Kuwinda Nyama

A multiplayer hunting game for social learning and sustainable use

The Kuwinda Nyama game was developed with support from the SWM Programme, with funding from the European Union, and by WCS with funding from USAID.

With the technical support of

WCS
Food and Agriculture Organization of the United Nations
CIFOR
World Agroforestry
CIRED

With the financial support of

Funded by the European Union

With the technical support of

WCS

With the financial support of

USAID

National partners

OKAPI WILDLIFE RESERVE
KCN
A multiplayer hunting game for social learning and sustainable use

Kuwinda Nyama

Sandrin, F. and Wilkie, D., eds.
Development and testing of this game would not have been possible without the efforts of WCS staff including: Delphin Bilua, Bernadette Kange, Joséphine Abeda, François Amsini, Gracia Dorielle Njohoumi, Aymar Bounda, Benjamin Ngampamou Ngatsoue, François Mossoula, Manjary Andriatsitohaina, Jacques Clénide Henry and Francline Volasoa.

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), International Cooperation Centre of Agricultural Research for Development (CIRAD), Center for International Forestry Research (CIFOR) or Wildlife Conservation Society (WCS) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, CIRAD, CIFOR or WCS in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, CIRAD, CIFOR or WCS.

© FAO, 2024

Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode).

Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons license. If a translation of this work is created, it must include the following disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of the United Nations (FAO). FAO is not responsible for the content or accuracy of this translation. The original [Language] edition shall be the authoritative edition.”

Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/ rules and any arbitration will be in accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL).

Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to copyright@fao.org.

FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through publications-sales@fao.org

CIFOR information products are available on CIFOR website (https://www.cifor.org/library/). Any enquiries regarding CIFOR publications can be emailed to CIFOR Data and Information Services Manager, Sufiet Erlita, via CIFOR-library@cgiar.org or CIFOR-Publications@cgiar.org

CIRAD information products are available on CIRAD Agritrop website https://agritrop.cirad.fr/ and also on Dataverse

WCS publications and bibliographies, working papers, and datasets are available on the WCS website (https://library.wcs.org/Scientific-Research.aspx).”

This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of FAO and can in no way be taken to reflect the views of the European Union.

Cover page photograph: ©WCS/François Sandrin
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why use games?</td>
<td>1</td>
</tr>
<tr>
<td>Why a hunting game?</td>
<td>3</td>
</tr>
<tr>
<td>What is the game trying to achieve?</td>
<td>5</td>
</tr>
<tr>
<td>How do you play the game?</td>
<td>7</td>
</tr>
<tr>
<td>Running Game 1</td>
<td>9</td>
</tr>
<tr>
<td>Materials</td>
<td>9</td>
</tr>
<tr>
<td>Objective</td>
<td>9</td>
</tr>
<tr>
<td>Playing scenario 1 of Game 1</td>
<td>9</td>
</tr>
<tr>
<td>Playing scenario 2 of Game 1</td>
<td>10</td>
</tr>
<tr>
<td>Running Game 2</td>
<td>13</td>
</tr>
<tr>
<td>Materials</td>
<td>13</td>
</tr>
<tr>
<td>Objective</td>
<td>13</td>
</tr>
<tr>
<td>For scenario 1 of Game 2</td>
<td>13</td>
</tr>
<tr>
<td>For scenario 2 of Game 2</td>
<td>14</td>
</tr>
<tr>
<td>Running Game 3</td>
<td>17</td>
</tr>
<tr>
<td>Materials</td>
<td>17</td>
</tr>
<tr>
<td>Objective</td>
<td>17</td>
</tr>
<tr>
<td>For scenario 1 of Game 3</td>
<td>17</td>
</tr>
<tr>
<td>For scenario 2 of Game 3</td>
<td>18</td>
</tr>
<tr>
<td>Other points to consider</td>
<td>19</td>
</tr>
<tr>
<td>Potential additional versions of the game</td>
<td>19</td>
</tr>
<tr>
<td>Game 4: Adding search costs to hunting</td>
<td>21</td>
</tr>
<tr>
<td>Game 5: Dividing players into part-time hunter-farmers or full-time hunters</td>
<td>23</td>
</tr>
<tr>
<td>Game 6: Adding hunters not from the community</td>
<td>25</td>
</tr>
</tbody>
</table>
Games can help people learn about complex issues, make choices and adapt their actions as they observe the consequences of their choices. Games allow adults and children to explore, safely, different scenarios that can generate a variety of outcomes depending on the choices they make as they play the game. Games allow people, quickly and at no risk, to experiment with implementing different courses of action and determining which ones best achieve their goals.

Playing games is a tried and tested way to promote learning and insights. Unfortunately, many modern games have been developed as university-level teaching tools, and typically require either a laptop computer or internet connection, or both. This game is simple and relatively quick to play, requires only locally available and low-cost materials, and is even appropriate for players with low levels of literacy and numeracy, with little or no experience with multiplayer and role-playing games.

Experience from developing and playing these games with many communities confirms our belief that games that are fun to play, have few rules, rely on learning by doing, and enable failure, provoke discussion and collaborative problem solving are essential for adaptive social learning.

Social learning is essential for effective community-led conservation and development as it enables people to prioritize both individual and collective strategies and, most importantly, develops the social cohesion they need to work together to solve their common problems.
Kuwinda Nyama: A multiplayer hunting game for social learning and sustainable use
Why a hunting game?

Indigenous Peoples have been hunting wildlife, for food and to trade, for millennia. Using traditional, relatively inefficient weapons such as blowguns (e.g. Dayaks of Indonesia and Yanomami of Venezuela) or stone-tipped arrows (e.g. Efe of Democratic Republic of the Congo and the Aka of Cameroon), Indigenous hunters rarely had an adverse impact on the population size of the animals they hunted. It is not surprising, therefore, that most traditional hunters believe that wildlife is an inexhaustible resource. Recent adoption of firearms and metallic and nylon snares by many traditional hunters has dramatically increased the number of animals they can kill in a day. As a result, wildlife populations in many places are declining. The challenge is that traditional hunters often still believe that wildlife can never be depleted by their hunting. In fact, they often find novel ways to explain wildlife scarcity where they have hunted for generations. For example, the Sarayaku of Ecuador say that the white-lipped peccaries that once were abundant within their forest are now scarce because they are being hidden by shaman of the Jivaro people who live to the south. We wondered how best to promote discussion among groups of hunters about the likely impact of hunting on the wildlife they depend on for food and income.

We knew that Dennis Meadows of the MIT Sloan School of Management had developed a board game called “Fishbanks” to enable his students to better understand the challenges of preventing or avoiding overfishing on the high seas. When he lectured on the topic, all his students would nod their heads, agreeing that fishermen would have to be crazy to wipe out a fish stock that their livelihoods depended on, but that is exactly what the students typically did when playing the game. This provoked lively discussions and better understanding into how it was possible to know that overfishing was not a sensible long-term strategy, and yet cause that outcome to happen almost every time they played the game.

Teams in the Democratic Republic of the Congo (DRC), and the Republic of the Congo (ROC) decided that simple role-playing games might allow hunters to see how their individual decisions about how many animals to kill each time they go hunting might sustain or deplete the wildlife they target. The teams thought that by playing these games hunters would observe that, depending on the choices they make, wildlife population numbers might remain stable or decline to local extinction. Given this, the DRC and ROC teams developed a low-tech, multiplayer decision-making game to play with rural communities, and to test players’ responses to different hunting scenarios with different rules.

Playing the game in a public space with others from the community looking on extends the number of people who can learn about the consequences of player decisions on where, how often and how much to hunt. The ongoing conversation during the game encouraged players and observers to discuss which decisions resulted in desired outcomes and which caused wildlife numbers to decline, jeopardizing the nutritional and income security of wildlife-dependent families.

If you are interested in testing these games, we would love to hear your feedback or questions. Please contact us at swm-programme@fao.org.
What is the game trying to achieve?

This hunting game is actually played in three versions. Each includes two scenarios. The first scenario is designed where players are likely to overexploit the resource. The second scenario introduces mechanisms to promote sustainable use and to observe whether or not players change their behaviour. The games are played in sequence, with days, weeks or even months between game playing sessions. Each progressive version of the game adds complexity and realism. Preferably, each of the three games is played with the same group of hunters (players). By playing all three versions of the game, hunters will have had multiple opportunities to talk among themselves and with others watching the games about hunting for food and income. Each version of the game provokes different conversations and leads to an increase in community understanding of how hunting decisions can generate desired benefits but can also result in depletion of the very natural resources that are central to hunting communities’ food and income security and cultural sense of self. Playing the games typically brings community members closer together in terms of their shared understanding of the challenges and the culturally preferred actions they can take together to ensure that their hunting practices are sustainable and guarantee that wildlife populations will remain at levels sufficient to meeting both dietary and income needs long into the future.

The first version of the game assumes that hunters, typically, all hunt in the same area, have less than complete knowledge of how many animals are present where they hunt, and rarely, if ever, share information with other hunters or groups of hunters about how many animals they hunt. So this game starts with a scenario in which the players (hunters) do not know how many animals are available to hunt, nor do they know how many animals each hunter is hunting, nor are they allowed to talk with one another during the game. Then the game is repeated, but in this second scenario the hunters can see how many animals are available to hunt and how many animals are hunted by each player. They can also talk with one another during the game. This game is designed to allow players to explore and discuss how access to information about wildlife numbers and offtake (i.e.
the number of animals hunted) and open communication and transparency among hunters can influence the level of hunting and its impact on wildlife populations.

The second version of the game builds on the first by allowing all hunters to see how many animals are available to hunt and how many animals each hunter is taking during each round. This time, however, the animals available to hunt are found in three different areas. In the first scenario each hunter, independently, decides which of the three areas to hunt during each round. In the second scenario hunters are asked to discuss where they will all hunt during the upcoming round. This second scenario effectively leaves some areas un-hunted and thus able to recover from the impacts of hunting. This version of the game allows hunters to see how a common agreement on shifting hunting areas in space and time (i.e. spatio-temporal rotation) influence the impact of hunting on wildlife populations and their ability to recover from the effects of hunting.

The third version of the game starts with hunters being told that all animals available to be hunted are a mixture of three different species of animals, each with a different abundance. What they are not told initially is that each species also has a different reproduction rate. They will witness that at the end of each round, after the Bean Counter has added offspring for each species based on their reproductive rate and the number of individuals of each species left in the hunting areas. In the second scenario, the different reproduction rates are explained to the hunters (i.e. the abundant species is fast-breeding, such as rodents, the somewhat abundant species is a forest antelope, which is neither fast- nor slow-breeding, and the scarce species is a slow-reproducing species, such as a primate). Version three of the game encourages hunters to talk about the response of different species with different reproductive rates to hunting, and what this might mean to their aspirations to take actions to ensure that hunting is sustainable and generates food and income over the long term.
How do you play the game?

The game is played with between six and eight players and can include both men and women. Players do not need to be hunters but they should be engaged in some way in the wild meat sector (e.g. transporters, retailers or consumers). Players need to be able to sit comfortably around a game table. A second table needs to be set up to store several piles of ten beans to speed up the process of adding beans that represent annual reproduction at the end of each round of play. The table should be located out of sight of the game table for Game 1, scenario 1. Others in the community are encouraged to stand behind the players and not only watch the game, but at the end of the game to talk about what they saw and to comment on decisions made by players.

All three games use beans (or beads if available) to represent animals that can be hunted. Games 1 and 2 use beans that are the same colour and size to represent a single species. Game 3 uses beans of three different colours, representing three different species.

The game convenor (most likely a community support partner) needs to have at least: a) a team member designated as the host or Game Manager who provides instructions to the players, answers questions as needed, and moderates the discussion at the end of each game; and b) a team member designated as the Bean Counter who records the number of beans in the game bag after each round, and calculates how many beans (offspring) must be added to the population. It is also useful to have a team member designated as a Note Taker to document conversations and discussion and to take photographs during the game and post-game discussions.

The Game Manager assures that all materials are ready for play and that the players have been identified, have formally consented to play, and have decided whether or not to consent to being photographed or videotaped during the game.
Running Game 1

Materials

- 1 (20 x 30 cm) opaque cloth bag representing the hunting area in scenario 1
- 8 (15 x 15 cm) opaque cloth bags representing the hunters’ bags in scenario 1
- 4 bowls
- 1 000 beans of the same colour representing the animals to be hunted
- Pen and notepad or smartphone with KoBoCollect app and data entry form
 *KoBoCollect is not essential but makes summarizing the results of the game much easier and faster.

Objective

The objective of this version of the game is to see whether knowledge about the size of the wildlife population in the hunting area and the number of animals hunted influence hunting behaviour so as to avoid over-hunting and depletion or local extinction of the wildlife population.

Playing scenario 1 of Game 1

Once the players are seated around the game table, the Game Manager provides the following information to both the players and the audience.

- The game bag that I am holding up represents the hunting area (i.e. the forest or woodlands or grasslands where the community typically hunts).
- Inside the game bag are some beans like these in my hand. Each bean represents an animal that can be hunted, like an antelope or deer.
- Each player will be handed the game bag in turn. Each player will dip a hand into the game bag and take as many beans (animals) as they want. Without showing how many beans they have taken from the game bag, they will add these beans to their own hunting bag. (The Game Manager demonstrates how to take beans from the game bag and add them, without others seeing, to his hunting bag.)
- Players should not talk to other players during the game.
- After each player has taken beans from the game bag, this round of the game is over.
- Each round of the game represents a year of hunting, and the game will continue for several rounds (years) of hunting.

NOTE

The Game Manager and the team must ensure that they:

- DO NOT tell the players exactly how many rounds of play (5) there will be in the game as this may influence their behaviour during the game. Remember that the goal is not to manage hunting for just 5 years, but to manage wildlife hunting over the long term.
- DO NOT tell the players how many beans (animals) are in the game bag at the start of the game. There should be 200 beans in the game bag at the start of play.
Ensure that the players understand the rules, and test this understanding by asking questions like:

- When I hand the game bag to you, what do you do?
- As a player can I talk with other players about what I am doing during the game?

At the end of each round the Game Manager tells the players that the Bean Counter will take the game bag to the other table where some additional animals will be added to the bag, because animals reproduce.

Out of sight, the Bean Counter counts all the beans in the game bag. Half of the beans represent females and half males. The Bean Counter adds one additional bean to the game bag for every female counted. This represents a reproduction rate of one offspring per female per year. The Bean Counter then puts all the counted beans back into the game bag and returns it to the Game Manager to start the second round of play.

In scenario 1 we expect, from experience, that hunting will be unsustainable and all animals will have been taken from the game bag before the end of round 5. In fact, this is the underlying social learning purpose of this scenario, for the players to hunt unsustainably and then discuss the outcome.

If, however, fewer beans (animals) are being removed from the game bag in rounds 1 and 2 than expected, the Game Manager might subtly encourage the players to hunt more animals in upcoming rounds by asking the players whether they feel that the animals they have taken so far are sufficient to feed their family and to sell.

When the scenario 1 game ends, either because all animals have been hunted from the game bag, or round 5 of the game has been completed, the Bean Counter counts and records the beans remaining in the game. The Bean Counter then pours the game bag beans into a large bowl and pours the beans from each player’s bag into a second bowl. The Game Manager places the game bowl with no beans or a few beans and the hunters’ bowl on the game table where everyone can see, and starts a discussion of what players and the audience observed and what they thought about as the game was being played.

The Game Manager should encourage players and the audience to reflect on what happened during the game, and what the real-life consequences might be, based on the outcome of the game, on their livelihoods and food security. If the game bag was depleted at round 5 or completely emptied before then, the Game Manager can ask, “Why do you think this happened? Is what happened a bad thing, and what would it mean in real life? And if so, why? Has this happened in any of the places where you hunt?”

When the discussions finish, the Bean Counter takes away the game bowl and hunters’ bowl and places them on the second table so that they can be used at the end of the next game (scenario 2) to allow players and the audience to see and compare the results of playing scenario 1 and scenario 2.

Playing scenario 2 of Game 1

After the scenario 1 discussion the Game Manager should announce that the players will now replay the game but with a few small differences.

Scenario 2 is exactly the same as scenario 1, but this time the game bag is replaced by a plastic game bowl large enough to hold 200 beans, and the players’ bags are replaced with another plastic hunters’ bowl (the same size as the game bowl). Both bowls are placed in the centre of the game table. This time all players can see clearly how many beans (animals) are in the hunting area in each round, and can also see how many animals all the hunters combined have taken in every round. In addition, players are now encouraged to talk to each other and the Bean Counter can manage annual reproduction at the end of each round in plain sight of the players and audience.

The purpose of this scenario is to simulate a wildlife and hunting monitoring system, to see if hunters change their hunting decisions when they can now see how many animals are in the hunting area and how many animals the group of hunters take each round.
Many Indigenous Peoples and local communities share what they hunt with all families in the community. So for them, placing their beans in a communal hunting bowl will seem normal. For other hunters sharing may not be part of their culture. In this case the Game Manager needs to let them know that placing the animals they hunt in each round in a common bowl is because what we want players to know is how much they hunt as a community. Placing all animals hunted into the hunters’ bowl does not mean that hunters are sharing the animals they hunt with other families.

Before the game starts the Game Manager tells the players:

- In this game the hunting area is no longer represented by a bag but by this bowl on the table. All of you can see how many animals there are in the bowl; there are as many animals in the bowl as there were in the game bag in the previous scenario.
- In every round of the game, each player will put one hand in the bowl and take as many beans as they want. They then must place the beans in the other bowl (the hunters’ bowl) on the table for all to see.
- Unlike in scenario 1 where we asked you not to talk with one another during the game, this time if any player/hunter would like to say something or ask the other hunters a question during the game, then they may do so.

NOTE

Do not tell the hunters to take fewer animals, because players need to decide to change their own hunting strategies for this to result in social learning.

The premise underlying this scenario is that if hunters know how many animals are available to hunt and also how many animals each hunter is actually taking, then they may either: a) not care because they are hunting for themselves and don’t believe other hunters will change their behaviour; or b) change their hunting, hoping that others will do so also, thus preventing unsustainable hunting and depletion of hunted wildlife.

If for some reason the outcome of scenario 2 is even less sustainable than for scenario 1, it is appropriate to replay scenario 2 after guiding players to think about the consequences of a forest empty of animals and see if that alters players’ behaviour.

TIPS FOR DISCUSSION

At the end of scenario 2, the Game Manager must again encourage players to talk about what they observed. If hunting was more sustainable (i.e. there were more rounds played or more animals remaining in the game bowl at the end of play), why? What are the implications of this result to your family’s food and income security? If both scenarios resulted in depletion of wildlife in the hunting area, what could you do differently? If hunting was more sustainable in scenario 2, would players like to replicate the wildlife and hunting monitoring systems in the real world, and how could they do this? And if not, why not?

The Game Manager might also pose these additional questions:

- Did anyone notice any differences in the outcomes between the two scenarios?
- If so, what do you think was the reason for this?
- Did any players change their hunting behaviour between the two scenarios?
- What does it mean to you to win this game? What does success look like in this game?
- Do you think that knowing how many animals there were at the start of each round and how many animals were taken during each round influenced your decision about how many animals you or the other players should take?
- If scenario 2 was perceived as better, ask, “Could my community do something like scenario 2, and how might that work in reality?”
Running Game 2

Materials
- 8 bowls
- 1,000 beans of the same colour representing the animals to be hunted
- Pen and notepad or smartphone with KoBoCollect app and data entry form

This Game builds on and largely replicates Game 1, scenario 2. What is different in Game 2 is that there are now three hunting areas (i.e. the animals are in three different bowls) and each hunting area (bowl) contains a different number of animals (44 in bowl 1, 66 in bowl 2, and 90 in bowl 3). The total number of animals (200) is the same as in Game 1, scenario 1, as is the fact that all beans represent one animal species such as an antelope, or deer.

Objective
The objective of this version of the game is to see if: a) spatial rotation of hunting (i.e. hunters have the choice to move to a different hunting area if they want) or; b) spatial closures (i.e. only one of several hunting areas is open to hunting at a time, while the rest are left for populations to recover from hunting) influence the sustainability of hunting.

For scenario 1 of Game 2
The instructions given by the Game Manager to the same players are a little different from Game 1.

- This time there are three places that you can hunt. Each bowl on the table represents a different hunting area and each hunting area (bowl), as you can see, has a different number of animals (beans).
- In every round of the game, each player must choose which bowl to hunt in. But they must not tell the other players which hunting area (bowl) they have decided to hunt in this round of play. Each player can only hunt in one bowl during each round. But each player can change which area (bowl) they will hunt in at the start of each new round.
As in Game 1, scenario 2, in every round of the game all players will put one hand in one of the three bowls (i.e. the one they chose but did not tell anyone) and take as many beans as they want. They then must place the beans in the hunters’ bowl on the table for all to see.

After each round the Bean Counter will count the remaining number of animals in each bowl and add the offspring to each game bowl, in plain sight, as in Game 1. For example, if there are 10 beans in hunting area (bowl) 1, that means 5 females remain, and 5 offspring are added to that hunting area (bowl).

Players should not talk to other players during the game.

The Game Manager continues playing additional rounds of the game until all bowls are empty, or round 5 has been completed. The Game Manager then facilitates a brief discussion of the results of this scenario before starting scenario 2. Before the start of scenario 2, the Bean Counter moves the four bowls (the three hunting areas and the hunters’ bowl) from scenario 1 to the second table.

For scenario 2 of Game 2

This time the Game Manager instructs the players as follows:

This game is exactly the same as the one you all just played.

Except this time, before each round starts you all need to decide together where all players will hunt during the round. This means that only one area will be hunted during each round.

As before, all players can take as many animals as they want from the hunting area and must place the animals they hunted in the hunters’ bowl on the table for all to see.

This time players can talk with other players during the game to decide together which area will be hunted during the following round.

TIPS FOR DISCUSSION

At the end of scenario 2 the Game Manager must again encourage players to talk about what they observed. If hunting was more sustainable (i.e. there were more rounds played or more animals remaining in the game bowl at the end of play), why? What are the implications of this result to their families’ food and income security? If both scenarios resulted in depletion of wildlife in the hunting area, what could they do differently? If hunting was more sustainable in scenario 2, would they like to implement a spatial rotation system in the real world, and how? And if not, why not?

The manager might also pose these additional questions:

Did anyone notice any differences in the outcomes between the two scenarios?

If so, what do you think was the reason for this?

Which scenario did you prefer?

Did any players change their hunting behaviour between the two scenarios?

If scenario 2 was perceived as better, could your community do something like scenario 2, and how might that work in reality?
Kuwinda Nyama: A multiplayer hunting game for social learning and sustainable use

©FAO/David Mansell-Moullin

©WCS/François Sandrin
Running Game 3

Materials
- 6 bowls (scenario 1 uses 2, scenario 2 uses 4)
- 500 beans of colour 1; 1 000 beans of colour 2; 2 000 beans of colour 3
- Pen and notepad or smartphone with KoBoCollect app and data entry form

This Game builds on and replicates much of scenario 2 in Game 1. Game 3 only has one game bowl (not three as in Game 2) but this time it contains three different types of animals representing slow-, medium- and fast-reproducing species. The slow-reproducing species are the least common (least abundant) and the fast-reproducing species the most common (most abundant) in the hunting area.

Objective
The objective of this version of the game is to see if hunters change their hunting decisions when they know that there are different species with different body-size, and that have different population densities and reproduce at different rates.

For scenario 1 of Game 3
Before the game starts the Game Manager tells the players that this game is exactly the same as Game 1, scenario 2 (assuming that the players have already played this version of the game). He describes the game details from Game 1, scenario 1, except that this time he notes that the animals in the hunting area are a mixture of three different species (using the names of local species): one small, fast-breeding, abundant species; one midsize, neither fast- nor slow-breeding, somewhat abundant species; and one large-bodied, slow-breeding, relatively scarce species. However, the Game Manager does not mention that each species has a different reproduction rate.

In preparation for the first round, the Bean Counter places in the game bowl 90 beans of colour 1 to represent the small, fast-breeding species, 66 beans of colour 2 to represent the mid-size species, and 44 beans of colour 3 to represent the large, slow-breeding species.

The game is then played exactly as described for Game 1, scenario 2. In each round, hunters can dip one hand into the bowl and remove as many or as few beans as they want, and then drop the beans into the communal hunters’ bowl.

After each round the Bean Counter adds 2 offspring for each small-bodied female left in the hunting area, 1 offspring for each mid-sized female and 0.5 offspring (rounded up) for each large-bodied female. So if there are 5 large-bodied females left in the hunting area (bowl), the Bean Counter adds 3 (i.e. 2.5 rounded up to 3) beans (offspring) back into the hunting area.
At the end of the game (i.e. when all beans have been removed or after round 5 is completed) the Game Manager facilitates a discussion with questions similar to Game 1, scenario 2 with the addition of these questions:

- What species seem to be more abundant or scarcer at the end of the game? Why might that be?
- When you hunt, what type of species are you hoping to catch, and why?
- Did you try to select a specific species when you reached into the bowl to hunt?

For scenario 2 of Game 3

Before the game starts the Game Manager tells the players that this game is exactly the same as Game 3, scenario 1, except this time the hunters can choose which animals they want to hunt because each species will be placed in their own bowl. The Game Manager will tell the players that they are all hunting in the same area but this time they can decide which species to hunt and how many animals they hunt each round. In each round of play hunters can take as many animals as they want from any or all game bowls. They must then drop the animals they hunted into the hunters’ bowl.

At the end of each round the Bean Counter adds the appropriate number of offspring to each game bowl, applying the different reproduction rates.

At the end of the game, when all beans are removed from all three bowls, or at the end of round 5, the Game Manager facilitates discussions similar to scenario 1 of Game 3 with a couple of additional options.

- Did you select a specific species to hunt or did you hunt whatever you could pick up?
- What species breeds a lot? And what happened to them by the end of the game?
- Which ones reproduce slowly? And what happened to them by the end of the game?
- Where you go hunting, which species should be hunted more and which should be hunted less? Why?
Other points to consider

If you have a smartphone, you can enter the results of each round using the KoBoCollect forms available at [URL here] to quickly calculate results from both scenarios in each game and be able to compare them. At the end of each game, the KoBo app will show for each scenario the number of rounds played, the total number of animals hunted, the number of offspring added to the population, and the number of animals remaining in the hunting area. It also helps by saving the results and other information about this game session such as the number of players, the place, the date, etc. Also use the game bowls and hunter bowls to let the players and the audience see how the results of each scenario differ, and encourage discussion of why.

It is possible that participants criticize certain aspects of the game, such as the fact that there is only one species of animal and they only produce one offspring each year. This is a hard question to respond to, because we know that all models are simplifications of reality, but the players are real hunters, hunting in real places, where there are lots of animals of different body sizes and different reproductive rates. Rather than trying to answer the questions, the Game Manager should reply with another question that relates to the question the participant asked. So if the participant says, “But our forest has many different wild animals. We don’t just hunt, eat and sell one type of animal. What we hunt depends on what we encounter in the forest.” The Game Manager might answer, “That is a very good point. What animals do you encounter and hunt most often?” The participant answers “small antelope”. The manager then asks, “So if the animals in the game were small antelope, would that make the game more realistic?”

It is also possible that participants give other reasons for the unsustainability of hunting in their land, such as the intrusion of external hunters, the lack of food and economic alternatives to hunting, the proliferation of access roads, etc. If the concern is about external factors and not a result of community hunting, the Game Manager should say something like, “Well, that is really interesting. Is that something that the community can take action to prevent? And, if not, what support might the community need to help reduce or halt these external pressures?”

Potential additional versions of the game

In this manual we have described only the three versions of the game that we developed and field-tested. But we envisioned additional versions of the game that might be developed in the future. The games described above assume that there is no search cost to hunters. All hunts are effectively instantaneous, as all hunters have to do is dip their hands into a bag (game 1) or a bowl (games 2 and 3) and grab one or more beans.
The games described above assume that there is no search cost to hunters. All hunts are effectively instantaneous, as all hunters have to do is dip their hands into a bag (game 1) or a bowl (games 2 and 3) and grab one or more beans.

In reality, hunters have to invest their time searching for animals, and these costs change according to the density of wild animals in the hunting area. We know that hunters who travel out from their village in search of wildlife hunt more often in areas close to the village. This is simply a question of geometry (i.e. the area of a circle of radius r, or the area of an annulus ring with an inner radius r and outer radius R). For example, the area within 1 km of the village is 3.14 km2, the area between 1 and 2 km is 9.42 km2, and the area between 2 and 3 km is 15.70 km2. So the hunter would have to invest approximately five times the effort (i.e. hours) to visit all areas within 2–3 km to search for animals compared to all areas that lie within 1 km of the village. This means that areas farther away from a village, assuming that travel costs are equal in all directions, are typically hunted less frequently than those closer to the village. This, in turn, means that wildlife population density within a circular hunting area increases with distance from village. There is strong empirical evidence to show that this assumption is, in fact, true.

We know from published evidence that the search costs for hunters increase as the density of hunted wildlife in an area declines.

The games described above assume that there is no search cost to hunters. All hunts are effectively instantaneous, as all hunters have to do is dip their hands into a bag (game 1) or a bowl (games 2 and 3) and grab one or more beans.

In reality, hunters have to invest their time searching for animals, and these costs change according to the density of wild animals in the hunting area. We know that hunters who travel out from their village in search of wildlife hunt more often in areas close to the village. This is simply a question of geometry (i.e. the area of a circle of radius r, or the area of an annulus ring with an inner radius r and outer radius R). For example, the area within 1 km of the village is 3.14 km2, the area between 1 and 2 km is 9.42 km2, and the area between 2 and 3 km is 15.70 km2. So the hunter would have to invest approximately five times the effort (i.e. hours) to visit all areas within 2–3 km to search for animals compared to all areas that lie within...
1 km of the village. This means that areas farther away from a village, assuming that travel costs are equal in all directions, are typically hunted less frequently than those closer to the village. This, in turn, means that wildlife population density within a circular hunting area increases with distance from village. There is strong empirical evidence to show that this assumption is, in fact, true.

We know from published evidence that the search costs for hunters increase as the density of hunted wildlife in an area declines.

We believe that we can simulate changes in search costs by:

- Burying the beans in 20 cm of sand within a 60 x 60 x 30 cm wooden box or plastic tub.
- Telling each hunter that during their turn they will have 15 seconds to hunt in the sand for animals (beans). The Game Manager will count down from 15 to zero at which time the hunter’s turn is over.
- Telling hunters they can only use one hand when searching in the sand, and they must close their eyes.
- Saying that when they do find an animal, they must remove it from the sand and place it in their bowl; only then can they resume hunting in the sand. If they encounter two or more animals together they can only pick up one.

In this version of the game hunters cannot see the animals in the hunting area; they must comb through the sand to find them. They are also only allowed to hunt for a short time. This also simulates that hunters only have so many hours in the day to go hunting.

In this version of the game the animals do not reproduce at the end of each round. Given this, as the game progresses from round to round, the number of animals left in the sand declines and it should take longer for each hunter to find the increasingly few animals left in the sand.

NOTE

A team in Gabon simulated search–cost by adding white beads to the game bag (as in Game 1, scenario 1), representing unsuccessful hunts. These beads are put back into the game bag directly by the hunter. In this way, the proportion of unsuccessful hunts increases as the number of game beads decreases.
This game would replicate Game 4, but this time players would be assigned to play the role of either part-time hunters or full-time hunters.

The part-time hunters need to spend time tending their fields, so they do not have as much time to hunt as the full-time hunters, who sell some of their catch to buy farm produce to feed their families. To simulate this, part-time hunters are only allowed to hunt for 7 seconds each round, whereas the full-time hunters continue to hunt for 15 seconds.

The number of part-time and full-time hunters can also be modified. The Game Manager can assign players to a role by making a deck of playing cards equal to the number of players, with spades representing full-time hunters and diamonds part-time hunters. The Game Manager would shuffle the deck, then deal the cards face-up to players seated around the table.

An additional modification might be to provide all players with sheets of paper that assign to them their role and family size. For example, a player might be given a sheet of paper that assigns him or her as a full-time hunter with a family size of five, who require ten units of food for each round. This means that hunters must catch at least ten animals per round or their families do not have enough food. On the back of the page are ten circles that represent the food the player needs to produce during each round. Players need to put a bean in each circle during each round to show that their families have enough food. Another hunter profile could assign the player as a part-time hunter and part-time farmer, with a family size that needs 12 units of food. But in this case, as the players are part-time farmers, eight out of the 12 circles are already filled with the drawing of a bean (because they produce food from their fields), so they only have to hunt four animals in each round to feed their families.
Kuwinda Nyama: A multiplayer hunting game for social learning and sustainable use

© WCS/François Sandrin
Game 6: Adding hunters not from the community

This game would replicate Game 2, scenario 2, but this time players would represent either community hunters who would have to comply with hunting rules, whereas the external hunters would be allowed to break the spatial rotation rules and hunt wherever they want.
The SWM Programme is a major international initiative that aims to improve the conservation and sustainable use of wildlife in forest, savannah and wetland ecosystems. It is being funded by the European Union with co-funding from the French Facility for Global Environment (FFEM) and the French Development Agency (AFD). Projects are being piloted and tested with governments and communities in 17 participating countries. The initiative is coordinated by a dynamic consortium of four partners, namely the Food and Agriculture Organization of the United Nations (FAO), the Center for International Forestry Research and World Agroforestry (CIFOR-ICRAF), the French Agricultural Research Centre for International Development (CIRAD) and the Wildlife Conservation Society (WCS).

www.swm-programme.info
swm-programme@fao.org