSD and other related data on crops](image)
Notes: Metrics are presented per crop as the proportion of nucleotide resources of the crop, compared with total nucleotide resources of all assessed crops per crop-use type. The subfigures display the ten crops with most nucleotide resources per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use.
3.5. Security of food and agricultural crop plant genetic resources

3.5.1. SECURITY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES IN TERMS OF SAFETY BACKUP OF GERMLASM COLLECTIONS AT THE SVALBARD GLOBAL SEED VAULT

The Svalbard Global Seed Vault (SGSV) is considered the foremost safety-backup facility for *ex situ* PGRFA globally, and is available as a resource for virtually any *ex situ* collection worldwide, with seed deposits made through a black box agreement (see Box 10). The SGSV currently houses more than 1.25 million samples of almost 5 500 agriculturally-related species, deposited by 89 different gene banks and other institutions around the world (Norwegian Ministry of Agriculture and Food, 2022; NordGen, 2022).

We calculated the total number of accessions for each crop in the SGSV, based on information from its Seed Portal, compared with the total count of accessions for each crop in all *ex situ* repositories as reported in FAO WIEWS, Genesys PGR and GBIF (living specimens) (see the supply domain, subsection 3.4.1). Assessments of safety backup were made both at the taxon (crop) level and the genus level, the latter to be inclusive of security of associated genetic resources, including crop wild relatives.

Crops with the greatest degree of safety backup, as calculated at the taxon/crop level, for eight different crop-use types of interest, are presented in Figure 16. The results are presented as the proportion of records of the crop in the SGSV, compared with total records of the crop in all *ex situ* collections.

Accessions of a total of 206 different crops assessed in this study were reported as conserved in the SGSV if considered at the taxon/crop level (with a grand total of 859 167 accessions stored), and 223 at the genus level (with a grand total of 1 721 409 accessions stored). Across all crop-use types, in terms of crops with the greatest absolute quantities of accessions in the SGSV, the results largely mirror those of overall *ex situ* collections, with cereals such as wheat, rice, barley, sorghum, pearl millet and maize, and pulses such as common bean, soybean, chickpea, cowpea, groundnut and pigeon pea having the largest representation in the SGSV.

In terms of the proportion of accessions safety duplicated in the SGSV per crop, relative to their overall *ex situ* collections worldwide, a variety of forage crops including *Galactia*, *Calopogonium*, *Stylosanthes* and *Sesbania* were among the most well represented, as well as various cereal, pulse, (seed producing) root and tuber crops, fibre, and herb and spice crops. Quite evident in this dataset was wide variation in proportions of *ex situ* collections safety duplicated in the SGSV.
across the entire set of crops. Internationally important crops with particularly
low proportions of their *ex situ* collections conserved in the SGSV included plants
from many different crop-use types, including fruits, oils, fibres, vegetables, pulses,
herbs and spices, and roots and tubers. The SGSV is a safety backup for seed, thus
crops mainly conserved through other types of reproductive propagules typically
have low values for safety duplication in this metric.

FIGURE 16: Safety backup of crop genetic resources at the Svalbard Global Seed Vault

CEREAL

<table>
<thead>
<tr>
<th>Crop</th>
<th>Safety Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice (African)</td>
<td></td>
</tr>
<tr>
<td>Pearl millet</td>
<td></td>
</tr>
<tr>
<td>Rice (Asian)</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
</tr>
<tr>
<td>Sorghum</td>
<td></td>
</tr>
<tr>
<td>Canary seed</td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td></td>
</tr>
<tr>
<td>Foxtail millet</td>
<td></td>
</tr>
<tr>
<td>Little millet</td>
<td></td>
</tr>
<tr>
<td>Finger millet</td>
<td></td>
</tr>
</tbody>
</table>

OIL

<table>
<thead>
<tr>
<th>Crop</th>
<th>Safety Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans</td>
<td></td>
</tr>
<tr>
<td>Groundnuts</td>
<td></td>
</tr>
<tr>
<td>Crombe</td>
<td></td>
</tr>
<tr>
<td>Rapeseed and mustards</td>
<td></td>
</tr>
<tr>
<td>Perilla</td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td></td>
</tr>
<tr>
<td>Flax</td>
<td></td>
</tr>
<tr>
<td>Sunflowers</td>
<td></td>
</tr>
<tr>
<td>Poppies</td>
<td></td>
</tr>
<tr>
<td>Safflower</td>
<td></td>
</tr>
</tbody>
</table>

FORAGE

<table>
<thead>
<tr>
<th>Crop</th>
<th>Safety Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactia</td>
<td></td>
</tr>
<tr>
<td>Calopogonium</td>
<td></td>
</tr>
<tr>
<td>Styloanusethes</td>
<td></td>
</tr>
<tr>
<td>Sesbania</td>
<td></td>
</tr>
<tr>
<td>Aeschynomoneae</td>
<td></td>
</tr>
<tr>
<td>Zonia</td>
<td></td>
</tr>
<tr>
<td>Centrosema</td>
<td></td>
</tr>
<tr>
<td>Macroptilum</td>
<td></td>
</tr>
<tr>
<td>Rhychnosia</td>
<td></td>
</tr>
<tr>
<td>Pueraria</td>
<td></td>
</tr>
</tbody>
</table>

PULSE

<table>
<thead>
<tr>
<th>Crop</th>
<th>Safety Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year bean</td>
<td></td>
</tr>
<tr>
<td>Pigeonpeas</td>
<td></td>
</tr>
<tr>
<td>Mung bean</td>
<td></td>
</tr>
<tr>
<td>Lima bean</td>
<td></td>
</tr>
<tr>
<td>Cowpeas</td>
<td></td>
</tr>
<tr>
<td>Soybeans</td>
<td></td>
</tr>
<tr>
<td>Adzuki bean</td>
<td></td>
</tr>
<tr>
<td>Chickpeas</td>
<td></td>
</tr>
<tr>
<td>Tepary bean</td>
<td></td>
</tr>
<tr>
<td>Groundnuts</td>
<td></td>
</tr>
</tbody>
</table>

FRUIT

<table>
<thead>
<tr>
<th>Crop</th>
<th>Safety Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melons</td>
<td></td>
</tr>
<tr>
<td>Watermelons</td>
<td></td>
</tr>
<tr>
<td>Cranberries</td>
<td></td>
</tr>
<tr>
<td>Tomatillo</td>
<td></td>
</tr>
<tr>
<td>Maracuja</td>
<td></td>
</tr>
<tr>
<td>Blueberry</td>
<td></td>
</tr>
<tr>
<td>Raspberries</td>
<td></td>
</tr>
<tr>
<td>Strawberries</td>
<td></td>
</tr>
<tr>
<td>Tamarind</td>
<td></td>
</tr>
<tr>
<td>Medlar</td>
<td></td>
</tr>
</tbody>
</table>

ROOT AND TUBER

<table>
<thead>
<tr>
<th>Crop</th>
<th>Safety Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maca</td>
<td></td>
</tr>
<tr>
<td>Ahipa</td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td></td>
</tr>
<tr>
<td>Mauka</td>
<td></td>
</tr>
<tr>
<td>Sweetpotatoes</td>
<td></td>
</tr>
<tr>
<td>Jerusalem artichoke</td>
<td></td>
</tr>
<tr>
<td>Chufa</td>
<td></td>
</tr>
<tr>
<td>Cassava</td>
<td></td>
</tr>
<tr>
<td>Taro</td>
<td></td>
</tr>
<tr>
<td>Plantains</td>
<td></td>
</tr>
</tbody>
</table>
Notes: Metrics are presented per crop as the proportion of accessions of the crop considered backed up at the SGSV, compared with total accessions of the same crop. The subfigures display the ten crops with the highest degree of safety backup per crop-use type. For crops such as maize with multiple uses, these are included in all relevant use type categories; values for these crops are total global, not separated by specific use. No accessions of nut crops were recorded as backed up at the SGSV.

Source: Authors’ own elaboration.
Box 10: An ultimate safety net: The Svalbard Global Seed Vault

Around the world, 5.7 million accessions of plant genetic resources for food and agriculture are reportedly conserved under medium or long-term conditions in 831 genebanks by 114 countries and 17 regional and international research centres (FAO 2021b). Most of these accessions are held as seeds. Of these, it is estimated that some 2 million are distinct accessions, with the rest being duplicates (FAO, 2010). Gene bank facilities range from the rudimentary, perhaps comprising just a small laboratory with an air-conditioned room in which to store packets of seeds, to hi-tech complexes with sub-zero seed storage chambers and automated controls. Yet however securely seeds are conserved, there is always the potential for a disaster to hit – for electricity to be interrupted for an extended period, for a flood, earthquake or typhoon to strike, or for collections to be looted during war or civil strife. Samples can also be lost through mismanagement or the ravages of pests and diseases (Khoury et al., 2021).

The danger of losing invaluable genetic resources, which may no longer be found in the wild or in farmers’ fields, led FAO to recommend that a duplicate sample of every original accession should be stored in a geographically distant area, under the same or better conditions than those in the original gene bank (FAO, 2014). In many cases this has been carried out by depositing duplicate samples in a different country’s gene bank under ‘black box’ conditions, by which the depositor retains sole legal rights over the material.

It has long been recognized that additional safety measures are desirable if the world’s crop diversity is to be truly secure. In the late 1980s, the Norwegian Government invited FAO and IBPGR (now the Alliance of Bioversity International and the International Center for Tropical Agriculture) to explore the feasibility of creating an international back-up seed store on the island of Spitsbergen in the Svalbard Archipelago. This would be open to deposits by any gene bank or other ex situ collection around the world and modeled on a facility previously established by the Nordic Gene Bank (now NordGen) in a disused coal mine. Although found to be technically feasible, the idea was not pursued due to the absence of international, legally binding agreements covering ownership, access and user rights. However, interest in the idea revived when, with the adoption of the International Treaty on Plant Genetic Resources for Food and Agriculture, an appropriate policy framework was put in place, and the way became open for the creation of the Svalbard Global Seed Vault (www.seedvault.no/).

Built by the Norwegian Government as a highly secure, black-box, back-up seed store, the Svalbard Global Seed Vault is located north of the Arctic Circle, 120 m deep inside a mountain at an altitude of 130 m above sea level. It was constructed to hold 4.5 million back-up seed samples at a storage temperature of -18 °C. Even with global warming, the vault will remain in one of the coldest and safest places on the planet. The Seed Vault was opened in 2008 in the presence of the then Prime Minister of Norway Jens Stoltenberg, President of the European Union José Manuel Barroso, FAO Director-General Jacques Diouf and Nobel Peace Prize laureate Wangari Maathai.

Overall responsibility for the Seed Vault rests with the Norwegian Government, while the Crop Trust allocates funds to cover operating costs, and NordGen oversees the management and seed operation. In 2007, the Governing Body of the International Treaty endorsed the Seed Vault. Since then, the Governing Body has repeatedly encouraged Contracting Parties to deposit material. The Chairperson of the Governing Body serves as the Chairperson of the International Advisory Panel of the Seed Vault, thereby providing political and technical guidance.

Source: Authors’ own elaboration.
Box 11: The need for a back-up facility network for vegetatively propagated and recalcitrant seeded crops

While a large proportion of the world’s most important crops produce orthodox seeds—seeds that can be dried and frozen for long-term storage—there are many species that cannot be stored as seed, either because they generally do not produce viable seeds, such as many types of banana, or because their seeds do not breed true to desired type, as in the case of potato, sweetpotato, yam, cassava, apple and orange. In addition, there are crops that produce ‘recalcitrant’ seeds that cannot survive drying and freezing, such as cacao, rubber, coconut, breadfruit, avocado, mango, lychee and many other tropical crops. Collections of crops that cannot be stored as seed in sub-zero temperatures are most commonly conserved as plants in field gene banks, or as tissue cultures in in vitro gene banks. However, these systems can be expensive and present risks to the long-term security of collections.

The most secure long-term method for conserving crops that cannot be stored as seed is to cryopreserve appropriate plant tissues in liquid nitrogen at -196 °C. However, suitable, robust cryopreservation protocols are not yet available for all crops, and some may ultimately prove impossible to conserve in this way. For many, there are also significant differences in how individual varieties and genotypes respond to different freezing and thawing techniques. Although much further research is needed, some crops are already being cryopreserved on a significant scale. In a survey of 15 of the world’s leading institutions that hold collections of vegetatively propagated and recalcitrant seeded crops, it was found that of the total, almost 60 percent of banana, more than 30 percent of Allium, and about 25 percent of coffee and potato accessions were cryopreserved (Acker et al., 2017).

In contrast with the case of orthodox seeded crops, there is still a long way to go before the global PGRFA community can be confident that it has the necessary facilities and systems in place to ensure that the genetic diversity of vegetatively propagated and recalcitrant seeded crops is adequately safeguarded. A feasibility study in 2017 (Acker et al., 2017) recommended the establishment of a global back-up cryopreservation facility network be set up along the same lines as the Svalbard Global Seed Vault, to accommodate the estimated 5 000 to 10 000 accessions arising from current, ongoing cryopreservation activities at CGIAR and other gene banks. These recommendations are starting to be implemented.

Source: Authors’ own elaboration.
4. Discussion

4.1. Implications regarding the International Treaty on Plant Genetic Resources for Food and Agriculture and its Multilateral System of Access and Benefit-sharing

This report has assembled data on 355 important food and agricultural crops that are currently cultivated, traded and/or available in food supplies, and whose PGRFA are researched, exchanged and conserved around the world. Analyses of these data have concentrated on five major domains:

• use, especially regarding global production, trade and contribution to food supplies
• interdependence regarding PGRFA
• demand for PGRFA
• supply of PGRFA
• security of PGRFA

The data on crop use show that hundreds of different crops are widely grown, traded, present in food supplies and researched around the world. Crops that are valuable internationally are found in all the main crop-use types examined in this study: ten food categories (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable crops) as well as fibre, forage, and industrial crops. Nevertheless, such crops represent only a small fraction of the total number of food and agricultural plants (see Box 3 and Box 4). Humanity is making significant use of only a small proportion of the plants available to it.

The data also show that crop use is not static and that a plant’s utilization can vary widely, both spatially and temporally. Crops that were not considered important on a global or regional scale a few decades ago have become
widely utilized today (see Box 1 and Box 2). Likewise, plants that are currently grown only on a small scale could become major crops of the future (see Box 3), although it is impossible to predict with high accuracy which crops will flourish, and which will decline. The certainty is that the spectrum of globally and regionally important crops will change, possibly substantially, over time.

The data further show that for almost all the most utilized crops, there is a high level of interdependence among countries with respect to their PGRFA. A country may be the source of extensive genetic diversity of one crop – for example, if it is in the crop’s primary region(s) of diversity – but at the same time might not harbour substantial genetic diversity of another crop, even if that crop has been widely grown in the country for some time. Many of the crops studied have high estimated interdependence values, as well as large directly quantified germplasm distributions to many different country and region recipients. This is not only true for global staple crops, but also for a large variety of other plants of various crop-use types.

There is evidence that the amount of PGRFA distributed between institutions and countries has increased over recent decades (see also Khoury et al., 2022) and it is probable that demand for the PGRFA of many different crops will continue to grow in the future. It is also likely that the specific crops and germplasm requested will shift over time; crops and genotypes that are rarely distributed today may be in high demand in the future, as breeders and other researchers switch focus in response to changing opportunities and challenges. Shifts in the crops and germplasm requested may also occur as research programmes become more active in various world regions (see Boxes 7 and 8). Demand for germplasm of wild relatives of crops and for associated information on PGRFA, such as GSD, will also very likely increase substantially, as their uses in plant breeding become more widespread.

All metrics studied showed a wide variation among crops in terms of the amount of PGRFA held ex situ and hence that is, in theory, available for use. For some crops, especially major, orthodox seed producing crops, there are very large, readily available collections, such as those held in trust by the CGIAR Centers. However, for other crops, collections may be less available or much smaller, including for many of those that cannot be conserved as seed and must be maintained in vivo (in field collections) or in vitro (in specialized laboratory or cryopreservation facilities). Agricultural research institutions and botanic gardens appear to complement one another by focusing their conservation efforts on different crops.

The data also show that there are significant gaps in many ex situ collections, whether maintained by agricultural research institutions or botanic gardens. Geographic prioritization of primary region(s) of diversity of crops appears to continue to be relevant, especially for less well conserved crops, as well as for
the wild relatives of most crops (see Castañeda-Álvarez et al., 2016). Further collecting outside these regions will most likely provide substantial value for the acquisition of new variants. The availability of botanical research specimens and GSD are likewise highly variable among crops, with large resources for many crops, but substantial gaps for many others (see Box 9).

With respect to the security of PGRFA, while much has already been duplicated in the Svalbard Global Seed Vault, particularly for major cereals, pulses and a few other crop types (see Box 10), the data show that many of the world’s ex situ accessions are not documented as safety duplicated. FAO recommends that: “A safety duplicate sample for every original accession should be stored in a geographically distant area, under the same or better conditions than those in the original genebank.” Moreover: “To minimize risks that can arise in any individual country, safety duplication will be ideally undertaken outside that country” (FAO, 2014). Given the importance of safety duplication, special attention should be paid to securing those accessions not currently safety duplicated, including collections that must be maintained in vivo or in vitro (see Box 11). Such collections frequently have very incomplete coverage and are often inadequately duplicated.

The findings of the study have significant implications that could be applied to the future development of the International Treaty’s Multilateral System, and the crops listed in its Annex I as well as, potentially, Article 15 (CGIAR collections). In drawing up the original list some 20 years ago, crops were included in, or excluded from, the Annex primarily based on their perceived importance for food security at that time, as well as the understood extent of interdependence among countries with respect to their PGRFA. As this study has shown, crop use and PGRFA demand and interdependence are dynamic, with many crops that are important for food security and sustainable agriculture today not currently included in Annex I. Moreover, additional crops will almost certainly become more important for future food security than they are at present. Given the critical role that the use of PGRFA can play in helping to ensure food security, sustainable agriculture and climate adaptation (see Box 5) and mitigation (see Box 6), and the value of facilitated access to PGRFA under the International Treaty to achieve those aims, it is hoped that the findings of this study will prove useful in helping to guide discussions on the future coverage of the Multilateral System. This is relevant not only for food and forage crops, but also for the cornucopia of plants that generate other values, such as fibre and industrial uses.
4.2. **Information gaps and recommendations on data enhancements**

This study aims to compile high-quality, accessible, replicable information on crop use, as well as on PGRFA interdependence, demand, supply and security, across as many food and agricultural crops as possible. Its compilation as a single assessment has the potential to provide novel and valuable insights for PGRFA conservation, research and use activities, including prioritizing across crops and activities. This said, we emphasize that, while crops have different status levels in terms of, for example, demand, supply and security of PGRFA, every crop has some gaps in some of these aspects, and every crop assessed here is significantly important to many people around the world.

We therefore emphasize that not only the crops with the lowest/poorest status should be prioritized for conservation, research and use efforts, nor only those with the greatest current use or estimated interdependence regarding their PGRFA. Some of the most useful metrics may be those that assess the status of crops in relation to themselves, rather than to the other crops. An example could be the metrics based on degree of coverage of *ex situ* collections in the Multilateral System, or of their safety duplication in the SGSV.

In this same respect, while averaged values across the different metrics, groups, components and domains assessed here have been provided in the supplementary results for each crop, each of these metrics represents different, and often equally valid or important, ways of understanding crop use, as well as PGRFA interdependence, demand, supply and security. Thus, overemphasis on prioritizing crops based on these averaged values is likely to lead to oversimplification and loss of important detail and nuance.

Several other limitations in the data should be mentioned. The metrics on crop use and on estimated PGRFA interdependence rely heavily on FAOSTAT data, which do not currently report production, trade and food supply information on all crops covered in this study. Moreover, many of the assessed crops that are reported in FAOSTAT are contained within general commodity listings, sometimes encompassing dozens of crops, making accurate assessments of the current use of each specific crop extremely challenging to calculate.

Regarding the major global databases on PGRFA demand, supply and security, including FAO’s WIEWS, the Data Store of the International Treaty, UPOV’s PLUTO database, Genesys PGR, PlantSearch, GBIF, and SGSV’s Seed Portal, lack of standardized reporting, for example of crop and taxonomic names, both within and between these databases, leads to considerable challenges in assigning values to specific crops.
Regarding recommendations to these critically important global information systems and their underlying data providers that, if implemented, would directly improve the quality of these crop metrics, we emphasize that the more comprehensive, disaggregated, verified and annotated the FAOSTAT data are, the more accurate the metrics presented here are likely to be. Likewise, the more data providers who participate in the global demand, supply and security information systems, and the more that the data provided are consistent and standardized both within and across these systems, the more robust will be the metrics, and the more efficient it will be to periodically calculate those metrics.

Finally, we emphasize that this novel integration of many sources of data on the use of crops, as well as issues around interdependence regarding, demand for, supply of, and security of their genetic resources, represents a first iteration. Further sources of data useful to understanding the status of these crops could be explored and potentially integrated, and additional enhancements to the methods used to calculate existing metrics could be implemented. Through further periodic iterations, which will be useful to quantifying change over time in these metrics, we also expect that this resource can continue to grow and improve.
References

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín,

Zeven, A.C. 1996. Results of activities to maintain landraces and other material in some European countries *in situ* before 1945 and what we may learn from them. *Genetic Resources and Crop Evolution*, 43: 337–341.

A1. Crop list

A1.1. CROP LIST COMPILATION

To construct the most comprehensive candidate list of food and agricultural plants possible to be included in this study, we surveyed crops covered in FAOSTAT, Annex I of the International Treaty, CGIAR mandate major crops, and a variety of other information sources. We aimed to cover all cultivated food and agricultural crops, including those used for food (including spices, herbs and beverages), fibre, forage, and industrial crops. We did not aim to cover crop plants strictly cultivated for non-food and agricultural purposes, such as for ornament.

For FAOSTAT, we reviewed in entirety all metadata and added to the crop list all crops mentioned in food supply, production, and trade data, including all those listed specifically, as well as all those marked in the metadata as covered within general/nes commodities. In the compiled crop list, we noted whether the crop is listed in FAOSTAT, including whether or not it is listed specifically in FAOSTAT food supply data, production data, and trade data. The crop list documents the specific FAOSTAT commodity name within which each crop is included.

Regarding Annex I of the International Treaty, we reviewed the Annex and included all crops, including forages. The crop list notes whether the crop is included in Annex I.
Regarding CGIAR mandate crops, we reviewed CGIAR mandate lists and included all mentioned food crops. For forages, which are often not explicitly stated at the species/crop level in mandate lists, we included all genera with relatively large (>500 accessions) collections in pertinent CGIAR (i.e. International Center for Tropical Agriculture [CIAT] and International Livestock Research Institute [ILRI]) gene banks, as the list of genera with smaller amounts of accessions was exceedingly long. The crop list notes whether the crop is considered a CGIAR mandate crop.

In supplement to the above, we also reviewed and ensured the inclusion of the following crops:

- Crops that have been specifically funded under the International Treaty Benefit-sharing Fund.
- Crops of priority focus within the Crop Trust’s “Global Systems Project”.
- Crops of priority focus within the Crop Trust’s project “Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives” project.
- Crops of focus in the Crop Trust’s “Harlan and de Wet Crop Wild Relative Inventory”.
- Crops of focus in the USDA’s GRIN-Global Crop Wild Relative Inventory.
- Crops on which a Global Crop Conservation Strategy is published by the Crop Trust – all forage crops on the crop list were assumed to be covered in the Global Strategy for the Conservation and Utilization of Tropical and Sub-Tropical Forage Genetic Resources.
- Crops that have a published Bioversity International/IPGRI Crop Descriptor or Characterization Descriptor.
- Crops that have a published Crop Trust/Bioversity International Regeneration Guideline.
- Essentially all crops proposed by negotiating regions to be included in the Multilateral System of Access and Benefit-sharing during International Treaty negotiations, as noted in the FAO Commission on Genetic Resources for Food and Agriculture (2001). The exception is the list submitted by European countries, which was very long and proposed several very minor crops, which were not included.
- We also reviewed USDA’s GRIN-Global World Economic Plants and Mansfeld’s World Database of Agricultural and Horticultural Crops databases. We found the entire list of potentially applicable plants from those sources to be too long to be pragmatically usable here (e.g. 1,995 “FOOD” taxa in World Economic Plants, and 1,795 taxa with pertinent uses in Mansfeld’s database). We did not add any additional crops from these sources not already listed due to their inclusion in the databases above.
- A few additional crop suggestions made during an expert stakeholder meeting in July 2019 were added to the crop list

3 For information, agenda and participants of the meeting, visit: https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/plant_genetic_metrics.
A1.2. CROP LIST DATA PROCESSING AND INFORMATION ADDITIONS

For each crop, the crop list offers one main common name, chosen based on our understanding of the most frequently used vernacular name worldwide. In a separate column, we also list alternative common names; this is not an exhaustive list.

For scientific names, we first listed the pertinent genera and taxa for each crop, using USDA's GRIN Global Taxonomy as the main reference source. We included synonyms for some taxa as necessary, to cover the majority of names likely to appear in the databases used in the study. In cases of no clearly-defined taxa (e.g. forages listed in database sources by genus), we reviewed literature and attempted to list the most important taxa comprising those crops globally.

We assigned crop-use type categories both at the general and detailed levels for each crop based on our own classification system, drawing from categories used by FAOSTAT and World Economic Plants. We developed 13 crop types, including 10 food types (cereal, fruit, herb and spice, nut, oil, pulse, root and tuber, stimulant, sugar, and vegetable), as well as fibre, forage, and industrial crops. Crops were assigned to more than one crop-use category as appropriate; we note that many crops have multiple uses, and the alternate/secondary use information is not exhaustively documented in the crop list.

We added seed storage behaviour information for each crop, based on data from the Royal Botanic Garden Kew's Seed Information Database. In preparation for the interdependence analyses, we also listed the identified primary regions of diversity for each crop, drawing on literature sources (see the Interdependence Domain section further below).

A1.3. CROP LIST RESULTS

The crop list is available as a supplementary file to this report at: https://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/plant_genetic_metrics. In total, this list contains 355 crops from 307 distinct genera and 536 distinct taxa. The number of crops in each main crop-use type category is shown in Table A1.
A2. Crop metrics

A2.1. DOMAIN: CROP USE

TABLE A1: NUMBER OF CROPS IN EACH MAIN CROP-USE CATEGORY

<table>
<thead>
<tr>
<th>Crop use - general</th>
<th>Crop use - detailed</th>
<th>Number of crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre</td>
<td>Fibre</td>
<td>20</td>
</tr>
<tr>
<td>Food</td>
<td>Cereal</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Herb and spice</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Nut</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Oil</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Pulse</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Root and tuber</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Stimulant</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sugar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Vegetable</td>
<td>57</td>
</tr>
<tr>
<td>Food total</td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>Forage</td>
<td>Forage</td>
<td>42</td>
</tr>
<tr>
<td>Industrial</td>
<td>Industrial</td>
<td>9</td>
</tr>
<tr>
<td>Grand total</td>
<td></td>
<td>355</td>
</tr>
</tbody>
</table>

Source: Authors’ own elaboration.

We calculated use metrics for the crops on the crop list regarding contribution to global food supply, production, and trade, using FAOSTAT data. To better inform the degree to which the use of crops is spread/balanced around the world, we also calculated metrics regarding the number of countries reporting the crops as significant for food supply, production, and trade, as well as the relative evenness of use (again, regarding food supply, production, and trade) across world regions. Finally, we analysed...
the change over time in use of crops regarding their contributions to food supply, production, and trade globally.

To estimate the degree to which crops are actively investigated in research, we calculated a metric based on the number of scholarly publications/mentions for each crop, drawn from Google Scholar, and an equivalent metric drawn from PubMed Central. To estimate the degree of public interest in and/or awareness of each crop, we calculated metrics based on the number of pageviews of each crop seen on Wikipedia.

The crop-use domain has 51 total metrics in 15 groups in 6 components:
- 11 metrics - Crop use data from FAOSTAT;
- 11 metrics - Crop use data from FAOSTAT - Count of countries;
- 11 metrics - Crop use data from FAOSTAT - Equality of use (GINI);
- 11 metrics - Crop use data from FAOSTAT - Change over time;
- 4 metrics - Crop research investigation - Google Scholar and PubMed Central;

A2.1.1 Component: Crop-use data from FAOSTAT

FAOSTAT metrics were summarized for each crop at the global level, calculating an average annual value as a mean across four recent years (2015–2018). FAOSTAT data were retrieved and analysis conducted in late 2021. To do so, crops were first identified in FAOSTAT Food Supply (Food Balance Sheets), Production, Value of Production, and Trade data, using metadata information to associate crops on the crop list with the correct FAOSTAT commodity as accurately as possible. Multiple reported commodities belonging to the same crop were combined (e.g. 'Peas, dry' and 'Peas, green' were combined under the term Peas in production data by adding the two values together).

We included all available metrics deemed pertinent to Food Supply – calories (kcal/capita/day), protein (g/capita/day), fat (g/capita/day), and food weight (g/capita/day); to Production – harvested area (ha), production quantity (tonnes); to Value of Production – current thousand USD; and to Trade – export quantity (tonnes), export value (1 000 USD), import quantity (tonnes), import value (1 000 USD). Eleven metrics in total were calculated, including four from group Food Supply, three from group Production (Value of Production was listed with the other two Production metrics), and four from group Trade.

While FAOSTAT data contain statistical information on the use of many crops (Food Supply data contain approximately 54 relevant crop plant commodities ['items'] with data from 173 countries; Production data contain approximately 142 relevant crop plant commodities with data from 205 countries; Value of Production data contain approximately 140 relevant crop plant commodities
with data from 205 countries; and Trade data contain approximately 127 relevant crop plant commodities from 198 countries), the data are not comprehensive of all crops on the crop list, and, in addition, many crops are not specifically listed (especially in Food Supply data). Instead, they are grouped within general commodities (i.e. ‘Cereals, Other’, ‘Fruits, Other’, ‘Nuts’, ‘Oilcrops, Other’, ‘Pulses, Other’, ‘Roots, Other’, ‘Spices, Other’, ‘Tea and mate’, and ‘Vegetables, Other’ in Food Supply data). Applying the full reported values of these general commodities to each crop listed within these commodities would lead to clear overestimations of each crop’s value and to a distorted understanding of their value compared with other crops that are specifically measured in the data (i.e. not within a general commodity).

To address this challenge, we used production information for each crop (using the production quantity metric) as a factor by which to disaggregate the Food Supply values. As a simple example, the ‘Tea and mate’ Food Supply commodity contains two crops – tea and mate. Global production of these crops in terms of production quantity is approximately 85.8 percent tea and 14.2 percent mate, based on a sum of 2015 to 2018 production data. For a final Food Supply value (e.g. calories), the ‘Tea and mate’ general commodity value for kcal/capita/day was divided, with 85.8 percent of the total attributed to tea, and 14.2 percent to mate. Note that we were unable to conduct this disaggregation for the various crops in ‘Beans’ and in ‘Millets’ Food Supply commodities because production data for crops pertinent to that commodity were also aggregated, and thus not specific to individual crops. In this case, all crops in these two commodities were given the full value of the commodity; it should be noted that this has led to an overestimation of each crop’s individual use, especially for the minor bean and millet crops. An alternative could have been to equally divide the general commodity value across the crops within these commodities, but equal dividing led to much smaller values than are likely to have been accurate for many of the more major crops within these commodities, so we decided to implement the full value attribution.

Following this disaggregation of Food Supply values, the results appeared to be more accurate, except that many of the minor crops that are listed in Production metrics also within general commodities (i.e. ‘Agave fibres nes’, ‘Berries, nes’, ‘Cereals, nes’, ‘Fibre crops nes’, ‘Fruit, fresh nes’, ‘Fruit, tropical fresh nes’, ‘Nuts, nes’, ‘Oilseeds nes’, ‘Pulses, nes’, ‘Roots and tubers, nes’, ‘Spices, nes’, ‘Sugar crops, nes’, ‘Vegetables, fresh nes’) were calculated to have higher than expected Food Supply values compared with other crops that are specifically listed in Production metrics, and which should have higher values than those minor crops (see Figure A 1). To attempt to resolve this additional challenge, we divided the values for these general Production commodities equally among all crops within them (e.g. bay leaf, dill, fenugreek, saffron, thyme, and turmeric – the six crops listed within the
Production commodity ‘Spices, nes’ – were all assigned the same production value, each being one-sixth of the total value of ‘Spices, nes’). Following that transformation of Production data, we recalculated the Food Supply transformation described above and assigned new Food Supply values for these crops.

A total of 252 crops on the Crop List are reported in FAOSTAT Food Supply metrics, 280 crops on the Crop List are reported in FAOSTAT Production metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in FAOSTAT Trade metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

For each crop and for each of the 11 metrics, a global indicator of the global extent of use was calculated by dividing the value specific to the crop by the sum of values across all crops.

FIGURE A1: Examples of crops in general Food Supply commodities, and those within general Production commodities

Source: Authors’ own elaboration.

A2.1.2 Component: Crop-use data from FAOSTAT – Count of countries

The same FAOSTAT metrics described above were used for an analysis of the degree of spread across countries in terms of crop use, using national rather than global data. As above, 11 metrics in total were calculated, including four in group Food Supply (calories, protein, fat, food weight), three in group
Production (production quantity, harvested area, production value), and four in group Trade (export quantity, export value, import quantity, import value).

This component counts the number of countries in which the crop is reported as within the top 95 percent of crops in terms of contribution to Food Supply, Production, or Trade. The 95 percent threshold was selected after an examination of results based on 75 percent to 100 percent inclusion criteria; at 75 percent, the list of crops per country became quite short in various cases; at 100 percent, many countries reported almost all crops as contributing at least marginally; 95 percent provided a reasonable balance between these poles, allowing for a spread of results across assessed crops. This analysis was conducted in early 2022.

A total of 252 crops on the Crop List are reported in the “FAOSTAT count of countries Food Supply” metrics, 280 crops on the Crop List are reported in the “FAOSTAT count of countries Production” metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in the “FAOSTAT count of countries Trade” metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

For each crop and for each of the 11 metrics, a global indicator of the geographic extent of use was calculated by dividing the number of countries listing the crop within its top 95 percent of use by the total number of countries in the dataset.

A2.1.3 Component: Crop-use data from FAOSTAT – Equality of use (GINI)

The same FAOSTAT metrics described above were used for an analysis of the degree of balance/evenness across world regions in terms of crop use, using regional data calculated from national data. As above, 11 metrics in total were calculated, including four in group Food Supply (calories, protein, fat, food weight), three in group Production (production quantity, harvested area, production value), and four in group Trade (export quantity, export value, import quantity, import value).

World region values for Production and for Trade metrics were calculated by summing the individual values of countries included in each region (see the Interdependence Domain for an explanation of regions used in this study). For Food Supply metrics, regional values were created based on weighted averaging of the values of countries included in each region, with weighting based on national population (from the same years as the data – 2015 to 2018). See the Interdependence Domain for a full explanation of this calculation.

The degree of balance/evenness of crop use across regions was calculated...
using the Gini coefficient, a metric drawn from economics, which measures the inequality among values of a frequency distribution. The Gini coefficient formula was employed directly within our Python code software. To align this calculation with all other metrics, in which low values (close to 0) represent a poor state and high values (close to 1) represent a high/good state, we calculated our metric as $= (1 - \text{the Gini coefficient})$. The metric thus denotes perfect equality in use across regions when the value is 1, and very unequal use when close to 0. This analysis was conducted in early 2022.

A total of 252 crops are on the Crop List reported in “FAOSTAT equality of use Food Supply” metrics, 280 crops on the Crop List are reported in “FAOSTAT equality of use Production” metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in “FAOSTAT equality of use Trade” metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

For each crop and for each of the 11 metrics, a global indicator of the balance in geographic extent of use was calculated as the 1- Gini coefficient value.

A2.1.4 Component: Crop use data from FAOSTAT – Change over time

The same FAOSTAT metrics described above were used for an analysis of change over time in crop use, using data at the global level with a time series from 2015 to 2018. As above, 11 metrics in total were calculated, including four in group Food Supply (calories, protein, fat, food weight), three in group Production (production quantity, harvested area, production value), and four in group Trade (export quantity, export value, import quantity, import value). Change over time was calculated using relative change, i.e. the value in 2018 minus the value in 2015, divided by the value in 2015. This analysis was conducted in early 2022.

A total of 252 crops on the Crop List are reported in “FAOSTAT change over time Food Supply” metrics, 280 crops on the Crop List are reported in “FAOSTAT change over time Production” metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in “FAOSTAT change over time Trade” metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

For each crop and for each of the 11 metrics, a global indicator of change in the extent of use was calculated as the relative change fraction/quotient.
A2.1.5 Component: Crop research investigation – Google Scholar and PubMed Central

To estimate the degree to which crops are actively investigated in research, we calculated metrics based on the number of scholarly publications/mentions for each crop, drawn from Google Scholar, similar to an analysis conducted by Galluzzi and López Noriega (2014), and PubMed Central.

A2.1.5.1 Google Scholar

The total count of publications listed in Google Scholar as published between 2009–2019 (including patents and citations, searching ‘in the title of the article’) was compiled per crop common name, genus, and taxon. For common names, terms were searched in the singular (‘Pea’, not ‘Peas’). At the level of taxon, in cases where crops had >1 scientific name, the first or most common scientific name was generally searched, with multiple names searched for some crops where multiple names clearly contribute importantly to the crop. This search was conducted in mid-2019. All 355 crops on the Crop List were assessed in this analysis.

For each crop and for each of the three metrics, a global indicator of the extent of research attention was calculated by dividing the number of publications for the crop by the number of publications for all crops combined.

A few challenges regarding this component should be mentioned. First, Google Scholar does not currently permit automated methods of data retrieval online; thus each search was conducted manually (totalling approximately 1,065 searches done manually). Second, the occasional overlap of crop names with terms used in medicine, technology or other fields most likely inflated publication reporting for specific crops, e.g. apple (due to the same name for a technology corporation) and Lens (the genus for lentil, but also a term commonly used in optical research).

A2.1.5.2 PubMed Central

PubMed Central® is a free full-text archive of biomedical and life sciences journal literature at the United States National Institutes of Health’s National Library of Medicine. The PubMed Central database can be accessed via the National Center for Biotechnology Information (NCBI) portal of the NIH. For this analysis, we accessed the portal using its API query link, searching for the number of full text results for each crop, based on its taxonomic name, and returning results in xml format. This search and subsequent analysis were conducted in early 2022. All 355 crops on the Crop List were listed in NCBI and were thus assessed in this analysis. A full explanation of the code used is available in the Digital Sequence Information component of the Supply domain.
For each crop, a global indicator of the extent of research attention was calculated by dividing the number of full text results for the crop by the number of full text results for all crops combined.

A2.1.6 Component: Crop public interest/awareness – Wikipedia pageviews

To estimate the degree of public interest in and/or awareness of each crop, we calculated metrics based on the number of pageviews of each crop seen on Wikipedia, similar to an analysis conducted by Pironon et al. (2020), using their API query link.

The total count of Wikipedia pageviews for the entirety of the year 2019 was compiled per crop common name, genus, and taxon. The search and subsequent analysis were conducted in early 2022. All 355 crops on the Crop List were assessed in this analysis.

For each crop and for each of the three metrics, a global indicator of extent of public interest in and/or awareness was calculated by dividing the number of pageviews for the crop by the number of pageviews for all crops combined.

While specific information about crops in Wikipedia may be of varied quality compared with that found in published articles, the analysis described here is not dependent on Wikipedia information quality. Rather, this analysis simply quantifies the degree of interaction between users (searchers/readers) and the Wikipedia website. This analysis searches Wikipedia pages only in English; this may result in underreporting for some crops of primary interest mainly in non-English speaking regions; it should be noted that English is the language with the highest number of Wikipedia pages overall and is often the source of translations into other languages on the website.

A2.2. DOMAIN: INTERDEPENDENCE REGARDING FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES

We calculated crop plant genetic resource interdependence metrics regarding contribution to food supplies, production, and trade, using FAOSTAT data in combination with compiled information on the primary regions of crop plant diversity worldwide (i.e. where crops were mainly domesticated and are recognized as containing high diversity in cultivated [landraces] and wild [crop wild relatives] forms). These metrics are based on estimations of the significance of crops to food supplies, production, and trade, outside their primary region(s) of diversity.
We also analysed the change over time in crop plant genetic resource interdependence regarding food supplies, production, and trade.

The interdependence domain has 22 total metrics in 6 groups in 2 components:
• 11 metrics – Significance of each crop in terms of agricultural production, trade and contribution to food supplies, outside its geographic origins and primary region(s) of diversity;
• 11 metrics – Change in significance of each crop in terms of agricultural production, trade and contribution to food supplies, outside its geographic origins and primary region(s) of diversity.

A2.2.1 Component: Significance of each crop in terms of agricultural production, trade and contribution to food supplies, outside its geographic origins and primary region(s) of diversity

Food and agricultural plant genetic resource interdependence was estimated at the global level by calculating the significance of crops to food supplies, production, and trade, outside their primary region(s) of diversity (i.e. outside of where the crops were largely domesticated and evolved for hundreds to thousands of years, and where diversity in landraces and crop wild relatives is particularly high). The underlying assumption is that if a crop has considerable use outside its primary region(s) of diversity, then that use is dependent on genetic resource acquisition from elsewhere (including, notably, from the primary region[s] of diversity). Thus, a crop with a high use outside its primary region(s) of diversity is likely to be a crop where there is high interdependence globally for its genetic resources.

To identify and compile information on primary regions of diversity of assessed crops, data for each crop regarding its origins and regions of diversity of cultivated and wild forms were gathered from pertinent literature (especially Khoury et al., 2015, 2016; USDA, 2019), taking an inclusive approach (i.e. likely regions were included, even if some uncertainty exists). This information was converted to the regional level, using FAO regions as per FAO (2010), with modifications to better suit recognized ecogeographic regions of crop diversity (see Khoury et al., 2015, 2016 for a full explanation of regions and countries within each region). Note that countries can be included in more than one region, and crops can have more than one primary region of diversity. Only primary regions of diversity were identified per crop; secondary or other regions of diversity were not included or assessed here.

FAOSTAT food supply, production, and trade data at the national level for each crop (see the Crop Use Domain, component Crop use data from FAOSTAT) was recalculated at the regional level, using the same regions mentioned above. For production and trade metrics, data were summed across countries comprising each region. For food supply metrics, regional values were calculated by taking a weighted average value across countries comprising each region, with country values weighted by country population (from the same years as the data – 2015 to 2018). Finally, for
each crop, data were calculated both within the crop’s primary region(s) of diversity, and outside these regions. As with the previous step, production and trade data were summed across regions, while food supply data were calculated by weighted averaging across regions. This analysis was conducted in late 2021.

A total of 252 crops on the Crop List are reported in “FAOSTAT interdependence regarding Food Supply” metrics, 280 crops on the Crop List are reported in “FAOSTAT interdependence regarding Production” metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in “FAOSTAT interdependence regarding Trade” metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

For each crop and for each of the 11 metrics, a global indicator of extent of global interdependence was calculated as the quantity of use from outside the crop’s primary region(s) of diversity divided by the world total quantity of use. If the numerator (value outside the crop’s primary region(s) of diversity) was larger than the denominator (world value), the final value was set to 1 (the maximum); this circumstance can only occur for food supply values).

Through examination of the data and the results, it was noted that some crops have no values within their primary region(s) of diversity, which is highly unlikely, and therefore is probably due to underreporting within FAOSTAT data. To address this deficiency, any crops with null values in their primary region(s) of diversity were excluded from this component. Other challenges/vulnerabilities regarding this component include that: a) primary regions of crop diversity do not in actuality follow political boundaries well; thus, some degree of generalization is expected; and b) primary regions of diversity are still not well documented for some crops, and new information is continually being generated, for example regarding the origins of watermelon (Renner et al., 2021). Further, genetic resource interdependence exists in the geographic sense, not only regarding primary regions of diversity, but also secondary and other regions with particularly high amounts of crop diversity, and because of the locations of ex situ repositories (gene banks and botanic gardens) in particular regions. We note that more direct measurements of demand for crop genetic resources are included in the Demand domain.

A2.2.2 Component: Change in significance of each crop in terms of agricultural production, trade, and contribution to food supplies, outside its geographic origins and primary region(s) of diversity

The same crop plant genetic resource interdependence analysis described above was also used to assess change over time in genetic resource interdependence for each crop with a time series from 2015 to 2018. As above, 11 metrics in total were calculated, including four in group Food Supply (calories, protein, fat, food weight), three in group Production (production quantity, harvested area, production value), and four in group Trade (export quantity, export value, import
quantity, import value). Change over time was calculated using relative change, i.e. the interdependence value in 2018 minus the value in 2015, divided by the value in 2015. This analysis was conducted in early 2022.

A total of 252 crops on the Crop List are reported in “FAOSTAT change over time in interdependence regarding Food Supply” metrics, 280 crops on the Crop List are reported in “FAOSTAT change over time in interdependence regarding Production” metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in “FAOSTAT change over time in interdependence regarding Trade” metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

For each crop and for each of the 11 metrics, a global indicator of change in extent of global interdependence was calculated as the relative change fraction/quotient.

A2.3. DOMAIN: DEMAND FOR FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES

We calculated demand for crop plant genetic resources based on germplasm distributions data sourced from the Data Store of the International Treaty on Plant Genetic Resources for Food and Agriculture (International Treaty), as well as from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS).

To better inform the degree to which demand for crop genetic resources is spread/balanced around the world, we also calculated metrics regarding the number of countries receiving crop genetic resources, as well as the relative degree of receipt of crop genetic resources compared across world regions, based on data from the Data Store of the International Treaty.

We further calculated demand for crop plant genetic resources based on varietal registration/release data, both from WIEWS and from the International Union for the Protection of New Varieties of Plants (UPOV)’s PLUTO Plant Variety Database.

The demand domain has 7 total metrics in 4 groups in 4 components:
- 1 metric - Germplasm distributions - International Treaty
- 1 metric - Germplasm distributions - International Treaty - Count of countries
- 1 metric - Germplasm distributions - International Treaty - Equality of distributions (GINI)
- 2 metrics – Gene bank distributions - FAO WIEWS
- 1 metric - Varietal registrations - UPOV
- 1 metric - Varietal releases - FAO WIEWS
A2.3.1 Component: Germplasm distributions – International Treaty

We calculated an average annual number of germplasm distributions for each crop worldwide from 2015 to 2019 inclusive, using data from the Data Store of the of the International Treaty on Plant Genetic Resources for Food and Agriculture (International Treaty). This dataset includes all distributions made under the Standard Material Transfer Agreement (SMTA) that have been reported to the Governing Body, and was retrieved in early 2022, with an update in June 2022, with the analysis conducted shortly thereafter. This dataset reports numbers of samples distributed by any provider, including gene banks, as well as breeding programmes and other organizational types; it is primarily composed of distributions made by CGIAR centers (gene banks and breeding programmes). Countries wherein providers and recipients are located, crop, year and number of samples distributed are included in the dataset analysed here; specific providers, recipients or recipient types are not. One metric was thus mobilized (in one group, in one component).

A total of 142 crops on the Crop List were present in the “Germplasm distributions – International Treaty” dataset (i.e. these crops had 1 or more distributions listed in the International Treaty dataset). Remaining crops were assigned 0 values.

For each crop, a global indicator of the extent of demand for germplasm was calculated as the number of average annual distributions of samples of that crop divided by the total number of average annual distributions of samples for all crops in the dataset.

A challenge in the use of these data is that crops/genetic resources are not reported in a standardized manner across all data providers to the Data Store. Matching crop names in the Data Store to the crop list was performed both through manual methods, with a minor degree of error expected.

A2.3.2 Component: Germplasm distributions – International Treaty – Count of countries

The same International Treaty Data Store germplasm distribution data described above were used for an analysis of the degree of spread across recipient countries in terms of receipt of crop germplasm. As with above, one metric in total was calculated, in one group, in one component. This component counts the average annual number of countries to which the crop was distributed within the 2015 to 2019 period. This analysis was conducted in early 2022.
A total of 142 crops on the Crop List were present in the “Germplasm distributions – International Treaty – Count of countries” dataset (i.e. these crops had 1 or more distributions listed in the International Treaty dataset). Remaining crops were assigned 0 values.

For each crop, a global indicator of the geographic extent of demand for germplasm was calculated by dividing the average annual number of countries receiving germplasm of the crop by the total number of countries in the dataset (n = 179 recipient countries).

A2.3.3 Component: Germplasm distributions – International Treaty – Equality of distributions (GINI)

The same International Treaty Data Store germplasm distribution data described above were used for an analysis of the degree of balance/evenness across world regions in terms of receipt of crop germplasm, using regional data calculated from national data. As with above, one metric in total was calculated, in one group, in one component.

World region values were calculated by summing the individual values of countries included in each region (see the Interdependence Domain for an explanation of regions). The degree of balance/evenness of crop germplasm receipt across regions was calculated using the Gini coefficient, a metric drawn from economics which measures the inequality among values of a frequency distribution. To align this calculation with all other metrics, in which low values (close to 0) represent a poor state and high values (close to 1) represent a high/good state, we calculated our metric as = (1 - the Gini coefficient). The metric thus provides an indication of perfect equality in germplasm receipt (i.e. demand) across regions when the value is 1, and very unequal receipt when close to 0. This analysis was conducted in early 2022.

A total of 142 crops on the Crop List were present in the “Germplasm distributions – International Treaty – Equality of distributions (GINI)” dataset (i.e. these crops had 1 or more distributions listed in the International Treaty dataset). Remaining crops were assigned 0 values.

For each crop, a global indicator of balance in the geographic extent of demand for germplasm was calculated as the 1- Gini value across regions.

A2.3.4 Component: Genebank distributions – WIEWS

We calculated an average annual number of germplasm distributions for each crop worldwide from 2014–2019 using data from WIEWS (Indicator
These datasets primarily report distributions of germplasm from national gene banks. These data were retrieved, and analysis conducted in early 2022, with an update in July 2022. These data provide information in terms of counts of samples and of accessions distributed of different crops/genetic resources by distributing country. The term ‘sample’ typically represents an individual packet, while ‘accession’ represents a unique population/variety/collecting event. Two metrics were thus mobilized (in two groups, in one component).

A total of 256 crops on the Crop List were present in the “Genebank distributions –WIEWS” dataset (i.e. these crops had 1 or more germplasm distributions listed in WIEWS). Remaining crops were assigned 0 values.

For each crop, a global indicator of extent of demand for germplasm was calculated as the number of average annual distributions of that crop divided by the total number of average annual distributions for all crops in the dataset.

A challenge in the use of these data is that crops/genetic resources are not reported in a fully standardized manner across all data providers to WIEWS, with some reporters combining different crops in their total counts. Matching crop names in the WIEWS data to the Crop List was performed through manual methods, with a minor degree of error expected.

A2.3.5 Component: Varietal registrations – UPOV

We calculated an average annual number of varietal registrations for each crop worldwide from 2014–2018, using data from the International Union for the Protection of New Varieties of Plants (UPOV)’s PLUTO Plant Variety Database. These data were retrieved in 2019, with the analysis conducted in late 2019. These data provide information in terms of varieties registered of different crops by country. We included ‘approved’, ‘proposed’ and ‘published’ records, and did not count ‘rejected’ records in the dataset. One metric was thus mobilized (in one group, in one component).

A total of 194 crops on the Crop List were present in the “Varietal registrations – UPOV” dataset (i.e. these crops had 1 or more varietal registrations listed in UPOV). Remaining crops were assigned 0 values.

For each crop, a global indicator of the extent of varietal registrations was calculated as the number of average annual varietal registrations of that crop globally divided by the total number of average annual varietal registrations of all crops globally in the dataset.
A2.3.6 Component: Varietal releases – WIEWS

We calculated an average annual number of new varietal releases for each crop worldwide from 2015–2019 using data from the WIEWS Indicator 40. Data were retrieved and analysed for this analysis in early 2022. These data provide information in terms of counts of varieties released of different crops by country. One metric was mobilized (in one group, in one component). A total of 204 crops on the Crop List were present in the “Variatel releases – WIEWS” dataset (i.e. these crops had 1 or more varietal releases listed in WIEWS). Remaining crops were assigned 0 values.

For each crop and for each metric, a global indicator of the extent of varietal releases was calculated as the number of average annual varietal releases of that crop globally divided by the total number of average annual varietal releases of all crops globally in the dataset.

A challenge in the use of these data is that crops/genetic resources are not reported in a fully standardized manner across all data providers to WIEWS, with some reporters combining different crops in their total counts. Matching crop names in the WIEWS data to the crop list was performed through manual methods, with a minor degree of error expected.

A2.4. DOMAIN: SUPPLY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES

We calculated supply of crop plant genetic resources based on ex situ collections data from the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS), the Genesys Plant Genetic Resources portal (Genesys PGR), and the Global Biodiversity Information Facility (GBIF) (living specimens in GBIF). For these data, we also estimated the proportion included within the Multilateral System of Access and Benefit-sharing of the International Treaty on Plant Genetic Resources for Food and Agriculture (International Treaty), as well as the relative degree of ex situ collection coverage of each crop’s primary region(s) of diversity. We further calculated supply of crop plant genetic resources based on ex situ collections data from the Botanic Garden Conservation International’s PlantSearch database.

To estimate supply of research materials pertinent to crop plant genetic resources, we calculated supply of herbarium and other records in the Global Biodiversity Information Facility (GBIF), as well as supply of genetic, protein, and other digital sequence data in the National Center for Biotechnology Information (NCBI) global database.
The supply domain has 16 total metrics in 7 groups in 6 components:

- 2 metrics - *ex situ* collections - WIEWS, Genesys PGR, and GBIF
- 4 metrics - *ex situ* collections - WIEWS, Genesys PGR, and GBIF – Multilateral System status
- 2 metrics - *ex situ* collections - WIEWS, Genesys PGR, and GBIF - primary region coverage
- 2 metrics - *ex situ* collections - Botanic Gardens
- 2 metrics - Research supply - GBIF
- 4 metrics - Research supply - NCBI

A2.4.1 Component: *ex situ* collections – WIEWS, Genesys PGR, and GBIF

We calculated the number of *ex situ* germplasm accessions maintained worldwide for each crop using data from the WIEWS, the Genesys Plant Genetic Resources portal (Genesys PGR), and the Global Biodiversity Information Facility (GBIF), filtering for ‘living specimens’ only in GBIF. These data were acquired in late 2018 and the analysis conducted in 2019.

Records from the three datasets were combined, eliminating duplicates as far as possible (mainly based on institution ID), with preference for the original data source (thus records from Genesys PGR present in WIEWS were removed, and only records directly from Genesys PGR included). Assessments of *ex situ* germplasm supply were made both at the taxon (crop) level, as well as at the genus level, the latter to be inclusive of supply of associated genetic resources, including crop wild relatives. Two metrics were thus mobilized (in one group, in one component).

A total of 354 crops on the Crop List are included in this “*ex situ* collections – WIEWS, Genesys PGR, and GBIF” analysis when assessed at the genus level, and 343 crops on the Crop List are included in this “*ex situ* collections – WIEWS, Genesys PGR, and GBIF” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in the gene bank dataset). Remaining crops were assigned 0 values.

For each crop, a global indicator of extent of supply of genetic resources was calculated as the number of *ex situ* accessions of the crop divided by the total number of accessions of all crops in the dataset.

The main challenges regarding this component include: a) that some *ex situ* collections are not represented in any of these databases; b) the challenge of identifying and removing all duplicates across these datasets; c) the challenge of aligning taxon names in these datasets with the crop list (taxon names are not highly standardized in these datasets); and d) that the assessment at the genus level, while being inclusive of wild relatives,
most likely overestimates relevant *ex situ* supply for crops with large genera (e.g. *Solanum* L.), as it is unlikely that all congeneric species will be used in crop improvement. For these reasons, some degree of error is expected.

A2.4.2 Ex situ collections – WIEWS, Genesys PGR, and GBIF – Multilateral System status

The same combined *ex situ* germplasm collections dataset described above was used for an analysis of the degree of current coverage of *ex situ* accessions in the Multilateral System of Access and Benefit-sharing (Multilateral System) of the International Treaty on Plant Genetic Resources for Food and Agriculture (International Treaty).

This calculation was conducted in two ways. First, coverage was assessed based on direct notation in the datasets in pertinent fields, e.g., values “Included” or “Not included” in field “Status under the Multilateral System” in WIEWS; and values “True” or “False” in field “mlsStat” in Genesys PGR. Accessions with no notation in pertinent fields were assumed to not be included in the Multilateral System. This analysis was conducted in 2019.

Because a large proportion of accessions (approximately 53 percent) had no pertinent notation, a second methodology was also employed, based on a combination of the country where the *ex situ* collections were held and the list of crops covered in the Multilateral System (i.e. Annex I, as well as Article 15, of the International Treaty). Institute country was matched with Contracting Parties to the International Treaty, as noted on the International Treaty website on 12 March 2019), while crops were matched to Annex I, or recognized as included if held in international gene banks of CGIAR. As above, values were calculated both at the taxon and genus level. This analysis was conducted in 2019. Four metrics in total were thus calculated, in two groups, in one component.

A total of 354 crops on the Crop List are included in this “*ex situ* collections – WIEWS, Genesys PGR, and GBIF – Multilateral System status” analysis when assessed at the genus level, and 343 crops on the Crop List are included in this “*ex situ* collections – WIEWS, Genesys PGR, and GBIF – Multilateral System status” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in the gene bank dataset). Remaining crops were assigned 0 values.

For each crop, a global indicator of the degree of coverage in the Multilateral System was calculated as the number of *ex situ* accessions of the crop included within the Multilateral System divided by the total number of accessions for the crop in the dataset.
Alongside the challenges to this component already listed in the component above, the large proportion of accessions lacking direct notation of whether included in the Multilateral System, and difficulties in assigning accessions Multilateral System status by institute country and Annex I (for example, some institutions in Europe and in the United States of America treat all their accessions as part of the Multilateral System, regardless of whether they are crops listed in Annex I) generate some degree of error in this component.

A2.4.3 Component: Ex situ collections – WIEWS, Genesys PGR, and GBIF – primary region coverage

The same combined ex situ germplasm collections dataset described above was used for an analysis of the degree of current coverage of ex situ accessions sourcing from each crop’s primary region(s) of diversity, i.e. the world region(s) where each crop was mainly domesticated and is recognized to contain high diversity in cultivated (landraces) and wild (crop wild relatives) forms. Primary region(s) of diversity for each crop were identified as described in the Interdependence domain. The number of accessions sourcing from primary region(s) of diversity was calculated using country locality passport information. This count of accessions, which was calculated both at the taxon and the genus level, was divided by the harvested area of the crop within the primary region(s) of diversity, drawing from FAOSTAT production data (year 2014). Harvested area was used as a proxy for the relevant size of the primary region(s) of diversity. Two metrics in total were thus calculated, in one group, in one component. This analysis was conducted in 2019.

A total of 259 crops on the Crop List are included in this “ex situ collections – WIEWS, Genesys PGR, and GBIF – primary region coverage” analysis when assessed at the genus level, and 248 crops on the Crop List are included in this “ex situ collections – WIEWS, Genesys PGR, and GBIF – primary region coverage” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions collected from within their primary region of diversity, as listed in the gene bank dataset). Remaining crops were assigned 0 values.

For each crop, a global indicator of the degree of representation in ex situ collections of the primary region of diversity was calculated as the number of ex situ accessions of the crop sourcing from within its primary region(s) of diversity divided by the harvested area of the crop within its primary region(s) of diversity. Values >1 were adjusted to a maximum of 1.
A2.4.4 Component: Ex situ collections – Botanic Gardens

Botanic Garden Conservation International’s PlantSearch database is the leading global information system for botanic garden ex situ collections, holding data on over 1.5 million records, representing circa 650,000 taxa, held at around 1,200 contributing institutions (BGCI, 2022). The database currently only documents if a taxon is held at a given institution, not the number of accessions held. We retrieved the entire PlantSearch database and searched for all records for all taxa within the genus and species of the crop, in July 2021. The analysis was conducted in early 2022, with an assessment both at the genus and crop/taxon level.

A total of 354 crops on the Crop List are included in this “ex situ collections – Botanic Gardens” analysis when assessed at the genus level, and 353 crops on the Crop List are included in this “ex situ collections – Botanic Gardens” analysis when assessed at the species/crop level (i.e. these crops had 1 or more institutions listed in PlantSearch). Remaining crops were assigned 0 values.

For each crop and for each metric, a global indicator of the extent of botanic collections of each crop was calculated as the number of unique records of the crop listed in PlantSearch divided by the total number of records for all crops in the dataset. Two metrics in total were calculated, in one group, in one component.

A2.4.5 Component: Research supply – GBIF

The Global Biodiversity Information Facility (GBIF) is the world’s leading global repository for openly accessible biodiversity resources, including research specimens and their associated data. We searched the entire GBIF database for records matching to our Crop List, both at the taxon level and at the genus level, on May 22, 2019 (https://doi.org/10.15468/dl.rahcfx). Two metrics in total were calculated (at the genus and crop/taxon levels), in one group, in one component. The analysis was conducted in 2019.

A total of 348 crops on the Crop List are included in this “Research supply – GBIF” analysis when assessed at the genus level, and 321 crops on the Crop List are included in this “Research supply – GBIF” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions listed in GBIF). Remaining crops were assigned 0 values.

For each crop, a global indicator of research supply was calculated as the number of samples of the crop listed in GBIF divided by the total number of samples for all crops in the dataset.
A2.4.6 Component: Research supply – NCBI

The National Center for Biotechnology Information (NCBI)'s Entrez database comprises one of the three foremost global biodiversity digital information resource (often called Digital Sequence Information or DSI in current policy fora; here called genetic sequence data [GSD]) repositories, which are connected within the International Nucleotide Sequence Database Collaboration. The other two repositories are the DNA Data Bank of Japan and the European Molecular Biology Laboratory - European Bioinformatics Institute; the three share data across their platforms.

The NCBI database provides species-level information regarding the number of nucleotide, protein, structure, genome, gene and other related sequences/data available for use. We extracted information on the number of nucleotide, protein, genome and gene resources for each crop, matching taxon (scientific) name to the NCBI taxonomy structure, accessing the portal using its API query link. Four metrics in total were thus calculated, in one group, in one component.

This analysis was conducted in early 2022. All 355 crops on the Crop List were listed in NCBI and thus assessed in this Research supply – NCBI analysis.

For each crop and for each metric, a global indicator of GSD research supply was calculated as the number of GSD resources of the crop listed in NCBI divided by the total number of GSD resources for all crops in the dataset.

A2.5. DOMAIN: SECURITY OF FOOD AND AGRICULTURAL CROP PLANT GENETIC RESOURCES

We calculated security backup of crop plant genetic resources based on *ex situ* collections data from the Svalbard Global Seed Vault's Seed Portal.

The security Domain has 2 total metrics in 1 group in 1 component:
2 metrics - *Ex situ* backup - Svalbard Global Seed Vault

A2.5.1 Component: Ex situ backup – Svalbard Global Seed Vault

The Svalbard Global Seed Vault (SGSV) is considered the foremost safety-backup facility for *ex situ* crop plant genetic resource collections globally and is available as a resource for virtually any *ex situ* collection worldwide. We calculated the total number of accessions for each crop in SGSV based on the Svalbard Global Seed Vault’s Seed Portal (downloaded March 15, 2019) and compared this number with the total count of accessions for that crop in all *ex situ* repositories (see the Supply domain, component 2.4.1). Assessments of *ex situ* germplasm safety duplication were made both at the taxon (crop) level.
and at the genus level, the latter to be inclusive of security of associated genetic resources, including crop wild relatives. Two metrics were thus mobilized (in one group, in one component). This analysis was conducted in 2019.

A total of 223 crops on the Crop List are included in this “ex situ backup – Svalbard Global Seed Vault” analysis when assessed at the genus level, and 206 crops on the Crop List are included in this “ex situ backup – Svalbard Global Seed Vault” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in SGSV). Remaining crops were assigned 0 values.

For each crop, a global indicator of safety backup was calculated as the number of ex situ accessions of the crop in SGSV divided by the total number of accessions of the crop in all ex situ repositories.

SGSV is a safety backup only for seed, thus crops mainly conserved through other types of propagules are likely to receive low values for safety duplication in this component. Further, a more exact assessment of safety duplication could potentially be made at the accession level (using accession IDs); this information is not currently well standardized worldwide. Finally, this component presents the same challenges as do the supply components regarding assessment at the genus level. While being inclusive of wild relatives, the genus-level assessment most likely overestimates relevant ex situ supply for crops with large genera (e.g., Solanum L.), as it is unlikely that all congeneric species will be used in crop improvement. For all these reasons, some degree of error is expected.
A3. Crop indicator calculation across metrics

Alongside real calculated values, indicator metrics in all groups, components and domains were calculated on a scale from 0 to 1, with low numbers (close to 0) representing a low or poor status (low crop use, low interdependence regarding genetic resources, low demand for genetic resources, small supply of genetic resources, low degree of security of genetic resources), and high numbers (close to 1) representing a high or good status (high crop use, high interdependence regarding genetic resources, high demand for genetic resources, large supply of genetic resources, high degree of security of genetic resources). Change over time indicator metrics may also have negative values (decline in importance over time). Methods for calculation of each indicator metric are described in the section above.

Indicator results were further produced in normalized forms for each metric, by setting the crop with the lowest value at 0, and the crop with the highest value at 1 (i.e. for each crop, normalized value = \(\frac{x - \text{min}}{\text{max} - \text{min}} \)). This was calculated across all crops, and across the crops in each crop-use type (e.g. cereals, pulses, vegetables). When calculated across crop-use types, for crops such as maize or soybean with multiple uses, these crops were included in all relevant use type categories; values for these crops are total global, not separated by specific use.

The indicator and normalized indicator results were used for cross-group, -component, and -domain calculation, with average results per crop produced at each of those levels. Metrics with no values (i.e. the metric was not calculated for that crop) were not included in/did not influence calculation of mean results. We used simple averaging across metrics after assessing a variety of possible methodologies, including assessing correlations among metrics, and removing overly correlated variables, and weighting different metrics by expert opinion of their importance; we found none of these techniques to provide clear value beyond simple averaging, and note that each introduces further complexity, possible error, and difficulty in repetition in the future.
A4. Metric limitations and other potential sources of information

A4.1. EXISTING METRIC DATA LIMITATIONS AND GAPS

While the Crop List was compiled based on crops for which substantial information on their use, as well as data on interdependence, demand, supply and security of genetic resources exists, the number of crops for which data is contained in this analysis does vary considerably by metric. Data for approximately:

Crop use:
• A total of 252 crops on the Crop List are reported in FAOSTAT Food Supply metrics, 280 crops on the Crop List are reported in FAOSTAT Production metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in FAOSTAT Trade metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).
• All 355 crops are reported in Crop research investigation – Google Scholar and PubMed Central.
• All 355 crops are reported in Crop public interest/awareness – Wikipedia pageviews.

Interdependence:
• A total of 252 crops on the Crop List are reported in FAOSTAT Food Supply metrics, 280 crops on the Crop List are reported in FAOSTAT Production metrics (277 in the value of production metric), and 239 crops on the Crop List are reported in FAOSTAT Trade metrics. Pertinent fields for crops listed on the Crop List and without data in FAOSTAT were left blank (null values).

Demand:
• A total of 142 crops on the Crop List were present in the “Germplasm distributions – International Treaty” dataset (i.e. these crops had 1 or more distributions listed in the International Treaty dataset). Remaining crops were assigned 0 values.
• A total of 256 crops on the Crop List were present in the “Genebank distributions – WIEWS” dataset (i.e. these crops had 1 or more germplasm distributions listed in WIEWS). Remaining crops were assigned 0 values.
• A total of 194 crops on the Crop List were present in the “Varietal registrations – UPOV” dataset (i.e. these crops had 1 or more varietal registrations listed in UPOV). Remaining crops were assigned 0 values.
• A total of 204 crops on the Crop List were present in the “Varietal releases – WIEWS” dataset (i.e. these crops had 1 or more varietal releases listed in WIEWS). Remaining crops were assigned 0 values.
Supply:
- A total of 354 crops on the Crop List are included in this “ex situ collections – WIEWS, Genesys PGR, and GBIF” analysis when assessed at the genus level, and 343 crops on the Crop List are included in this “ex situ collections – WIEWS, Genesys PGR, and GBIF” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in the gene bank dataset). Remaining crops were assigned 0 values.
- A total of 259 crops on the Crop List are included in this “ex situ collections – WIEWS, Genesys PGR, and GBIF – primary region coverage” analysis when assessed at the genus level, and 248 crops on the Crop List are included in this “Ex situ collections – WIEWS, Genesys PGR, and GBIF – primary region coverage” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions collected from within their primary region of diversity, as listed in the ex situ collections dataset). Remaining crops were assigned 0 values.
- A total of 354 crops on the Crop List are included in this “ex situ collections – Botanic Gardens” analysis when assessed at the genus level, and 353 crops on the Crop List are included in this “ex situ collections – Botanic Gardens” analysis when assessed at the species/crop level (i.e. these crops had 1 or more institutions listed in PlantSearch). Remaining crops were assigned 0 values.
- A total of 348 crops on the Crop List are included in this “Research supply – GBIF” analysis when assessed at the genus level, and 321 crops on the Crop List are included in this “Research supply – GBIF” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions listed in GBIF). Remaining crops were assigned 0 values.
- All 355 crops on the Crop List were listed in NCBI and thus assessed in this “Research supply – NCBI” analysis.

Security:
- A total of 223 crops on the Crop List are included in this “ex situ backup – Svalbard Global Seed Vault” analysis when assessed at the genus level, and 206 crops on the Crop List are included in this “ex situ backup – Svalbard Global Seed Vault” analysis when assessed at the species/crop level (i.e. these crops had 1 or more accessions in SGSV). Remaining crops were assigned 0 values.

Given the methodologies applied above, values are presented in this analysis for all crops for all metrics in the demand, supply, and security domains, as well as for the “Crop research investigation – Google Scholar and PubMed Central”, and “Crop public interest/awareness – Wikipedia pageviews” metrics in the crop-use domain. It is thus only for metrics based on FAOSTAT, presented in the crop-use and interdependence domains, where there are information gaps for some crops (i.e. approximately 29 percent of crops in the assessment do not have values in terms of Food Supply metrics, 21.1 percent in terms of Food Demand metrics, and 10.5 percent in terms of Food Security metrics).
Production metrics, and 32.7 percent in terms of Trade metrics). These data gaps can only be resolved through the inclusion of more crops/commodities reported in FAOSTAT.

A4.2. OTHER POTENTIAL METRICS AND SOURCES OF INFORMATION

Many other sources of information were explored during this study, but were not integrated into the analysis at the present time, mainly due to insufficient or inaccessible data. These are described concisely below.

A4.2.1 Other crop use metrics

Significance of crops to micronutrients in food supplies – the contribution of crops to food supplies is only measured in four ways within FAOSTAT data – calories, protein, fat, and food weight. The contribution of crops regarding micronutrients is not currently reported in FAOSTAT Food Supply data. To attempt to find and use micronutrient data at the crop level for this global analysis, we examined multiple databases and literature sources, and spoke with various authors and experts, including:

• FAO/INFOODS Food Composition Database for Biodiversity and FAO/INFOODS/IZINCG Global Food Composition Database for Phytate – have some crops, not many micronutrients with values, lots of variation.
• USDA Food Data Central – challenging to assign data to crops.
• The Global Nutrient Database (Schmidhuber et al., 2018) – aligned with FAO commodities, with data on 156 nutrients across 195 countries from 1980–2013, using USDA composition data with the same conversion factor across countries.
• Global Expanded Nutrient Supply (GENuS) Model (Smith et al., 2016) – Uses USDA composition data but also country-/region-specific data. Lots of values per crop (thus wide variation).
• IMPACT – Has data for about 28 crops and another 10 or so general commodities. Has phytate, folate, ft acids, iron, magnesium, niacin, phosphorus, potassium, riboflavin, thiamin, fibre, vit A, B12, B6, C, D, E, K, zinc data from USDA food composition tables.
• FAO (2001) – Nutritional value of some of the crops under discussion in the development of a multilateral system. Background study paper 11. Rome. Not a very long list of crops and only a few micronutrients (lipids, iron, Vitamin A). Reported at global and regional levels.
• Remans et al. (2014) – author remarked that data was outdated compared with Smith et al. (2016) and Schmidhuber et al. (2018).
• Beal et al. (2017) – not pragmatically useful for crop scale.
• Herrero et al. (2017) – not pragmatically useful for crop scale.
• Beal et al. (2021) – not pragmatically useful for crop scale.
• World Vegetable Center micronutrient data.
• Crops for the Future – Has data on dietary fibre mean values for about 200 crops; calcium - 231; crops; Iron - 227 crops; Magnesium - 181 crops; Phosphorus - 216 crops; Potassium - 214 crops; Zinc - 187 crops; B-carotene - 61 crops; Vitamin A - 119 crops; Vitamin B; Vitamin C - 90 crops; Vitamin E - 43 crops; Vitamin K - 47 crops.

We thank the authors of these works for their generosity and for explaining the potential of these datasets and in sending example data. Currently, our assessment is that generating and curating a global database with micronutrient values for crops remains a major challenge. A particular challenge is the current existence of a very wide range in micronutrient values within crops, due to different assessment methods and statistical treatments, infraspecific variation, agronomic conditions, and post-harvest processing practices.

Cultural value of crops – We reviewed a number of databases listing cultural uses of crops, including USDA's GRIN-Global World Economic Plants and Mansfeld's World Database of Agricultural and Horticultural Crops databases. We did not find a straightforward way to create a metric based on cultural value/importance and did not pursue this component further.

A4.2.2 Other demand metrics

WIEWS – Several other indicator metrics available from FAO’s WIEWS with data at the crop level may be useful to assess demand for crop genetic resources, including:
• Indicator 6: Number of farmers’ varieties/landraces delivered from national or local gene banks to farmers (either directly or through intermediaries)
• Indicator 30: Number of crops with active public pre-breeding and breeding programmes
• Indicator 31: Number of crops with active private pre-breeding and breeding programmes
• Indicator 36: Number of new crop and wild species introduced into cultivation
• Indicator 39: Number of farmers’ varieties/landraces and underutilized species with potential for commercialization identified

We did not assess these further.

Access to Seeds Index – At the time of assessment, the Access to Seeds Index provided data on numbers of varieties per crop in companies’ portfolios per country, with data from 2017 on 64 countries (13 in South and Southeast Asia, 19 in East and Southern Africa, 22 in West and Central Africa, and 10 in Latin America and the Caribbean). Data focused on about 32 crops, as well as some
additional data for ‘local’ crops, and include type of seed (open pollinated, hybrid, etc.); age of the newest variety of a crop on offer; number of companies with var <3 years; <5 years, etc.; total number of varieties per company; total number of companies per country. This Index aims to be updated every 2–3 years. It should be noted that there are more companies active in countries than currently measured, as well as non-industry seed agents. We did not assess these data further.

International Food Policy Research Institute (IFPRI) Agricultural Science and Technology Indicators – At the time of assessment, ASTI offered data on agricultural research spending and capacity (number of researchers) for low- and middle-income countries, with a total of approximately 78 countries, per commodity group. About 14 specific crops and 10 general commodity groupings were reported. We did not assess these data further.

FAO Global Partnership Initiative for Plant Breeding Capacity Building (GIPB) – the GIPB was active in previous years, assessing plant breeding capacity in many countries. We did not assess potentially pertinent and available data from this initiative further.

A4.2.3 Other supply metrics

Ex situ collections – WIEWS, Genesys PGR, and GBIF – supply of landraces and crop wild relatives – both WIEWS and Genesys PGR contain fields marking the improvement status of germplasm (e.g. landrace, wild, cultivar, etc.). These fields could in theory be used to calculate supply for each improvement status per crop. We note that these fields contain considerable data gaps in current datasets. We did not assess these data further.

WIEWS – Several other indicator metrics available from WIEWS with data at the crop level may be useful to assess supply of crop genetic resources, including:

- Indicator 16 – Number of samples resulting from targeted collecting missions in the country
- Indicator 18: Number of crops conserved ex situ under medium or long-term conditions – does not appear significantly different from data available from the core WIEWS dataset mentioned in component 2.4.1.
- Indicator 22: Number of ex situ accessions regenerated and/or multiplied
- Indicator 25: Average number of morphological traits characterized per accession of the ex situ collections
- Indicator 26: Number of publications on germplasm evaluation and molecular characterization

We did not assess these further.
A4.2.5 Other security metrics

WIEWS and *Genesys PGR safety duplication fields* – the FAO World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (*WIEWS*) and the *Genesys Plant Genetic Resources portal* (*Genesys PGR*) databases contain fields enabling recording of whether specific accessions are safety duplicated (i.e. fields ‘Genebank[s] holding safety duplications - code’ and ‘Genebank[s] holding safety duplications’ in *WIEWS*, and ‘DUPLSITE’ and ‘DUPLINSTNAME’ in *Genesys PGR*). These fields may be used to quantify the number of accessions per crop recorded as safety duplicated. It should be noted that the relevant fields in *WIEWS* and *Genesys PGR* regarding safety duplication are currently not comprehensively filled and are an underestimate of the true degree of safety duplication worldwide. For this reason, a considerable degree of error/underestimation is expected. We did not assess these data fields further.

WIEWS – Several other indicator metrics available from *WIEWS* with data at the crop level may be useful to assess security of crop genetic resources, including:

- **Indicator 3**: Percentage of PGRFA threatened out of those surveyed/inventoried
- **Indicator 21**: Percentage of *ex situ* accessions safety duplicated - does not appear significantly different from data available from the core *WIEWS* dataset mentioned in component 2.5.2.
- **Indicator 22**: Number of *ex situ* accessions regenerated and/or multiplied

We did not assess these further.

Conservation gap analysis – Various ecogeographic gap analysis methods are available for comparison of conservation collections to extant diversity growing in the wild or cultivated in farmers’ fields, through programmes (e.g. www.capfitogen.net/en/), codes (e.g. https://cran.r-project.org/web/packages/GapAnalysis/index.html), and published literature (e.g. Ramirez-Villegas *et al.*, 2010; Castaneda-Alvarez *et al.* 2016; Khoury *et al.* 2019; Ramirez-Villegas *et al.* 2020; Carver *et al.* 2021; Ramirez-Villegas *et al.*, 2022). None of these is currently presented online in a format that will be updated regularly in the future. We did not assess these further.
A5. Extended methodology and data sources references

