
MICROPLASTICS  
IN FOOD COMMODITIES  
A FOOD SAFETY REVIEW  
ON HUMAN EXPOSURE  
THROUGH DIETARY SOURCES

FOOD 
SAFETY 
AND 
QUALITY 
SERIES 

18

100µm

ISSN 2415-1173





MICROPLASTICS  
IN FOOD COMMODITIES
A FOOD SAFETY REVIEW  
ON HUMAN EXPOSURE  
THROUGH DIETARY SOURCES

ESTHER GARRIDO GAMARRO 
VIOLETTA COSTANZO 

FOOD AND AGRICULTURE ORGANIZAT ION OF  THE  UNITED NAT IONS

ROME,  2022



Cover photos (from left to right): 
©CEFAS. 
©CEFAS.  
©FAO/Claudia Amico

Layout: Tomaso Lezzi

Required citation: 
Garrido Gamarro, E. & Costanzo, V. 2022. Microplastics in food commodities – A food safety review on human 
exposure through dietary sources. Food Safety and Quality Series No. 18. Rome, FAO. https://doi.org/10.4060/
cc2392en

The designations employed and the presentation of material in this information product do not imply the 
expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United 
Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its 
authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies 
or products of manufacturers, whether or not these have been patented, does not imply that these have been 
endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the 
views or policies of FAO. 

ISSN 2415-1173 [Print] 
ISSN 2664-5246 [Online]

ISBN 978-92-5-136982-1

© FAO, 2022, last updated 22/03/2024

Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 
3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). 

Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided 
that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific 
organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed 
under the same or equivalent Creative Commons licence. If a translation of this work is created, it must include the following 
disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of 
the United Nations (FAO). FAO is not responsible for the content or accuracy of this translation. The original [Language] 
edition shall be the authoritative edition.”

Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described 
in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules 
of the World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules and any arbitration will 
be conducted in accordance with the Arbitration Rules of the United Nations Commission on International Trade Law 
(UNCITRAL).

Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, 
figures or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission 
from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the 
work rests solely with the user.

Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/publications) and 
can be purchased through publications-sales@fao.org. Requests for commercial use should be submitted via: www.fao.org/
contact-us/licence-request. Queries regarding rights and licensing should be submitted to: copyright@fao.org.



i i i

PREPARATION OF THIS DOCUMENT

This document was developed by Esther Garrido Gamarro and Violetta Costanzo, 
who co-wrote the initial draft. Their work was consolidated at the FAO Expert 
Meeting on Microplastics in Food, during which the experts outlined below had 
the opportunity to contribute to the document. Kennedy Bomfeh incorporated 
additional inputs from the expert group and the FAO Secretariat.



i v

©
 FA

O
/M

oh
am

ed
 H

am
m

i

ABSTRACT

The contamination of the environment with whole plastics or pieces thereof (micro- 
and nanoplastics) is the subject of extensive discussion nowadays in academia and 
the media. In addition to environmental matrices, micro- and nanoplastics have been 
detected in fishery products and other important food commodities, with concerns 
over their impact on human health. Food consumption is considered one of most 
significant routes of human exposure to these small plastic particles. Such concerns 
may arise not only from the exposure to reactive monomers in the otherwise 
biologically inert polymer structure, but also from their associated contaminants. 
Many studies have reported neurotoxicity, oxidative stress and immunotoxicity 
among the main consequences of exposure to micro- and nanoplastics. 

This document outlines the existing literature on the occurrence of microplastics 
and their associated contaminants in foods. It estimates the dietary exposure of 
consumers to these materials, highlights some knowledge gaps with respect to their 
relevance to public health, and offers some recommendations for future work on 
microplastic particles to support food safety governance.
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EXECUTIVE SUMMARY

Over the last half-century, the volume of plastics produced every year has steadily 
increased. This points to a high demand for plastics, which can be seen in the wide 
range of applications for these materials in everyday life. The most common use of 
plastics is in packaging (circa 40 percent), followed by their use in construction, the 
automotive industry, electronics and household materials. Such usage is incentivized 
by their low cost and advantageous characteristics, including malleability, light 
weight and gas barrier properties (the latter feature notably also favours their use 
in the food industry). However, the same properties also make them less prone to 
degradation, thus enhancing their persistence in the environment, with potential 
consequences not only for environmental sustainability, but also for food safety 
and public health.

As a consequence of their inappropriate disposal, and the effects of human activities 
and nature, plastics may be broken down into smaller particles that are generally 
categorized by size as macro- (> 25 mm), meso- (25 mm–5 mm), micro- (5 mm–0.1 µm)  
and nanoplastics (< 0.1 µm). Of these size categories, microplastics and to a lesser 
extent nanoplastics have received considerable attention in food safety discussions: 
this is because of their potential transfer along the food chain and their subsequent 
probable impact on human health. Concerns about their potentially negative 
public health impact may arise in part from their chemical constituents. As plastics 
they are made of polymeric chains, which in turn consist of monomers, some of 
which may be present in an unreacted form and may thus interact with biological 
molecules upon ingestion. Concerns may also stem from the fact that some plastic 
polymer components (such as vinyl chloride) are known to be toxic. Residues of 
other (potentially) harmful chemicals used in the plastic manufacturing process 
(e.g. bisphenol A and phthalates) may also be found in the final product and their 
fragments. Additionally, microplastics are noted as having the potential to sorb and 
concentrate various food safety hazards from the surrounding environment.

A number of studies have, therefore, evaluated the occurrence of micro- and 
nanoplastics in foods, although more attention has been given to the former. For 
example, some studies have reported their occurrence in fishery products and other 
food commodities such as sugar, honey, beer and water. Reports in the scientific 
literature have also cited harmful health effects such as neurotoxicity, oxidative stress 
and immunotoxicity among the main consequences of exposure to microplastics. 

This document outlines the knowledge currently available on the presence  
of microplastics in food commodities, which result from various contamination 
sources. It discusses the toxicity of the particles’ components and provides the 
estimated exposure to microplastics in selected foods as an indicator of their public 
health relevance. It argues that although the reported levels of the hazards and 
their associated exposure levels are generally low, significant challenges such as data 
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paucity, knowledge gaps on the toxicity of micro- and nanoplastics, and a lack of 
standardized analytical methods hamper the formulation of definitive conclusions 
on the public health significance of these particles. It therefore recommends, 
among other things: the development, fine-tuning and harmonization of analytical 
techniques for (micro)plastics in food; ongoing investigations into the occurrence 
and toxicity of these substances in food value chains; and the evaluation of acute and 
chronic exposures to the (components of) (micro)plastics in various foods. 

It is hoped that the information provided in this document, as well as actions 
taken based on this same, will support a clearer understanding of the food safety 
significance of (micro)plastics in food. It should also support future exposure 
assessments and aid the development of appropriate legislation and guidance 
documents on food production, processing, distribution and consumption, as these 
relate to (micro)plastic contamination. 
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CHAPTER 1
INTRODUCTION

The term “plastic” includes a broad group of artificial compounds primarily 
generated through the polymerization reactions of monomers, which are typically 
derived from fossil and renewable biosources such as starch and castor oil  
(Plastic Europe, 2019). Presently, polymers are classified into three main 
families based on their response to heat and elasticity and other physical 
properties: thermosets (e.g. polyurethane, epoxy resins, silicone); thermoplastics  
(e.g. polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene 
terephthalate (PET), polystyrene (PS), polyamides (PA)); and elastomers  
(neoprene and rubber). Of these, only thermoplastics can be remoulded once heated  
(FAO, 2017; Plastic Europe, 2019). 

The number of plastics produced every year has steadily increased over the 
last half-century. As of 2017, an estimated total of 8.3 billion tonnes of resins 
and fibres had been produced globally (Geyer et al., 2017), with 360 million 
tonnes produced in 2018 alone (Plastic Europe, 2019). These large production 
volumes point to a correspondingly high demand for plastics, which is 
evident in the wide range of applications for these materials in everyday life.  
The most common use of plastics is in packaging (circa 40 percent), followed by 
their use in construction, the automotive industry, electronics and household 
materials (Plastics Europe, 2018). Their use is highly incentivized due to their 
low cost and advantageous physico-chemical characteristics such as their gas 
barrier properties (which favours their use in the food industry), malleability and 
light weight (Andrady, 2011). Nevertheless, the same properties also make them 
less prone to degradation, thus enhancing their persistence in the environment, 
with potential consequences not only for environmental sustainability but also 
for food safety and public health. 

Pieces of plastic materials found in the environment are categorized by their sizes into 
macro- (> 25 mm), meso- (25 mm–5 mm), micro- (5 mm–0.1 µm) and nanoplastics 
(< 0.1 µm) (Arthur et al., 2009; FAO, 2017; Koelmans et al., 2015; Lee et al., 2015; 
Thompson et al., 2004). Aside from these size categorizations, there is significant 
debate in polymer science concerning a universal definition that encompasses 
all criteria describing the particles, especially for microplastics, e.g. shape, colour, 
solubility in water, etc. (Frais and Nash, 2019; Hartmann et al., 2019). In this document,  
size distinctions are prioritized, and the above size definitions have been adopted.
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Of the aforementioned size categories, microplastics and to a lesser extent nanoplastics 
have received attention in food safety discussions because of their potential transfer 
along the food chain and subsequent probable impact on human health. Typically, these 
two groups result from either a breakdown of macroplastics (e.g. through weathering), 
or occur in such sizes from manufacture. When resulting from the former they are 
referred to as secondary microplastics, and primary microplastics when occurring from 
the latter (Andrady, 2011; Andrady and Neal, 2009; Arthur et al., 2009; de Sá et al., 
2018; FAO, 2017). Nanoplastics may result from the further fragmentation/breakdown  
of microplastics (Dawson et al., 2018; Hasegawa and Nakaoka, 2021). Emphasis is 
placed on microplastics in this document because of the relatively larger body of 
literature on the same in relation to food safety. 

The presence of microplastics in the environment was first reported in the 1970s  
(e.g. Carpenter and Smith, 1972 and Wong et al., 1974). These particles are believed to 
enter the food chain and may ultimately be ingested by humans, as some evidence of 
trophic transfer has been reported (Farrell and Nelson, 2013; Santana et al., 2016; Setälä 
et al., 2014). Fisheries and aquaculture products have thus been studied extensively for 
contamination from microplastics. What is more, many studies have reported their 
occurrence in other food commodities such as salt, sugar, drinking water and vegetables. 

Concerns about the potential negative public health impact of exposure to 
microplastics may arise in part from the chemical constituents of the polymeric 
chains, some of which may be present in an unreacted form and may therefore 
interact with biological molecules upon ingestion. The concern may also stem from 
the fact that some components of plastic polymers are known to be toxic. Moreover, 
residues of other (potentially) harmful chemicals used in the plastic manufacturing 
process may be found in the final product and their fragments. Microplastics also 
have the potential to sorb and potentially concentrate contaminants from the 
surrounding environment. For example, microplastics sampled from the North 
Pacific Central Gyre and along the Portuguese coast had polychlorinated biphenyls 
(PCBs) and polycyclic aromatic hydrocarbons (PAHs) at concentrations of 2 856 and  
44 800 ng per gram, respectively (Antunes et al., 2013; Rios et al., 2010).  
Some PCBs and PAHs are carcinogenic. Microplastics may therefore pose risks to 
public health following human exposure on account of their inherent composition, 
because of the presence of manufacturing aid residues, or by virtue of the 
accumulation (adsorption/attachment) of harmful substances from the environment.

As with many substances of concern, the routes of human exposure for microplastics 
are oral (ingestion through food), dermal (skin contact) and inhalation (Prata et 
al., 2020; Catarino et al., 2018). Cox et al. (2019) estimated that the annual amount  
of microplastics ingested through food may be as high as 52 000 MP/year. This number 
reaches a maximum of 121 000 MP/year when inhalation is considered. It has also been 
reported that oral exposure may be higher in places where fish and shellfish consumption 
is high (Barboza et al., 2020b; Cox et al., 2019). Catarino et al. (2018) have suggested 
that a further contribution to dietary exposure comes from household dust settling on 
food; they concluded that this was potentially much greater (up to 68 415 MP/year) 
than exposure from the consumption of contaminated mussel tissues (4 620 MP/year). 
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Considering that everyday items that humans come into contact with, such as textiles 
and personal care products (e.g. toothpaste, cosmetics, facial scrubs and cleansers) 
may contain microplastics (Praveena et al., 2018), some attention is being given 
to their evaluation as sources of microplastics for the various routes of exposure. 
Additionally, the plastic polymers used in making some medical devices and in 
pharmacological applications (e.g. the use of synthetic biodegradable polymers such as  
poly[lactic-co-glycolic] acid as carriers in drug delivery) may also constitute potential 
sources of exposure (Maitz, 2015; Kapoor et al., 2015). Consequently, exposure to 
particles from plastic medical devices such as prosthetic replacements and implants, and 
their subsequent effects, have also attracted research interest (Sternschuss et al., 2012). 

With regard to oral exposure, the European Food Safety Authority (EFSA) and 
the Food and Agriculture Organization of the United Nations (FAO) conducted 
two case studies on dietary exposure to chemical substances from microplastics 
contained in seafood (EFSA, 2016; FAO, 2017). Those studies focused on the 
consumption of mussels (225 g) as these organisms are eaten with their viscera, 
where an accumulation of microplastics is expected. Using that worst-case scenario, 
both organizations concluded that the overall contribution of microplastics as part 
of human exposure to environmental contaminants and additives can be considered 
negligible. Nevertheless, it should be stressed that such a conclusion is valid only 
within the limits of the assumptions and limited data used. 

Commercial aquatic species have also been widely investigated, as several 
publications have pointed to the ingestion of microplastics by fish, crustaceans 
and bivalves (Lusher et al., 2013; Van Cauwenberghe and Janssen, 2014;  
Devriese et al., 2015; Li et al., 2016, 2015; Rummel et al., 2016; Hossain et al., 2020; 
Gedika et al., 2022; Esposito et al., 2022) . Other food commodities such as table 
salt, sugar, honey, beer, water, edible fruits and vegetables have also been reported 
to contain microplastics (Renzi and Blašković, 2018; Liebezeit and Liebezeit, 2013, 
2015; Oliveri Conti et al., 2020). 

In many cases, and particularly for water, the source of contamination was suggested 
as being the packaging material rather than environmental pollution (Mason et 
al., 2018; Schymanski et al., 2018; Hee et al., 2022). The average global range of 
microplastic ingested (GARMI) per year has been estimated at 7.7–287 g per capita 
(or 0.1–5 g/week), whereas the estimated total average number of microplastics 
ingested (ANMP) was 102 527 MP/year. Drinking water was suggested as the source 
providing the highest contribution to the exposures (Senathirajah et al., 2021). 

The nature and extent of the adverse health effects of microplastics on the human 
body following exposure are controversial and still under investigation. Although 
considerable literature is available on the occurrence of microplastics, much less 
is known about their toxicity and the mechanisms of interaction with biota.  
For example, although microplastics might be absorbed from the intestine, factors 
such as hydrophilicity, surface chemical composition, charge and shape may also 
play a role in their subsequent systemic transport and toxicity. De Jong et al. (2008) 
and Samuelsen et al. (2009) suggest that microplastics may interact with biological 
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systems following entry. The form and impact of such interaction, however, remains 
to be firmly established. At the time of writing, only a few authors had reviewed the 
possible toxicological effects of microplastics on human health (Barboza et al., 2018a; 
De-la-Torre, 2020; Prata et al., 2020; Smith et al., 2018; Wright and Kelly, 2017). 
Most studies had reported evidence of oxidative stress, immunological and metabolic 
alterations and neurotoxicity following exposure to secondary microplastics (Brown 
et al., 2001; Canesi et al., 2015; Chiu et al., 2015; Choi et al., 2018; Deng et al., 2017; 
Espinosa et al., 2018; Hwang et al., 2019; Jeong et al., 2017, 2016; Jin et al., 2018;  
Lei et al., 2018; Liu et al., 2015; Lu et al., 2016; Petit et al., 2002; Samuelsen et al., 2009; 
Schirinzi et al., 2017; Veneman et al., 2017; Yang et al., 2019; Yu et al., 2018, 2020). 

As noted above, the potential toxicity (and thus food safety concern) of microplastics 
is mostly related to the polymer components (e.g. monomers, residual impurities, 
and physical damage) and the adverse effects induced by plastic additives. 
Furthermore, microplastics have the potential to concentrate substances such  
as persistent organic pollutants (POPs) and heavy metals, and also provide a 
favourable substrate for the adhesion of microorganisms (Endo et al., 2005; 
Holmes et al., 2014, 2012; Zettler et al., 2013). These two aspects may add to the 
primary toxicity of polymers. For instance, Cedervall et al., (2012) noted some 
alterations in the behaviour (delayed feeding time and motility) and fat metabolism  
(changes in serum triglycerides/cholesterol, weight loss, cholesterol distribution 
between muscle and liver) of fish (Carassius auratus) exposed to polystyrene nanoplastics  
(size: 24 nm) through trophic transfer. Alterations began appearing around the 
twenty-second day of the fish feeding on contaminated zooplankton. Barboza et 
al. (2020a) observed a correlation between the concentration of bisphenols in the 
liver and muscle of wild fish and the amount of microplastics ingested by the fish. 
However, the estimated daily intake for bisphenols from fish consumption in both 
children and adults was lower than the oral reference dose recommended by the 
EFSA. Despite this, the authors suggested that the consumption of fish contaminated 
with microplastics containing bisphenols may lead to a higher exposure to these 
chemicals than the consumption of fish not contaminated with the microplastics. 

Food safety considerations of aquatic organisms typically involve those that are 
eaten whole, since plastic particles larger than 150 µm in size should generally not 
be absorbed by the intestine and are mostly retained in the digestive tract. Ragusa 
et al. (2021) reported the first evidence of microplastics (size 5–10 µm) in the human 
placenta on both the maternal and foetal sides, in addition to the chorioamniotic 
membrane. Leslie et al. (2022) also reported the occurrence of microplastics in 
human blood at levels of 1.6µg/mL, providing pioneering evidence on the potential 
update of particles into the bloodstream.

The detection and quantitation of nanoplastics with current analytical techniques 
remains a challenge. At their longest, these particles measure less than 100 nm 
(Koelmans et al., 2015). Such dimensions may facilitate particle uptake from the 
gut lumen, which has been seen in the haemolymph of mussels (Browne et al., 
2008; Pittura et al., 2018), human placenta (Ragusa et al., 2021; Wick et al., 2010) 
and may be endocyted and phagocyted at sizes around 0.5 µm (Yoo et al., 2011).  



5

CHAPTER 1 :  INTRODUCT ION

The human body is expected to eliminate more than 90 percent of micro- and 
nanoplastics ingested (EFSA, 2016). For example, Schwabl et al. (2019) found 
microplastics ranging in size from 50 to 500 µm in all human stool samples from 
eight volunteers, suggesting the oral ingestion and eventual elimination of (some of) 
the particles. The fate of microplastics in the gastrointestinal tract requires further 
investigation. When inhaled, microplastics are most likely eliminated from the upper 
airways and alveoli through mucociliary clearance or macrophages, respectively 
(Wright and Kelly, 2017). 

This report presents the knowledge currently accessible on the presence  
of microplastics in food commodities as they result from various contamination 
sources, including plastic food packaging. The toxicity of plastic polymers and 
microplastics is also discussed, along with an estimated exposure to microplastics 
in selected foods. The exposure assessment is limited to the oral route, although 
dermal and inhalation exposures are briefly mentioned in parts of the report.  
Some knowledge gaps considered significant with respect to microplastics and 
public health are highlighted, and some recommendations are put forward 
concerning the food safety governance of same. Given the significant differences 
and current limitations in sampling, sample preparation and analytical methods for 
microplastics, data from the literature are presented as is. It is therefore expected 
that discussions of – and inferences from – such data may be less nuanced than 
ideal. Furthermore, the reader should note that many publications that assess the 
impact of microplastics on biological systems use pristine commercial polymeric 
particles (such as polystyrene) because of the challenges with sourcing microplastics 
from real-life scenarios. Differences may thus be expected in the actual behaviour  
of (mixtures of) microplastics from real-life sources. 
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CHAPTER 2
CHEMICAL COMPONENTS 
OF (MICRO)PLASTICS

In this section, the chemical constituents of plastics are discussed, with a focus on 
those components that may be inherently toxic. As far as food safety is concerned, 
the toxicity of the components discussed is linked to their potential transfer along 
the food chain in (association with) microplastics or, in some cases, to their transfer 
from food-contact materials to foods. Although toxicity arising from oral exposure 
remains the focus of the document, adverse effects from other exposure routes are 
briefly mentioned where necessary.

2.1	 POLYMERS

Polymers are the macrocomponents of plastics. They are the result of polymerization 
reactions occurring between single units called monomers. Polymers can be made 
of just one type of monomer (homopolymers) or from a mixture of monomers 
(copolymers). The most widely used commercial polymers are: polypropylene (PP), 
polyethylene (PE), high-density polyethylene (HDPE), low-density polyethylene 
(LDPE), linear low-density polyethylene (LLDPE), polyvinyl chloride (PVC), 
polyurethane (PU), polyethylene terephthalate (PET), polystyrene (PS), expanded 
polystyrene (EPS), extruded polystyrene (XPS), polycarbonate (PC), epoxy resin, 
acrylic, acrylonitrile butadiene styrene (ABS), polyamides (PA)(nylon), polyester 
(PEST), polyvinylidene chloride (PVDC)(Saran), poly methyl methacrylate 
(PMMA), poly aryl sulfone (PSU), polyacrylonitrile (PAN), polyvinyl alcohol 
(PVA) and polytetrafluoroethylene (PTFE, Teflon) (FAO, 2017; Plastic Europe, 
2019). Polymers are not considered to be toxic per se; they are generally considered 
biologically inert, largely because of their size. Their monomeric units, however, 
may be toxic. 

Polymerization reactions generally require the use of initiators, solvents and 
catalysts. These substances are typically added in concentrations below 2 percent of 
the polymer weight and should ordinarily not remain in the final products (Lithner 
et al., 2011). When they persist in the final product they are considered impurities 
and need to be assessed for their toxicological properties.
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2.2	 MONOMERS

Monomers are the building blocks of polymers, and they react with each other to 
form macromolecular chains. They can make up 4–100 percent of the final polymer 
by weight (Lithner et al., 2011). As indicated above, some monomers can be toxic. 
Therefore, although the polymers are generally too large to interact with tissue 
and result in adverse effects, an excessive amount of residual reactive monomers in 
the polymer may cause concern. Lithner et al. (2011) developed a hazard ranking 
of plastic polymers based on the toxicity of each of their components. According 
to that ranking, the most hazardous plastic polymer monomers for human health 
are vinyl chloride (in PVC), epichlorohydrin (in epoxy), acrylonitrile (in ABS), 
methylenedianiline (in epoxy), 1,3-butadiene, propylene oxide, ethylene oxide (in 
some PU) and acrylamide, in ascending order. Some of the most relevant monomers 
with potential adverse effects are described next. 

2.2.1  STYRENE

Styrene is the main component of polystyrene (PS) and can make up to 100 percent  
of the polymer by weight. Some studies have investigated the adverse effects of 
exposure to styrene microparticles, such as the induction of immunological alterations 
at the cellular level (Hwang et al., 2020). The majority of studies investigating styrene 
toxicity in humans focused on the effects on workers exposed through inhalation, 
a pathway which could allegedly cause inflammation and impair the functions  
of the respiratory tract (Meyer et al., 2018). Moreover, the concentration of styrene 
in the blood of workers of both sexes from 17 different places was suggested as being 
positively related to serum prolactin levels (Luderer et al., 2004). Exposure through 
styrene-contaminated water caused subjective symptoms related to irritation of the 
respiratory tract and abdominal pain (Arnedo-Pena et al., 2003). There were also 
some suggestions of carcinogenicity, although it is still difficult to obtain sufficient 
evidence of the relationship between these effects and styrene exposure (Agency 
for Toxic Substances and Disease Registry, 2010).

2.2.2  VINYL CHLORIDE

Vinyl chloride is the main component of PVC and accounts for up to 100 percent of 
this polymer. This molecule is reported to be mutagenic, may have consequences on 
reproduction and is considered as a Group 1 carcinogen by the International Agency 
for Research on Cancer (IARC, 2008). Its adverse effects are attributed to the 
interaction of the parent compound or derived metabolites with neural membranes 
or other targets in the human body. Metabolites are generally believed to be easily 
excreted in the urine following a two-phase detoxification pathway. However, the 
intermediate metabolites from the phase I detoxification step, namely chloroethylene 
oxide and chloroacetaldehyde, can interact with DNA to form adducts (Brandt-
Rauf et al., 2012). Acute toxicity mainly involves oxidative reactions such as lipid 
peroxidation, while chronic exposure can result in alterations of the connective tissue 
of the fingers and their bones (acro-osteolysis), liver cancer (angiosarcoma) and 
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hepatotoxicity (Agency for Toxic Substances and Disease Registry, 2002). Because 
of its observed toxicity on humans, the European Commission has established a 
threshold limit of 1 mg/kg of free or residual vinyl chloride in food-contact materials 
made of plastic (European Commission, 2011a).

2.2.3  BISPHENOL A

Bisphenol A (BPA) is an aromatic chemical belonging to the group of bisphenol 
compounds and is used as a monomer in the production of polycarbonate plastics 
(circa 50 percent of the polymer by weight) and epoxy resins (up to 67 percent by 
weight) (Lithner et al., 2011). It is classified as a xenoestrogenic endocrine disruptive 
chemical (EDC) within the European Union Registration, Evaluation, Authorisation 
and Restriction of Chemicals (REACH) classification (BPA, CAS 80-05-7; EC/List 
201-245-8), and is known to induce alterations and adverse effects on human cells 
even at low doses (Benachour and Aris, 2009; Fujiwara et al., 2018). Li et al. (2010) 
observed a dose-dependent increase in sexual dysfunction in workers from BPA and 
epoxy resin manufacturers. The use of this chemical in commercial products and 
in food-contact materials is strictly regulated by international authorities such as 
the European Commission (European Commission, 2011b). The Food and Drugs 
Authority of the United States (FDA), the Food and Agriculture Organization 
of the United Nations (FAO), and the World Health Organization of the United 
Nations (WHO) have also provided guidance through risk assessment exercises 
(WHO, 2010). In the European Union this compound can be used in food-contact 
materials and in food can coatings, and the specific migration limit (SML) into 
food in contact with these materials has been set at 0.05 mg/kg of food (European 
Commission, 2018). In 2015, the EFSA derived a temporary tolerable daily intake 
(TDI) of 4 μg per kilogram of body weight/day (EFSA, 2015), and in 2021 EFSA 
proposed to lower the TDI to 0.04 ng per kilogram of body weight/day (EFSA, 
2021). In addition to its use as a monomer in water pipes and metal cans, BPA is also 
used as an additive during the manufacture of PP, PVC and PE (Rani et al., 2015). 
In the United States of America, the FDA banned the use of BPA for baby feeding 
bottles and epoxy resin for packaging for infant formulas (FDA, 2014).

2.3	 RESIDUES OF PRODUCTION AIDS

Production aids and reagents are commonly added in concentrations lower than 2 
percent of the polymer by weight (Lithner et al., 2011). When reaction by-products, 
oligomers and other impurities persist in the final product they are referred to as non-
intentionally added substances (NIAS) whose identity is still largely unknown and 
may add to the toxicity of the final compound. Many chemicals can be used in the 
manufacturing of plastics: catalysts, surfactants, solvents, lubricants, chain stabilizers, 
chain transfer, exchange and stop agents, suspension aids and initiators are the most 
common, and are generally added in very small concentrations (Wiesinger et al., 2021). 
Peroxides (e.g. benzoyl peroxide) and azo compounds (e.g. ammonium persulfate)  
are common initiators that can be used to induce the polymerization reaction, and 
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become part of the final polymer (Lithner et al., 2011). On the other hand, catalysts, 
which are generally metal compounds such as zinc oxide and copper chloride, should 
not remain in the polymer, but they are still detected in some cases (Lithner et al., 
2011). Many other substances can also remain in traces, and it is not easy to identify 
all of them. This may lead to an underestimation of the toxicity of polymers and 
their possible harm to humans.

2.4	 PLASTIC ADDITIVES

To give plastic materials their characteristics and properties, such as flexibility 
and resistance to heat and UV light, some substances must be added during 
manufacturing. These low molecular weight substances are called plastic additives 
and are generally included in plastics at concentrations of up to 4 percent  
(EFSA, 2016). Some polymers may require higher amounts to achieve their desired 
features. For instance, PVC is the plastic polymer that requires the largest number 
of substances to acquire its final features. Additives can be classified as antioxidants, 
plasticizers, heat and UV stabilizers, flame retardants, processing aids, colorants, 
fillers, surfactants and biocides (Andrady and Neal, 2009). These substances are 
not covalently bound to plastics, and can easily leach and become bioavailable 
after ingestion, leading to possible interactions with biological macromolecules and 
disruptive endocrine effects.

2.4.1  PHTHALATES AND NON-PHTHALATE PLASTICIZERS

Phthalates are hydrophobic compounds added to plastic materials to enhance their 
malleability and flexibility. The plasticizers most commonly used for the production 
of PVC are di(2-ethylhexyl)phthalate (DEHP) and di(2-ethylhexyl)adipate (DEHA). 
Phthalates can account for up to 80 percent of the total plasticizer volume in the 
final PVC (Bhunia et al., 2013). Typical plasticizers for the production of PE are 
DEHA together with dipentyl phthalate (DPP), di-n-butyl phthalate (DBP), dioctyl 
adipate (DOA), diisobutyl phthalate and diethyl phthalates (DEP) (Bhunia et al., 
2013). Moreover, DBP, DEHP, butyl-benzyl-phthalate (BBP), di-isononyl phthalate 
(DINP) and di-isodecyl phthalate (DIDP) can be used in the production of food-
contact materials. Humans are mainly exposed via food ingestion. Notable include 
are DEHA, which is added to PVC films in sizeable amounts (> 20 percent polymer 
weight) for food wrapping (Goulas et al., 2000). Similarly, BBP has been used as 
a plasticizer in the PVC industry and the manufacturing of many other products 
worldwide, and it is expected to remain in the aquatic environment for decades 
(Herrero et al., 2015). Epidemiological studies have shown a positive correlation 
between phthalate exposure and both human reproductive defects and breast cancer 
incidence (Lopez-Carrillo et al., 2010). Benzyl butyl phthalate (BBP) has been found 
to activate the aryl hydrocarbon receptor in breast cancer cells to stimulate sphingosine 
kinase 1 (SPHK1)/sphingosine 1-phosphate (S1P)/sphingosine-1-phosphate  
receptor 3 (S1PR3) signalling and enhance formation of metastasis-initiating breast 
cancer stem cells (BCSCs) (Wang-Y.C et al., 2016). 
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It has been suggested that some plasticizers may disrupt endocrine activity and 
induce adverse effects on fertility and reproduction (Buck Louis et al., 2014; Grindler 
et al., 2015; Oehlmann et al., 2009; Zhang et al., 2009). The use of DBP, BBP, DEHP, 
DINP and DIDP in plastic materials intended for food contact is authorized, and 
tolerable daily intake (TDI) levels have been identified (Silano et al., 2019) (Table 1).

TABLE 1	 TOLERABLE DAILY INTAKES (TDI) FOR PLASTIC ADDITIVES

ADDITIVE TDI REFERENCE

Bisphenol A (BPA) 4 μg/kg of body weight/day EFSA, 2015

Nonylphenol (NP) 5 μg/kg of body weight/day Nielsen et al., 2000

Di-n-butyl phthalate (DBP), Butyl-benzyl-phthalate (BBP), Di(2-ethylhexyl)
phthalate (DEHP) and Di-isononylphthalate (DINP)

50 μg/kg of body weight/day Silano et al., 2019

DIDP 150 μg/kg of body weight/day Silano et al., 2019

Di(2-ethylhexyl)adipate (DEHA) 0.3 mg/kg of body weight/day EFSA, 2005

Source: Authors’ own elaboration.

2.4.2  FLAME RETARDANTS 

Flame retardants are a group of chemicals whose use in industrial manufacturing 
aims to decrease the flammability of the final products. They comprise different 
categories of compounds, such as polybrominated diphenyl ethers (PBDEs), 
hexabromocyclododecanes (HBCDDs), polybrominated biphenyls (PBBs) and 
tetrabromobisphenol A (TBBA). Many of these substances are no longer used 
because of evidence of their adverse biological effects, but residues can still be 
found in the environment because of their persistency. Organophosphorus flame 
retardants (OPFRs) are now widely used in their place, and some information on 
their toxicity and dynamics in food chains has already been provided. However, 
additional research must be conducted to better characterize their toxicological 
properties and behaviour in the food supply chain (reviewed by Du et al., 2019).

2.4.3  ALKYLPHENOLS

Alkylphenols are a group of hydrophobic chemicals of varying chain length that 
include propylphenol (PPH), ethylphenol (EP), octylphenol (OP) and nonylphenol 
(NP) among others. The latter can be used in the production of antioxidants and  
non-ionic surfactants for plastics (USEPA, 2010). Alkylphenols are known 
xenoestrogens with capacity to disrupt endocrine function; they are able to interact 
with the nuclear estrogenic receptor (ERα), whose affinity increases along with 
chain length (Tabira et al., 1999). The estrogenic activity of NP is three to six times 
lower than that of the natural compound (17β-estradiol), but NP still appears able to 
induce vitellogenin production in female and male fish and reduce testicular weight  
(Bontje, D. et al., 2004). Moreover, Kochukov et al., (2009) reported non-genomic 
effects of alkylphenols, such as changes in intracellular Ca++, and extracellular-
regulated kinase phosphorylation and prolactin release in pituitary tumour cells, 
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which were more pronounced for the long-chained compounds. The Danish 
Institute for Safety and Toxicology estimated a tolerable daily intake (TDI) of 5 μg 
per kilogram of body weight for NP (Nielsen et al., 2000) (Table 1). 
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The incorrect disposal of household and industry plastics eventually leads to their 
deployment at sea. Microplastics in the marine environment may accumulate 
chemicals from surrounding areas because of their physico-chemical characteristics, 
among which hydrophobicity may be the most crucial. Many POPs are lipophilic 
and have a higher affinity for hydrophobic microplastics than seawater. For example, 
International Pellet Watch and many other research groups have investigated 
the amount of microplastics at sea and the concentration of metals and organic 
pollutants on their surface (Endo et al., 2005; Ogata et al., 2009; Teuten et al., 2009).  
The ingestion of these microplastics was hypothesized to lead to the additional 
exposure to other chemicals whose toxicity has been widely studied. PCBs, DDT 
and HCHs are listed in Annexes A (elimination: PCBs, α, β, γ-HCH,), B (restriction; 
DDT) and C (unintentional production; PCBs) of the Stockholm Convention, as 
they have recognized adverse effects on human health. Even though the contribution 
of microplastics to the total dietary uptake of these chemicals was estimated as 
negligible compared to other sources (EFSA, 2016; FAO, 2017), it is important to 
identify the potential risk posed by absorbed contaminants. 

3.1	 POLYCHLORINATED BIPHENYLS (PCBS)

Polychlorinated biphenyls (PCBs) are a class of persistent organic contaminants 
whose production and use have been banned since the 1970s. They can be categorized 
as dioxin-like and non-dioxin-like according to the position of the chlorine atoms 
on the two phenyl rings, which can influence the conformation of the molecule.  
The degree of toxicity and the biological action of dioxin-like PCBs is 
similar to that of dioxins, as they have a coplanar conformation that allows 
them to interact with the aryl hydrocarbon receptor (AhR) in the cell 
and induce the transcription of enzymes belonging to the cytochrome 
P450 (CYP450) superfamily. The International Agency for Research on 
Cancer (IARC) observed a correlation between the occurrence of these 
chemicals and cancer (Lauby-Secretan et al., 2013). Concentrations of up to  
2 856 ng of PCBs per gram of microplastics have been measured on pellets from 
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the North Pacific Central Gyre (Rios et al., 2010). The tolerable daily intake (TDI) 
and no observed effect level (NOEL) of these contaminants are 20 ng per kilogram 
of body weight and 0.04 mg per kilogram of body weight (Faroon et al., 2003; 
JECFA, 1990).

3.2	 DICHLORODIPHENYLTRICHLOROETHANE (DDT)

Widely deployed as an insecticide from the 1940s onwards, DDT is an organic 
compound used to eradicate malaria and other diseases carried by insects. Its use was 
then prohibited from the 1970s in most countries as a result of its recognized toxicity 
and persistency. Nevertheless, there appears to be continued use of the compound 
in some countries in the Global South in indoor applications to cope with insect-
borne diseases (WHO, 2011). Following its degradation in the environment, the two 
main metabolites are DDE and DDD, whose physico-chemical characteristics are 
basically the same as the parent compound. No clear evidence of adverse effects has 
been produced in humans so far, but it might have a role in the aetiology of some 
diseases, and the persistence of DDT and its metabolites in tissues seems relevant 
(ATSDR, 2002; Beard, 2006; IARC, 2018). Marine pellets have been reported to 
contain up to 1100 ng/g of DDT and 276 ng/g of DDE in California and Japan (Rios 
et al., 2007; Teuten et al., 2009). The provisional tolerable daily intake (PTDI) and no 
observed adverse effect level (NOAEL) for DDT have been set as equal to 0.01 mg 
per kilogram of body weight and 1 mg per kilogram of body weight/day, respectively 
(JECFA, 2001).

3.3	 HEXACHLOROCYCLOHEXANES (HCHS)

Hexachlorocyclohexanes are a group of persistent organic compounds used as 
insecticides; HCH occurs as several stereoisomers, based on different stereochemistry 
of chlorine atoms along the cyclohexane ring. Although evidence of the toxicity 
of HCHs in humans is scarce, the IARC has suggested some of the isomers as 
possible carcinogens (IARC, 2018). Marine microplastics from the Bay of Maputo 
(Mozambique) were reported to have a maximum concentration of 37 ng/g of HCHs 
(Ogata et al., 2009). The acceptable daily intake (ADI) and NOAEL for γ-HCH 
(lindane) are 0–0.005 mg per kilogram of body weight and 0.47 mg per kilogram of 
body weight/day (JECFA, 2002).

3.4	 POLYBROMINATED BIPHENYLS (PBDES)

Polybrominated biphenyls are a group of 209 hydrophobic polyhalogenated 
compounds classified as persistent organic pollutants. They have been widely 
used as flame retardants in different fields, as well as additives in plastics, but their 
production is now restricted under the Stockholm Convention. They can be classified 
into lower and higher brominated congeners according to the number of bromine 
atoms on the molecule: congeners with one to four bromines are classified as lower 
brominated; molecules with five or more bromines are classified as higher brominated. 
Observations on model organisms have suggested that these chemicals might cause 
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neurotoxicity and endocrine disruption (reviewed by Costa and Giordano, 2011; 
Darnerud et al., 2001). However, there is no current correlation with cancer in 
humans. Up to 9 909 ng/g of PBDEs were detected on microplastics from the 
Central Pacific Gyre (Hirai et al., 2011). No TDI or NOAEL has been established.

3.5	 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)

Polycyclic aromatic hydrocarbons are environmental pollutants whose source can 
either be anthropic or natural. They are mostly found in fossil fuels and can be 
generated following incomplete combustion (pyrolytic origin), the transformation 
of biogenic precursors following their deposition (diagenetic origin) and crude oil 
spillage (petrogenic origin). Their chemical structure is composed of several aromatic 
rings that assume a coplanar conformation. It is possible to trace their origin by 
calculating the ratio between low (2–4 rings) and high (4–6 rings) molecular weight 
PAHs. The latter are generally detected at higher concentrations on microplastics 
in the environment (Gauquie et al., 2015; Rios et al., 2007). These compounds are 
recognized mutagens and carcinogens; they have no established TDI. When analysing 
food contamination, benzo(a)pyrene can be used as a marker for their presence 
(JECFA, 2006), although the sum of two, four or eight PAHs has been suggested as 
a more suitable parameter for this purpose (EFSA, 2008). A concentration of 44 800 
ng/g PAHs has been found in microplastics along the Portuguese coast (Antunes 
et al., 2013).

3.6	 MICROBIAL BIOFILMS

Microplastics present at sea provide a suitable substrate for microbial attachment, 
mostly because of their hydrophobicity that promotes biofilm formation. Bacterial 
communities on marine microplastics can be distinct from those in the surrounding 
seawater, thus creating an ecosystem of their own, also referred to as a “plastisphere” 
(Zettler et al., 2013). As suggested by Oberbeckmann et al. (2018), environmental 
factors such as nutrient concentrations and salinity may play a role in the 
colonization. The same authors also pointed out the possible role of microplastics 
as substrates where horizontal gene transfer between antibiotic-resistant bacteria 
and other bacteria may occur. Bacteria belonging to the genus Vibrio – which also 
includes some pathogenic species – have been shown to be among the very first 
colonizers (yet short-term residents) of microplastics in marine environments, with 
correspondingly higher concentrations in proximity to major land cities (Kesy et al., 
2020). Based on 16S rRNA identification, the authors observed that the two most 
represented operational taxonomic units (OTUs) were seen to cluster close to the 
species Vibrio anguillarum, Vibrio rumoiensis and Vibrio vulnificus. They suggested 
that the concentration of nutrients in seawater could be another factor favouring the 
presence of these microorganisms, along with high temperatures and low salinity.  
For instance, a recent study observed a high abundance of Vibrio spp. on 
microplastics near a mariculture farm, possibly due not only to the high 
temperatures but also to the organic matter produced by the cultured shellfish 
(Sun et al., 2020). The authors also noticed a time-dependent change in the 
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community of microorganisms on the microplastics, which revealed a preferential 
colonization and enrichment of Vibrio spp., Pseudoalteromonas spp. and 
Alteromonas spp. (carbohydrate metabolizing and infectious bacteria) compared 
to the surrounding water. In the North and Baltic Seas, Vibrio parahaemolyticus 
was identified on PE, PS and PP microplastics (Kirstein et al., 2016).  
Moreover, in addition to Vibrio spp., which were present on microplastic 
samples in great abundance (up to 24 percent of the biofilm community in one  
PP sample), Zettler et al. (2013) identified the hydrocarbon-degrading bacteria that 
are likely to help with microplastics breakdown. Hydrocarbon-degrading bacteria 
were also detected in microplastic (LDPE) particles rapidly colonized in coastal 
sediments from a microcosm experiment (Harrison et al., 2014). Some harmful 
algal species have also been detected on the surface of microplastic debris, which 
could then act as vectors for these organisms too (Masó et al., 2003). Pham et al. 
(2021) reported that microplastics could serve as substrates of antibiotic-resistant 
bacterial biofilm.
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Microplastic contamination has been seen to affect all environmental compartments, 
but the most widely studied is the hydrosphere. In general, the final point of deposit 
(also called the “ultimate/final sink”) of microplastics leave sediments in terrestrial, 
freshwater and marine environments. From this point, they may be introduced 
into the food value chain by anthropogenic activities (e.g. food production) and 
bioturbation (disturbance of sediments by living organisms causing microplastic 
displacement). In food production, microplastics can enter the food value chain at 
all the different stages, from primary production through processing, packaging 
transport/distribution, consumption and even disposal. Yates et al. (2021) have 
undertaken a comprehensive analysis of the current literature on seven widely used 
plastic polymers (HDPE, LDPE, PET, PS, PP, PVC and miscellaneous plastics) in 
food systems. The extent of microplastic contamination in the food value chain 
remains largely unknown as a result of the scarcity of published scientific data.

In terrestrial environments, the presence of microplastics in soil has been reported 
and may in fact be an underestimated and equally important sink that could 
influence human health and economy, given that agriculture and land use could 
be significantly impacted by the contamination. As noted above, the occurrence of 
microplastics in agricultural produce such as fruits and vegetables has been reported.

Several recent studies have also reported the occurrence of microplastics in foods of 
animal origin. The contamination could be related to the use of contaminated feed 
– fishmeal, for instance, which is made of raw fish, has been repeatedly reported as 
being contaminated with synthetic particles retained within the gastrointestinal tract. 

The various contributions of soils, production waters, food-processing 
environments, distribution and the domestic environment to the introduction or 
transfer of microplastics in or along the food value chain are discussed next.
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4.1	 CONTAMINATION OF PLANT FOODS FROM SOILS 

The uptake of microplastics by terrestrial plants has been reported recently. Reports 
suggest that microplastics could accumulate in a plant’s roots before being transported 
to aerial parts such as leaves, flowers and fruits (Li et al., 2020; Li et al., 2021).  
Deposition on plant food surfaces has also been reported (Tympa et al., 2021;  
Dong et al., 2021; Silva et al., 2021; Jia et al., 2022). 

Soil biota, such as earthworms, have been seen to influence and promote the 
transport of plastic particles down through the soil profile in a size-dependent 
manner (Huerta Lwanga et al., 2017; Rillig et al., 2017b). Agricultural activities such 
as ploughing and harvesting may also play an important role in the movement and 
incorporation of the polymers into the soil matrix (Rillig et al., 2017a).

Recent research has shown a positive correlation between microplastics in soil and in 
the gastrointestinal tracts of fish in paddy co-culture systems, suggesting a possible 
contamination even in these farming systems (Lv et al., 2019). Higher concentrations 
were observed during rice-planting periods, perhaps as a consequence of the use 
of organic fertilizers and fish feed in the agrofish system. Organic fertilizers could 
become an important entry route for microplastics into agricultural ecosystems, 
as sewage sludge is often used as a fertilizer in developed countries because it is 
inexpensive. Use of contaminated biosolids and sludge could eventually lead to an 
approximate annual release in soils of up to 850 tonnes of microplastics per million 
inhabitants (Nizzetto et al., 2016).

Also, the proximity of agroecosystems to urban centres might affect the particle load 
in the ground. Cultured fields near suburban roads contained almost twice as many 
microplastics compared to those in residential areas further from roads in China. 
The main sources were identified as traffic (e.g. migration from tire marks on the 
road), household discharges, organic fertilizers, and the plastic nets and bags used 
in agricultural activities (Chen et al., 2020). 

The use of plastic materials in agriculture is a direct source of pollution, especially 
on plant surfaces. Plastic mulches, for example, are used to protect seedlings and 
crops, but they may also induce some alteration in the soil community and chemistry 
by changing the microclimatic conditions – this is in addition to the obvious plastic 
accumulation, especially of HDPE, LLDPE and LDPE (Steinmetz et al., 2016).  
All of these factors can lead to a degradation in soil properties and quality (e.g. 
nutrient depletion), and much concern derives from the leaching of chemicals 
from plastics into soils and farm products. In China, phthalate concentrations in 
vegetables resulting from the use of plastic film in greenhouses were higher than in 
soil (2.38 mg/kg), with 5.84 mg/kg in pothead mustard, 3.62 mg/kg in celery and  
3.49 mg/kg in lettuce. Levels of DEHP and DBP were above European Union limits 
for vegetables and the human risk was suggested to arise mainly from vegetable 
consumption (Wang et al., 2015).
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4.2	 CONTAMINATION OF FOOD FROM PRODUCTION WATERS

Wastewater treatment plants (WWTP), depending on their effectiveness, may 
remove over 90 percent of microplastics from wastewater. However, particularly in 
the case of ineffective systems, a certain level of micro- and nanoparticles can easily 
be found in WWTP effluents, which will subsequently be used as water sources for 
purposes such as field irrigation (crops, flowers, vegetables, fodder crops) and for 
livestock drinking water (Kaur et al., 2012). Moreover, when microplastics end up 
in surface water and in groundwater reservoirs, they can later enter the drinking 
water supply chain and be found in household taps. Plastics loading in drinking 
water can further increase through the abrasion and degradation of plastic materials 
that make up the supply system. Tap water contamination may arise from abrasion 
and following the leaching of chemicals and polymeric particles from the pipes  
(e.g. PVC, PE) and tanks in the water supply network: they may be coated with 
plastic films such as epoxy resins (Mintenig et al., 2019; Strand et al., 2018).  
Epoxy resin is in fact used to lessen the extent of corrosion in water tanks, while PA 
can be found as a fitting component in pipes (Mintenig et al., 2019).

Finally, in the case of sea and lake salt, the main source of microplastics may be 
the source water, which has been seen to contain significant amounts of synthetic 
particles. Sea salt production is carried out by progressive crystallization from water, 
which is passed through different evaporation ponds to eventually obtain the final 
product (Yang et al., 2015). The contamination of rock salt is more likely related 
to its processing.

4.3	 CONTAMINATION OF FOOD FROM THE PROCESSING ENVIRONMENT

The use of machinery and technologies made of, or including, plastic materials could 
lead to the transfer of parts of the polymers to the foods they come into contact with. 
For example, the membranes used to process milk beverages were identified as the 
main source of plastic contamination, as most of the synthetic particles identified in 
the products were thermosulfones (Kutralam-Muniasamy et al., 2020). In another 
study, substances used in the production process were cited as one possible cause  
of the presence of xenoestrogens in mineral water, though this could also have resulted 
from the use of treated groundwater that still contained some chemicals uneasy to 
filter (Wagner and Oehlmann, 2009). Fadare et al. (2021) hypothesized possible 
contamination sources from the production process or the use of contaminated 
water. Even in the case of honey, contamination from synthetic fragments and fibres 
was hypothesized as starting from the very first step of natural production: either 
bees transport it from contaminated wildflowers to the hive, or it originates from  
the plastic bags used to supply sugar to the bees (Liebezeit and Liebezeit, 2015, 2013). 
Renzi and Blašković (2018) attributed the presence of polypropylene fibres in salt to 
contamination from the clothes worn by production staff. Similarly, a clear change in 
phthalate concentration was noted in Japan, when the levels of phthalates detected in 
retail packed lunch meals substantially decreased after a ban on the use of PVC gloves 
containing DEHP during production and cooking processes (Tsumura et al., 2001).
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4.4	 CONTAMINATION OF FOOD IN THE DOMESTIC ENVIRONMENT

Microplastics in the domestic environment may contaminate exposed food.  
For example, Liebezeit and Liebezeit, 2014, 2013 suggested that the deposition of 
microplastics (especially those from textile materials) from the atmospheric and 
indoor air may be one of the main causes of contamination in honey and beer. 
Catarino et al., 2018 also reported that household dust accounted for up to 68 415 MP  
fibres on meals per year. Estimates of the atmospheric fallout of synthetic and 
semi-synthetic fibres indicated a daily deposition of between 2 and 355 MP/m2  
(Dris et al., 2016).
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The need for plastic packaging arises from the necessity to protect food and 
avoid its chemical, physical or biological degradation, thus increasing its shelf-life  
(Lee, 2010). Plastics have been extensively used in this field because of their useful 
characteristics, which also enable international trade and improve the quality of 
foodstuffs. Approximately 40 percent of all produced plastics are used for packaging: 
PE (especially LDPE), PS (including high-impact polystyrene, HIPS and general-
purpose polystyrene, GPPS), PP, PET, polycarbonates (PC), polyamide (PA 6, 6.6, 
6.10, 10, 11), and the polyurethane (PU) used in adhesives, as well as PVC, are 
the leading polymers involved in this sector (Bhunia et al., 2013; Plastic Europe, 
2019). Some other polymers are polytetrafluoroethylene (PTFE or Teflon, used in 
cookware), polyvinylidene chloride (PVDC, used as barrier layer) and ethylene 
copolymers (Bhunia et al., 2013). 

Synthetic particles in bottled drinking water mostly derive from the packaging 
material, as the identified polymers are generally those that make up the bottle caps 
(e.g. PP, PE), labels, internal coating of cartons and bottles themselves (e.g. PET) 
(Mason et al., 2018; Oßmann et al., 2018; Schymanski et al., 2018). 

Besides the potential contamination with microplastics, the migration of leachable 
chemicals from plastic packaging into foods is a noted concern (Groh et al., 2019). 
Although chemical migration is outside the scope of this report, some aspects are 
highlighted, such as the possibility of migration occurring from microplastics 
found in food. 
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5.1	 FACTORS AFFECTING MIGRATION OF PLASTIC COMPONENTS

Most polymers used in packaging materials can undergo certain changes as a result 
of external conditions, and this can lead to the release of chemical components. 
Polymer-specific physico-chemical alterations occur after exposure to high 
temperatures, UV light and changes in pH (Bhunia et al., 2013; Pilevar et al., 2019). 
This could result in food safety issues for packaged goods and food, especially 
those imported from the Global South where there are availability and compliance 
challenges with regard to regulations on the limits of toxic substances. 

Migration of plastic components depends not only on the quality of the plastic 
material, but also on the characteristics of the food and contact time. According 
to Bach et al. (2013), there was an increase in the migration of some components 
of PET bottles into water at 60 °C. They also reported an increase in the water 
concentration of two aldehydes and antimony (Sb), though no increase in the 
cytotoxicity, genotoxicity or estrogenic activity of water extracts in in vitro 
bioassays. A temperature-dependent release of heavy metals was also detected 
in food cooked in polyethylene bags, with a total migration of 7 percent,  
16 percent, 8 percent and 48 percent for lead (Pb), cadmium (Cd), chromium 
(Cr) and cobalt (Co) respectively, resulting in food concentrations of up to 121, 
12, 9.5 and 15 ppm after 5 hours of exposure at 95 °C, especially on the surface 
of the food (Musoke et al., 2015). 

Hernandez et al. (2019) also investigated the release of micro-sized particles 
from plastic teabags when these are immersed in water at 95 °C and estimated an 
overall exposure to approximately 11.6 and 3.1 billion micro- and nanoplastics 
per cup of tea, respectively. Renzi et al. (2018) observed that by cooking 
mussels, the amount of microplastics in the edible tissue decreased by up to  
14 percent compared to raw tissues, with some smaller-sized fragments found 
in the surrounding cooking water. Other studies have also detected some plastic 
manufacturing aids (such as additives) in meat and dairy products, identifying a 
correlation between migration level and fat content (Goulas et al., 2000; Guerreiro 
et al., 2018; Khaksar and Ghazi-Khansari, 2009; Sanches Silva et al., 2007;  
Tsumura et al., 2002). 

5.2	 OCCURRENCE OF PLASTIC CHEMICALS COMING  
FROM FOOD PACKAGING MATERIALS 

In plastics, additives are not covalently bound to the polymer and are thus free to 
move and migrate towards the food they are in contact with. Antioxidants from 
PET reusable bottles and pigmented particles have been found in bottled mineral 
water (Oßmann et al., 2018). The chemical components of microplastics could either 
migrate into water before the consumption of the product or afterwards, once the 
consumer has ingested them. Titanium dioxide and other unidentified pigments have 
been observed in bottled water (Schymanski et al., 2018). The pigments hostaperm 
blue, chromate yellow and phtalocyanine – dyes widely used in the plastics industry 
– were also detected in salt samples (Karami et al., 2017b).
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Fasano et al. (2012) measured specific migration limits (SML) well below the ones 
established by the European Union for plastic additives in cans, yoghurt packaging, 
baby bottles and other food-containing materials. Besides, the exposure to additives 
contained in plastic food-contact materials (FCM) would only be 0.003, 0.04 and 0.02 µg  
per kilogram of body weight/day for adults, infants and young children, which is 
well below the stated daily toxicity threshold limit (0.15 µg per capita in 60 kg adults; 
Welle and Franz, 2018). It is expected, therefore, that the migration of associated 
contaminants from microplastics would be much lower, with correspondingly lower 
exposure levels for consumers.

The concentration of plasticizers and antioxidants in foodstuffs has been measured, 
with the highest values found in corn and potato snacks (García Ibarra et al., 2018). 
The authors detected the highest concentrations for the plasticizer ATBC (O-acetyl 
tributyl citrate), with up to 7.09, 0.56 and 2.33 µg/g in corn snacks, cookies and 
cake, while DIPB was the most prominent in potato snacks (1.51 µg/g). The most 
frequently detected phthalate was DEP, together with DEHP. It is important to 
note that DEP and DIPB are not authorized in the production of food-contact 
materials. Moreover, DBP exceeded the set migration limit of 0.3 mg/g in part of 
the samples (European Commission, 2011a). Genualdi et al. (2014) measured the 
amount of styrene monomers that migrated into food, determining a concentration 
range of between 2.6 ng/g in raw chicken and 163 ng/g in sandwich cookies.  
The concentration in raw beef (5.6 ng/g), sandwich cookies and chocolate chip 
cookies (107 ng/g) were in the same range as that detected in a study by Fleming-Jones 
and Smith (2003) for the same commodities (max: 13 ng/g, 165 ng/g and 111 ng/g,  
respectively). The migration of dimers and trimers was found to be negligible.

Wang et al. (2020) demonstrated that BPA migration in animal feed is dependent on 
both contact time and the initial concentration in the packaging, ultimately reaching 
a maximum migration rate and concentration of 26.2 ng/cm2 and 17.4 ng/g in corn 
powder. These values were lower than the specific migration limit (SML) of 0.05 mg/kg  
set for BPA in food (European Commission, 2018).

To summarize, migration of plastic monomers, oligomers, additives and NIAS is 
likely to occur, and concentrations will depend on the polymer’s characteristics, 
contact and storage times, food composition, and food-packaging interactions.  
In spite of this, no significant concerns are expected to arise from the results presented 
in the majority of studies, which have indicated chemical diffusions into food lower 
than the chemicals’ TDI. Accordingly, the potential migration of such components 
from microplastics in food may be of even less concern. This notwithstanding, it is 
important to highlight the current knowledge on the occurrence of (micro)plastic 
components in food commodities to guide research and regulatory efforts.

5.2.1  DAIRY PRODUCTS

Concentrations of DEHA exceeding the SML set by the European Union were 
detected on the surface layer of fatty cheese wrapped in PVC film after a contact 
interval of 240 hours (12.2 mg/dm2, 18.9 mg/dm2; Goulas et al., 2000). Penetration 
into deeper food layers was seen to be very limited. 
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Fat content, time and temperature-dependent migration of styrene monomers 
was also investigated in cups containing hot drinks. Styrene leaching occurred at 
a maximum of 0.05 percent of the cup content, and was found to be highest in 
general purpose polystyrene (GPPS) cups compared to high impact polystyrene 
(HIPS), with values of up to 8.15, 8.30 and 8.65 μg/L in tea, milk and cocoa milk 
(Khaksar and Ghazi-Khansari, 2009). Styrene concentration was also observed to 
reach higher levels in packaged Gorgonzola cheese (max: 803 ng/g) compared to 
unpackaged samples (max: 250 ng/g). Its presence was suggested as the likely result 
of both migration and production by Penicillium roqueforti, the fungal starter used 
in the production of this cheese (Chiesa et al., 2010). The values were however 
below the legislative limit established by the European Union(60 mg/kg; European 
Commission, 2011).

Along the dairy supply chain, microplastics can be introduced during the milking 
of cows at the farm, during downstream processing, or via the final packaging (Da 
Costa Filho et al., 2021). Contamination levels of 14 MP/L have been reported; the 
source was suggested as being the membrane filters used during dairy processing 
(Kutralam-Muniasamy et al., 2020). 

5.2.2  WATER

Oßmann et al. (2018) measured an average concentration of 23 594 and 195 047 
pigment particles per litre of water in reusable PET and glass bottles, which were the 
same as those in the labels, suggesting bottle cleaning as the possible contamination 
source. Microplastics were consistently more concentrated in plastic bottled water 
(1 410 MP/L) compared to glass bottles (204 MP/L) from the same source (Mason 
et al., 2018). 

In addition to this, Wagner and Oehlmann (2009) measured a xenoestrogenic 
activity in 60 percent of analysed glass, PET and Tetra Pak mineral water samples, 
with the highest 17 β-estradiol equivalent concentrations (EEQ) of 75.2 ng/L in a  
non-reusable PET bottle. Glass bottled water samples seemed to induce lower 
activities compared to PET and Tetra Pak. The authors suggested different possible 
sources of contamination with endocrine-disrupting compounds; these included 
contamination during the production process and migration from the bottles 
themselves. In a worst-case scenario, based on ingestion of 3 L of water per day, 
the daily intake of estrogenic compounds was measured as 226 ng EEQ. 

A WHO study suggested that even at high concentrations, the exposure to 
microplastic-bound chemicals and biofilms in water did not present a significant 
health concern (WHO, 2019).
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5.2.3  MEAT

Plastic for vacuum packaging contains several films. The chemical compounds 
used in their manufacture must be regulated to demonstrate the absence of adverse 
effects on the consumer and on the organoleptic properties of the food. Migration of 
diisooctyl phthalate (DIOP), polyethylene glycol, phthalic anhydride and stearamide 
was observed in vacuum-packed beef samples (Guerreiro et al., 2018). Furthermore, 
the partitioning of a model substance from the LDPE packaging film was seen 
to be strictly and positively dependent on the contact time between plastic and 
food, temperature and fat content in pork and chicken (Sanches Silva et al., 2007). 
Recently, Kedzierski et al. (2020) detected extruded polystyrene (XPS) microfibres 
on the surface of packaged chicken meat ranging from 4 to 18.7 MP/kg of meat. This 
most likely came from the packaging process. Rinsing was not efficient in removing 
the fibres, and the authors estimated a daily ingestion between 7 µg and 1.4 mg for 
high-density particles (1040 kg/m3) and meat consumption of 135 g/day. 

5.2.4  ALCOHOLIC BEVERAGES

ATBC was detected at a concentration ranging from 2.61 to 7.30 µg/g in bottled 
sake (a Japanese beverage made from fermented rice), possibly after its migration 
from the gasket cap. This resulted in an exposure of 26.3 µg per kilogram of body 
weight/day (Tsumura et al., 2002), still considerably lower than the NOAEL. 
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ANALYTICAL TECHNIQUES 
FOR THE DETERMINATION 
OF MICROPLASTICS 
AND ASSOCIATED 
CONTAMINANTS

Investigations into microplastics in a variety of environmental and consumable 
products have seen considerable methodological development over the last 10 years 
(Rist et al., 2021). Most of the focus has been on the accuracy of the methods applied, 
such as analytical approaches to confirm suspected particles as plastic (e.g. by way 
of spectroscopy, which allows the generation and interpretation of a chemical 
signature) and the need to carefully ensure samples are not contaminated (e.g. from 
airborne fibres or from sampling and the analysis process) (Brander et al., 2020).  
As this is a rapidly evolving field of research, some of the approaches applied 10 years 
ago are no longer recommended as standalone methods to confirm particles as plastic 
(Provencher et al., 2020). Similarly, whereas researchers were often limited to larger-sized  
microplastics (e.g. > 300 µm), working with microscopes and visual inspection of 
particles alone, nowadays they can work with much smaller particles, albeit with more 
costly analytical instruments and stricter contamination control procedures.

Some methods are still in development (e.g. for nanoplastics), thus limiting their 
application on a broad geographical scale because of a lack of instrumentation and 
(human) capacity. Researchers have also begun to test their methods for accuracy 
through recovery tests and add procedural blanks to track sources of contamination. 
These approaches were not common in microplastics research prior to 2015 but 
are now recommended, if not mandatory (Cowger et al., 2020). Moreover, the way 
researchers treat their data when they identify sources of procedural contamination 
in their samples can be vastly different, which can impact the final results and the 
conclusions drawn from them. 
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Given this caveat on the nascent character of methodologies in microplastics 
research, it is worth reiterating that literature cited in this report spans almost 
the entire lifespan of (micro)plastics studies, from seminal work in the 1970s,  
to reports published at the beginning of 2022. The research has also been conducted 
across different continents with an uneven distribution of, and accessibility to 
(quality) research infrastructure. For example, some of the investigations that 
identified microplastics in food products over the previous decade applied basic 
visual identification (e.g. Liebezeit and Liebezeit, 2013, 2014; Boerger et al., 2010). 
Correcting such data in line with current research requirements is hardly possible. It 
is therefore important to keep methodological differences in mind when comparing 
and interpreting research outputs.

6.1	 ANALYTICAL METHODS TO IDENTIFY MICROPLASTICS

As noted, the lack of standardized or, at least, comparable analytical methodologies 
makes it challenging to compare the results provided by different studies. Moreover, 
the lack of consensus on terminology (e.g. a universally accepted definition of  
micro- and nanoplastics) also detracts from research progress in the field.

Organisms to be tested are often collected from the environment, purchased at 
local supermarkets or bought directly fishers. Depending on the type of organism 
sampled, different approaches may be employed for the extraction of microplastics. 
For example, studies investigating microplastic contamination in fish mainly focus 
on the analysis of gut content, removing the gastrointestinal tract (GIT) and either 
digesting it or simply opening for a visual identification of the particles. For example, 
the European Commission Decision 2010/477/European Union highlights the need 
to analyse stomach content when investigating litter contamination in fish. On the 
other hand, for mussels (and shellfish generally) the whole animal must be analysed, 
and tissue digestion is the first step. However, in some studies on crustaceans, either 
only the GIT was considered, or the animal was simply opened for visual detection 
(Andrade and Ovando, 2017; Horn et al., 2019; Hossain et al., 2020). The main 
extraction methods are performed through enzymatic tissue or chemical digestion 
of tissue. Chemical digestion includes the use of acids, hydroxides and peroxides and 
it is the technique most frequently used by researchers. It is important to note that 
in some cases the digestion solution can induce some chemical changes on plastic 
particles. For instance, hydrogen peroxide (H2O2) and nitric acid (HNO3) could 
lead to alterations in particle size and the degradation of some polymers such as 
polyamide (PA) (Claessens et al., 2013; Nuelle et al., 2014). Moreover, nitric acid 
discolours PE particles (Phuong et al., 2018). 

After digestion, a density separation step is carried out in order to separate and 
collect the lighter microplastics from water, sediment or organic matter, usually 
through the use of saturated saline sodium chloride (NaCl) or sodium iodide (NaI) 
solutions. Phuong et al. (2018) have suggested that the use of potassium hydroxide 
(KOH) and potassium iodide (KI) – 10 percent for tissue digestion and 50 percent 
for sedimentation respectively – may be the best choice for a more complete and 
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efficient removal of organic matter. A reported benefit of KOH digestion is that 
it causes only minimal visual or molecular damage to microplastics (Bianchi et 
al., 2017; Thiele et al., 2019). Finally, the supernatant solution is filtered, and the 
polymeric particles are identified. 

The identification step can be carried out with a microscope, using either Fourier 
Transformed Infrared spectroscopy (FTIR) or Raman spectroscopy. In this step, the 
best option may be the combination of two or more analytical approaches to give a 
better identification of microplastics of a broad size class range. This approach has 
previously been recommended by Käppler et al. (2016) and Kumar et al. (2021): 
they suggested analysing MP particles larger than 50 μm by micro-FTIR, and 
those smaller than 50 μm MP by micro-Raman spectroscopy. Raman is also able 
to characterize the crystalline structure of the polymer. In some studies on beer, 
salt, water and honey, synthetic particles were detected using dyes such as Nile 
Red and Rose Bengal, which are not able to identify the polymer type, but enabled 
researchers to distinguish synthetic materials from organic matter (Kosuth et al., 
2018; Liebezeit and Liebezeit, 2015, 2014; Mason et al., 2018). Recently, Huang et 
al. (2020) evaluated a new, faster method to analyse microplastic contamination in 
chicken meat using attenuated total reflection mid-infrared spectroscopy (ATR-
MIR), which seems promising and could, following some improvements, have a 
significant role in this field. Table 2 summarizes some analytical techniques used 
for (micro)plastics in seafood.

TABLE 2	 ANALYTICAL METHODOLOGIES CURRENTLY IN USE TO ANALYSE THE OCCURRENCE  
OF PLASTICS IN SEAFOODS

FOOD SAMPLE EXTRACTION SEPARATION FILTER PORE 
SIZE IDENTIFICATION REFERENCE

Bivalves Soft tissue HNO3 (69%) 5 μm µ-Raman Van Cauwenberghe and 
Janssen, 2014

Bivalves Soft tissue H2O2 (30%) NaCl 0.8 μm Microscope Mathalon and Hill, 
2014

Bivalves Soft tissue H2O2 (30%) NaCl 5 μm μ-FTIR Li et al., 2015

Fish, bivalves GIT, Soft tissue KOH (10%) Microscope Rochman et al., 2015

crustaceans Whole, 
abdominal 
muscle

HNO3 : HClO4 
(65% : 68%)

10-20 μm Devriese et al., 2015

Bivalves, 
annelida

Soft tissue HNO3 (69%) 5 μm µ-Raman Van Cauwenberghe  
et al., 2015

Bivalves Soft tissue H2O2 (30%) NaCl 5 μm µ-FTIR Li et al., 2016

Bivalves Soft tissue HNO3 (22.5 M) 0.7 μm Microscope Santana et al., 2016

Bivalves Soft tissue KOH (10%) NaCl 20 μm µ-FTIR H. X. Li et al., 2018

Crustaceans GIT H2O2 (30%) NaCl 45 μm µ-FTIR Hossain et al., 2020

Bivalves Soft tissue HNO3 
(69–71%)

1.2 μm Microscope Davidson and Dudas, 
2016
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TABLE 2	 ANALYTICAL METHODOLOGIES CURRENTLY IN USE TO ANALYSE THE OCCURRENCE  
OF PLASTICS IN SEAFOODS (continued)

FOOD SAMPLE EXTRACTION SEPARATION FILTER PORE 
SIZE IDENTIFICATION REFERENCE

Bivalves, 
gastropods, 
crustaceans. 

Whole HNO3 (69%) 5 μm Raman Thushari et al., 2017

Bivalves 
crustaceans, 
bivalves, 
gastropods

Soft tissue HNO3,  
NaOH,  
H2O2 (30%)

NaOH 0.7 μm Microscope Leslie et al., 2013

Bivalves Soft tissue HNO3 : HClO4 
(65% : 68%)

Hot needle De Witte et al., 2014

Fish GIT KOH (10%) NaI 0.45 μm µ-FTIR Zakeri et al., 2020

Fish GIT KOH (10%) 1.2 μm µ-FTIR Bessa et al., 2018

Fish GIT H2O2 (30%) NaCl 5 μm µ-FTIR Jabeen et al., 2017

Fish GIT H2O2 (35%) 26 μm FTIR Güven et al., 2017

Fish GIT NaOH (1M) 200 μm µ-FTIR Baalkhuyur et al., 2018

Fish GIT 63 μm Microscope Silva-Cavalcanti et 
al., 2017

Fish Viscera and gills KOH (10%) NaI 149 μm, 8 μm µ-Raman Karbalaei et al., 2019

Fish Whole KOH (10%) NaI 149 μm, 8 μm µ-Raman Karami et al., 2017a

Fish Liver NaClO (9%) 5 μm Raman Collard et al., 2017

Fish Muscle KOH (10%) <2 μm Microscope Akhbarizadeh et al., 
2018

Fish, bivalves Digestive glands 
and gills GIT

H2O2 (30%) 1.2 μm FTIR Digka et al., 2018

Fish GIT KOH (10%) 200 μm FTIR Tanaka and Takada, 
2016

Fish GIT H2O2 (30%) NaCl 11 μm FTIR-UATR Cheung et al., 2018

Fish Muscle, skin, 
gills, liver, GIT

H2O2 (35%),  
KOH (4%),  
HClO4 (68%), 
HNO3 (65%)

NaI Microscope Abbasi et al., 2018

Fish Muscle, GIT, gills KOH (10%) 1.2 μm FTIR-ATR Barboza et al., 2020b

Bivalves Soft tissue KOH (10%) 20 μm µ-FTIR-ATR Cho et al., 2019

Gastropods, 
bivalves

Soft tissue H2O2 (30%) 25 μm,  
0.45 μm

µ-FTIR Naji et al., 2018

Bivalves Soft tissue KOH (10%) KI 12 μm µ-FTIR Phuong et al., 2018

Bivalves Hepatopancreas, 
gills

H2O2 (30%) 0.45 μm Renzi et al., 2018

Bivalves Soft tissue Enzymatic NaCl 0.8 μm µ-FTIR-MCT Catarino et al., 2018

Bivalves Soft tissue H2O2 (30%) NaCl 5 μm μ-FTIR J. Li et al., 2018

Crustaceans, 
mollusc

Edible tissue KOH (10%) 11 μm FTIR Daniel et al., 2021

Mussels Soft tissue KOH (10%) 2.7 μm µ-FTIR Bråte et al., 2018

Mussels GIT, digestive 
glands

KOH (10%) 0.7 mm μ-FT-IR DING et al., 2018
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TABLE 2	 ANALYTICAL METHODOLOGIES CURRENTLY IN USE TO ANALYSE THE OCCURRENCE  
OF PLASTICS IN SEAFOODS (continued)

FOOD SAMPLE EXTRACTION SEPARATION FILTER PORE 
SIZE IDENTIFICATION REFERENCE

Seaweed Whole Enzymatic,  
H2O2 (30%)

NaCl 5 μm µ-FTIR Li et al., 2020

Bivalves Soft tissue H2O2 (30%) NaCl 5 µm Microscope, ATR Qu et al., 2018

Bivalves Soft tissue KOH (10%) 1 µm Microscope, 
μ-FT-IR

Teng et al., 2019

Fish GIT KOH (10%) 250 µm Microscope Lusher et al., 2016

Honey, sugar H2O2 (30%) 0.8 μm, 40 
μm

Fuchsin, Rose 
Bengal

Liebezeit and Liebezeit, 
2013

Beer 0.8 μm, 40 
μm

Rose Bengal Liebezeit and Liebezeit, 
2014

Honey H2O2 (30%) 0.8 μm, 40 
μm

Rose Bengal Liebezeit and Liebezeit, 
2015

Salt H2O2 (30%) 5 µm µ-FTIR Yang et al., 2015

Salt KOH (10%) NaI 150 μm µ- Raman Karami et al., 2017b

Salt H2O2 (30%) 0.45 μm FTIR Seth and Shriwastav, 
2018

Water, beer, 
salt

2.5 μm, 11 
μm

Rose Bengal Kosuth et al., 2018

Salt H2O2 (30%) NaI 0.2 μm µ- Raman Gündoğdu, 2018

Salt H2O2 
(17.25%)

2.7 μm FTIR-ATR Kim et al., 2018

Salt H2O2 (30%) 0.3 μm SEM Microscope, 
FTIR

Fadare et al., 2021

Salt 5 µm FTIR Iñiguez et al., 2017

Water H2O2 (30%) 5 µm, 0.2 μm µ-FTIR, µ-Raman Pivokonsky et al., 2018

Water 1.5 µm Nile Red, FTIR-
ATR

Mason et al., 2018

Source: Authors’ own elaboration.

6.2	 ANALYTICAL METHODS FOR PLASTIC ADDITIVES AND CONTAMINANTS

Chemicals associated with microplastics are generally analysed and quantified 
through chemical separation techniques based on their molecular characteristics. 
First, the samples undergo an extraction process. Depending on the nature of the 
food analysed, different techniques can be used. For instance, Fierens et al. (2012) 
extracted phthalates from homogenized high-fat foods and low-fat foods with 
the use of a mixture (1:1) of acetone/n-hexane, followed by a clean-up operated 
through gel permeation chromatography with dichloromethane (DCM) as the 
mobile phase. Meanwhile, for aqueous-based beverages and packaging materials a 
liquid–liquid extraction with DCM or n-hexane was performed, without any further 
purification step. The authors then detected and quantified the single phthalates by 
gas chromatography, using low-resolution mass spectrometry coupled with electron 
impact ionization.
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Other authors have used techniques such as solid phase microextraction (SPME), 
solid phase extraction (SPE) with acetonitrile, acetone, n-hexane, ethyl-acetate and 
n-hexane (1:2), ether and n-hexane to determine monomers or additives in foods and 
packaging (Chiesa et al., 2010; Goulas et al., 2000; Tsumura et al., 2002). Guerreiro 
et al. (2018) used tetrahydrofuran and methanol in the extraction step to analyse 
concentrations in packaging materials and beef meat. 

Following extraction, a chromatographic separation process is applied, which 
can be carried out through high-performance liquid chromatography (HPLC), 
ultra-performance liquid chromatography (UPLC), gas chromatography (GC) 
coupled with a single or double quadrupole mass spectrometer (MS, MS-MS) or 
high‑resolution gas chromatography (HRMS). Most recently, a new technique 
using the matrix solid phase dispersion (MSPD) coupled with high‑performance 
liquid chromatography has been implemented (Cañadas et al., 2021). The obtained 
chromatogram from the separation step is used to check the identity of compounds 
and measure them by comparing their peaks with library spectral data.



33

CHAPTER 7
OCCURRENCE  
OF MICROPLASTICS  
IN FOOD COMMODITIES

7.1	 OCCURRENCE OF MICROPLASTICS IN FISHERY AND AQUACULTURE 
PRODUCTS

Plastic materials are used extensively in the aquaculture industry and in fisheries. 
Many fishing gears and equipment such as buoys, nets and ropes are made  
of synthetic materials, which have already proven their resistance and durability. 
The composition of plastic polymers found in marine organisms generally 
reflect the types of plastic that are used in aquaculture or fishing gears, whether  
to breed or collect these organisms (Castro et al., 2016; Wang et al., 2018). Higher 
concentrations of microplastics have in fact been found in farmed mussels (Li et 
al., 2015). Polypropylene (PP) and expanded polystyrene (EPS) have been detected 
in cultured mussels, and their presence is most probably related to the use of these 
polymers to make ropes for the line culture of mussels and buoys (Cho et al., 2019; 
Mathalon and Hill, 2014). PA (nylon) and polyester (PEST) are also extensively used in 
this industry. What is more, the number of microplastics present in fish has been seen 
to increase together with the size of the animal (Akhbarizadeh et al., 2018; Boerger et 
al., 2010), its proximity to urbanized sites, and the concentration of plastic debris in 
seawater and sediment (Güven et al., 2017; Qu et al., 2018; Silva-Cavalcanti et al., 2017).

A plethora of research has investigated the presence and quantity of microplastics 
in fish from all over the world, with a great number of papers focusing on 
the contamination of commercial marine and freshwater species (Table 3).  
The major polymer types commonly found in the marine environment are PE, 
PP, followed by PS, PA and PVC (Antunes et al., 2013; Castro et al., 2016; Endo 
et al., 2005; Fok et al., 2017; Frias et al., 2010; Rios et al., 2007; Wang et al., 2018).  
As previously mentioned, no particular concern s hould arise from the consumption 
of microplastic-contaminated fish, since most of the microplastics will be removed 
when the animal is eviscerated (except in small fish, which are typically eaten whole). 



34

MEETING REPORT
MICROPLAST ICS  IN  FOOD COMMODIT IES

However, removal of the fish’s gastrointestinal tract may not completely prevent the 
ingestion of microplastics, as some particles have been detected in the edible muscle 
tissues of fish, squid, crab and prawn (Abbasi et al., 2018; Akhbarizadeh et al., 2018; 
Barboza et al., 2020b; Daniel et al., 2021; Karami et al., 2018, 2017a; Ahmadi et al., 
2022). These results suggest that considering the digestive tract the only reservoir of 
plastic could lead to an underestimation of the actual amount that may be ingested. 

High-density plastics such as PVC or PET are more likely to sink and be less available 
to organisms that feed in the upper layers of the water column (Wright et al., 2013). 
For this reason, it is thought that benthic species may be more impacted, although 
higher levels of microplastics have generally been found in pelagic species (Güven et 
al., 2017; Rummel et al., 2016). The reason for their presence in other tissues has made 
researchers consider other possible exposure mechanisms, such as translocation and 
adherence (Abbasi et al., 2018; Collard et al., 2017; Karami et al., 2017a; Kolandhasamy 
et al., 2018). For example, in canned fishery products, contamination could be the 
result of improper evisceration or processing (Karami et al., 2018). 

Seaweed is another important aquaculture product, but literature on the presence 
of microplastics is still scarce. One study observed between 0.9–3.0 MP/g dw and 
1.0–2.8 MP/g dw on the thalli of packaged and processed nori intended for human 
consumption (Li et al., 2020). 

Studies suggest that the most abundant polymer types found in shellfish are 
polyethylenes (PE, LDPE, HDPE), followed by polyethylene terephthalate 
(PET), polypropylene (PP), polyamide (PA) and polystyrene (PS). In fish, the most 
common polymers are PE, PP, PA, PET and PS in descending order, while PE and 
PP seem to be dominant in fisheries and aquaculture products. Their widespread 
presence could be explained by their large use and production that reaches  
36 percent and 21 percent for PE and PP respectively (Geyer et al., 2017). Besides, 
PE and PA have been encountered in the surface layers of water close to a 
mariculture farm (Wang et al., 2018).

Plastics are more frequently found in the shape of fibres or fragments, while 
other morphologies such as beads, film and pellets are less common. The great 
abundance of fibres suggests that the main sources of plastics may be fishing gears 
and aquaculture facilities in the case of PA and PP, while household disposal could 
be the origin of many textile polymers such as rayon (RY). It has been suggested that 
around 0.19 million tonnes of microplastic fibres from the production and normal 
use of synthetic textiles enter the marine environment alone annually (Henry et al., 
2019). 

As can be seen in Table 3, the average number of microplastics found in the 
gastrointestinal tract of fish varied from 0.03 to 7.2 MP/individual, while the 
concentration of microplastics per gram ranged from 0.16 to 34.9 MP/g. In the 
edible tissue of shellfish, the concentration range of microplastics was between 
0.04 and 12.8 MP/g. The concentration of particles detected in the muscle tissue 
of commercial fish in the northeast Atlantic Ocean and Persian Gulf ranged from 
0.05 to 1.85 MP/g, respectively (Akhbarizadeh et al., 2018; Barboza et al., 2020b). 
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Studies have reported varying levels of contamination in fish species, including 
those targeted for human consumption (Table 3). As an example, some of the earliest 
work on fish identified between 2.4 and 33 percent of sampled fish as containing 
microplastics (Foekema et al., 2013; Liboiron et al., 2016). Barboza et al. (2020) 
also detected microplastics in 49 percent of 150 investigated commercial fish species 
from the northeastern Atlantic Ocean. The highest prevalence of contaminated fish 
was found in a river in northeast Brazil, with 83 percent of catfish (Hoplosternum 
littorale) showing evidence of having ingested plastic debris (Silva-Cavalcanti et al., 
2017), followed by anchovies (Engraulis japonicas) collected in Tokyo Bay, with  
77 percent of the individuals containing microplastics (Tanaka and Takada, 2016).  
As for bivalves, microplastics were detected in 33 percent of Pacific oyster 
(Crassostrea gigas) samples from California, in 46 percent of mussels  
(Mytilus galloprovincialis) from the Ionian Sea and in 84 percent of oysters collected 
from farms along the Chinese coastline (Digka et al., 2018; Rochman et al., 2015; 
Teng et al., 2019).

7.2	 OCCURRENCE OF MICROPLASTICS IN OTHER FOOD COMMODITIES

Aquaculture and fisheries products are not the only food groups that may  
be contaminated with microplastics. Plastic polymers have also been detected in 
other foods such as salt, sugar, beer and honey. Since 2018, many studies have 
also developed an interest in the contamination of drinking water. In all the 
aforementioned commodities, plastic fibres and fragments are commonly detected 
shapes. However, the number of microplastics in these foods may be under- or 
overestimated, as not many studies used spectroscopic techniques to identify 
synthetic particles. Similarly, some studies used dye techniques that are unable  
to indicate the types of microplastics found.

7.2.1  SALT

Sea salt contamination most likely reflects the contamination of the seawater used 
to produce it. The most probable source of microplastics would therefore be 
fragments present in the water column. Salts can also be made from lake waters 
and mineral deposits, but the most common source is marine water. Sea salt is 
produced by way of a stepwise evaporation of water in successive ponds, resulting 
in the crystallization of salt. Salt brands from Asia, and especially Indonesia, were 
seen to contain higher levels of microplastics compared to other countries, likely 
reflecting the higher coastal (micro)plastic pollution levels in these countries  
(Kim et al., 2018). For mineral salt, contamination may occur during industrial 
processing and manufacture. For instance, refining could influence the load of plastic 
in the product (Kim et al., 2018). 

Packaging is also likely to contribute, to a certain degree (Yang et al., 2015). Renzi 
and Blašković (2018) found significant differences in fine iodized sea salt brands 
according to their price, with more expensive brands showing a lower quantity 
of plastics. The concentration of microplastics in Croatian table sea salt varied 
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between 13 500 MP/kg to 19 800 MP/kg, with the great majority of them being 
polypropylene (PP) and polyethylene (PE) (Table 4). These polymers are among the 
main constituents of salt plastic packaging, together with PET (Yang et al., 2015). 

Environmental contamination of production water is also considered to be  
a plausible source of microplastic contamination (Iñiguez et al., 2017; Kim et al., 
2018; Renzi and Blašković, 2018; Seth and Shriwastav, 2018; Yang et al., 2015).

Compared to other exposure routes, the contribution of salt to total exposure  
is expected to be minimal (Kim et al., 2018).

7.2.2  HONEY AND SUGAR

The most frequently detected shapes of plastics found in honey are fibres, followed 
by a lower number of fragments. Some studies have suggested that foraging 
bees are most likely to transport microplastics to the hive, which could be then 
incorporated into the honey (Liebezeit and Liebezeit, 2013). This suggests that 
airborne contamination, probably of flowers, may be an important transmission 
route. Besides, as already discussed, the harvesting, processing and packaging of the 
final product could contribute only minimally to contamination. The microplastics 
load in samples varied between 2–82 fragments/kg and 10–336 fibres/kg (Liebezeit 
and Liebezeit, 2015). Fibres were the most common, and most numerous, form of 
microplastics found in the product (Table 4).

Only one study (Liebezeit and Liebezeit (2013),was found on the occurrence of 
microplastics in sugar. The authors reported a greater number of synthetic particles 
in unrefined cane sugar (560 fibres/kg and 540 fragments/kg) compared to refined 
samples (388 fibres/kg sugar and 270 fragments/kg sugar; see Table 4).

7.2.3  BEER

Possible contamination sources cited for microplastics in beer are atmospheric 
deposition or direct contamination during production (Kosuth et al., 2018; Liebezeit 
and Liebezeit, 2014). The most common plastic shapes found in beer samples are 
fibres and fragments. The microplastics load in commercial beer samples ranged 
from 12 to 109 fragments/L (Liebezeit and Liebezeit, 2014; see Table 4).

7.2.4  WATER 

Water treatment plants generally remove up to 90 percent of microplastics  
(WHO, 2019; 2017). Pivokonsky et al. (2018) detected lower levels of microplastics 
in treated water (a maximum of 684 particles/L) compared to raw samples  
(a maximum of 4 464 particles/L). Not all studies were able to detect microplastics 
in water coming from waterworks, which suggests these materials were either 
absent or present in shapes or concentrations undetected by the method applied  
(Strand et al., 2018; Uhl et al., 2018). 
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The most frequently detected synthetic polymer residues in drinking water are 
usually the main components of the bottles used to contain it. Some studies have 
identified the packaging itself to be among the main sources of contamination 
(Mason et al., 2018; Oßmann et al., 2018; Schymanski et al., 2018). Polyethylene 
terephthalate (PET) is generally used to make water bottles, while polypropylene 
(PP) and polyethylene (PE) make up the bottle caps. The latter is also used to 
cover the interior of beverage cartons. The presence of other plastic types such as 
PVC, polyester (PEST) and epoxy resin have also been detected, and their presence 
could be connected to the materials that make up tanks and pipes through which 
water flows before it is supplied to households (Mintenig et al., 2019). Pivokonsky 
et al. (2018) observed that the main proportion of microplastics in water was that 
of particles smaller than 100 µm, with 40–60 percent of the particles from water 
treatment plants ranging from 1 to 5 µm in size. 

For bottled water, a generally higher contribution to overall human exposure 
seems to be made by reusable plastic bottles, which have been seen to contain as 
much as ten times more microplastics compared to single‑use bottles (Schymanski 
et al., 2018). However, Oßmann et al. (2018) detected a higher concentration of 
microplastics in glass bottles (6 292 ± 10 521 MP/L) compared to newer, returnable 
bottles (4889 ± 5432 MP/L). Older reusable PET bottles were the most contaminated 
(8339 ± 7043 MP/L). The production, cleaning and refilling of these bottles should 
be checked with greater attention, as they may cause stress and release of particles 
from the bottles. Finally, when compared to salt and beer, tap water causes the 
greatest exposure to microplastics, accounting for almost 88 percent of estimated 
total yearly exposure (Kosuth et al., 2018).

7.2.5  FRUITS AND VEGETABLES

Oliveri Conti et al. (2020) reported the occurrence of microplastics in apples, 
pears, broccoli, lettuce and carrots (Table 4) The authors detected microplastics in 
the edible tissues of these food items, with higher average concentrations in fruits 
(apples: 195 500 MP/g; pears: 189 550 MP/g) compared to vegetables (broccoli: 
126 150 MP/g; carrots: 101 950 MP/g; lettuce: 50 550 MP/g). This difference was 
supposedly related to diversity in life-length, pulp vascularization and root system.

Some occurrence data for microplastics in non-marine foods are provided in Table 4.
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CHAPTER 8
DIETARY EXPOSURE 
TO MICROPLASTICS 
IN DIFFERENT FOOD 
COMMODITIES

Estimates of dietary exposure to substances can provide information on: (1) risks 
to human health through a comparison of exposure estimates to acceptable or 
tolerable levels; (2) the likely relative contributions of different foods to overall 
dietary exposure; and (3) the impact of risk management measures such as maximum 
limits on dietary exposure. At present, it is only possible to use estimates of dietary 
exposure to microplastics for purpose (2); that is, to determine which foods are likely 
to be the major contributors to overall dietary exposure to microplastics. 

In this section, estimated dietary exposure to microplastics in selected foods is 
calculated based on the available data on contamination levels in the foods, and their 
respective consumption rates . The foods of interest were mussels, clams, shrimps 
and prawns (considered together), oysters, salt, honey, sugar and water. 

8.1	  MICROPLASTIC CONCENTRATIONS IN THE SELECTED FOODS USED 
IN DIETARY EXPOSURE ESTIMATES

Data on microplastic contamination in bivalve molluscs were taken for clams 
(Scapharca subcrenata), mussels (Mytilus galloprovincialis) and oysters (Saccostrea 
cucullate) from three studies on commercial species (Table 3). For these species, 
the highest plastic load was estimated to be 10.5, 12.8 and 7.2 MP/g of wet weight 
respectively (DING et al., 2018; H. X. Li et al., 2018; Li et al., 2015). Contamination 
data on other foods considered in the exposure estimation are summarized in Table 5.  
In addition to these, information on concentration of MP in shrimp were drawn 
from a recent study, where up to 4.88 MP/g of tissue (wet weight) were found in 
commercial brown shrimp (Metapenaeus monoceros) (Hossain et al., 2020; Table 3).
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8.2	 CONSUMPTION DATA ON THE SELECTED FOODS USED IN THE 
DIETARY EXPOSURE ESTIMATES

In order to determine the potential dietary exposure to microplastics for each of 
the foods considered, a high habitual consumption amount was used for each food.  
Food consumption data were taken from the WHO and FAO food safety collaborative 
platform (FAO/WHO 2022), which includes data from the Chronic Individual Food 
Consumption Database – Summary statistics (CIFOCOss). This database contains 
food consumption data from a range of developed and developing countries.  
For the current exercise, the food consumption metric used was the 95th percentile 
(P95) food consumption estimate, and only for consumers across the countries 
included in CIFOCOss. Consumers are the proportion of the total survey cohort 
who reported consuming the food of interest.

The food consumption values used in the current exercise and their origins are 
summarized in Table 5.

TABLE 5	 MAXIMUM P95 CONSUMER FOOD CONSUMPTION FOR SELECTED FOODS (G/DAY)

FOOD COUNTRY AGE CLASS MAX P95 (G/DAY)1

MUSSELS China Adults and elderly 	 250

CLAMS Italy Adults and elderly 	 162

SHRIMPS AND PRAWNS Malaysia Adults and elderly 	 162

OYSTERS China Children and adolescents 	 133

SALT Burkina Faso Adults and elderly 	 222

HONEY China Children and adolescents 	 83

SUGAR Burkina Faso Adults and elderly 	 168

WATER Mexico Adults and elderly 	 2669

1 Estimates of the P95 food consumption level based on less than 20 consumers were not considered. 
Sources: FAO/WHO, 2022. 

8.3 CALCULATION OF ESTIMATED DIETARY EXPOSURE

The microplastic concentration and food consumption amounts identified in the 
previous sections were combined to give daily and annual estimates of dietary 
exposure to microplastics for a high (P95) consumer of each of the selected foods. 
Results are summarized in Table 6.
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TABLE 6	 ESTIMATES OF DIETARY EXPOSURE TO MICROPLASTICS FROM CONSUMPTION  
OF SELECTED FOODS

FOOD

MAXIMUM 
MICROPLASTIC 

CONCENTRATION 
(MP/G)

MAXIMUM P95 
CONSUMER 

CONSUMPTION  
(G/DAY)

ESTIMATED DIETARY EXPOSURE

MP/DAY1 MP/YEAR2

MUSSELS 12.8 250 3 200 1 168 000

CLAMS 10.5 162 1 701 620 865

SHRIMPS AND PRAWNS 4.88 162 791 288 554

OYSTERS 7.2 133 958 349 524

SALT 19.8 222 4 396 1 604 394

HONEY 0.66 83 55 19 995

SUGAR (REFINED) 0.39 168 66 23 915

WATER (TAP) 0.06 2669 160 58 451

1 MP/day calculated as: Microplastic concentration (MP/g) x food consumption (g/day)
2 MP/year calculated as: MP/day x 365
Source: Authors’ own elaboration 

8.4 OTHER ESTIMATES OF DIETARY EXPOSURE

The ingestion rates of microplastics from food commodities and their associated 
exposure levels have been evaluated in some studies and are presented in Table 7.  
Taken at face value, the exposures estimated in the present report (Table 6)  
are generally higher than those reported in earlier studies (Table 7). For example, 
whereas the estimated annual exposure to microplastics in mussels was 1 168 00 MP/year  
in this report, the highest estimate from the literature was 4 620 MP/year. This may 
be explained by differences in the sources, and magnitudes, of the contamination 
and consumption data used. Table 7 also reveals that the exposures are purposely 
reported in different units, as they appeared in the cited literature. This was done 
as some of the reported units could not readily be converted into a common unit 
(e.g. from µg/year to MP/year). Furthermore, the studies reported in Table 7 
appear to have been more interested in seeking a “no effect” level, rather than a  
dose–response relationship. These factors must be considered in any attempt to 
compare the exposures outlined in the two tables.
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TABLE 7	 ESTIMATES OF DIETARY EXPOSURE (DERIVED MP INTAKE) TO MICROPLASTICS (MP)  
IN SEAFOOD, VEGETABLES, WATER, SALT, FRUIT AND VEGETABLES

CONSUMPTION DERIVED MP INTAKE COUNTRY REFERENCE

MOLLUSCS 72.1 g/day (top 
consumers)
11.8 g/day (minor 
consumers)

11 000 MP/year (top consumers)

1 800 MP/year (minor consumers)

Europe Van 
Cauwenberghe 
and Janssen, 
2014

FISH MUSCLE 300 g/week (adults)
50 g/week (children)

169–555 MP/week (adults)
28–92 MP/week (children)

Iran (Islamic 
Republic of)

Akhbarizadeh 
et al., 2018

FISH MUSCLE 2080 g/year
2600 g/year
10 400 g/year
15 600 g/year

112 MP/year (child 1 year old)
140 MP/year (child 2–6 years)
562 MP/year (child > 6 years)
842 MP/year (adults)

Europe Barboza et al., 
2020b

FISH MUSCLE 9 600 g/year
47 700 g/ year
31 100 g/ year
21 400 g/ year
57 000 g/year

518 MP/year/person
2 576 MP/year/person
1 679 MP/year/person
1 156 MP/year/person
3 078 MP/year/person

Brazil 
Spain
Italy
United States of 
America
Portugal

Barboza et al., 
2020b

BIVALVES 3.01 g/day 212 MP/year Republic of Korea Cho et al., 
2019

SHELLFISH 4.03 g/day 283 MP/year Republic of Korea Cho et al., 
2019

MUSSELS 82 g/year 123 MP/year United Kingdom Catarino et al., 
2018

MUSSELS 3.08 kg/year 4 620 MP/year Spain/France/
Belgium

Catarino et al., 
2018

MUSSELS 225 g 7 µg/day
0.1 µg /kg of body weight per day

Globally EFSA, 2016; 
FAO, 2017

FISH 15.21 kg/year 31–8 323 MP/year Globally Danopoulos  
et al., 2020

SHELLFISH 4.9 kg/year 13 MP/year Globally Daniel et al., 
2021

CRUSTACEANS
MOLLUSCS

2.06 kg/year

2.65 kg/year

206–17716 MP/year

0–27825 MP/year

Globally

Globally

Danopoulos  
et al., 2020

WATER 2 L 85 µg/day
1.4 µg/kg of body weight per day

Globally WHO, 2019

WATER 2.2 L/day (women)
3 L/day (men)

4 400 MP/year (women)
5 800 MP/year (men)

Globally Kosuth et al., 
2018

SALT 5 g/day 1 000 MP/year China Yang et al., 
2015

SALT 3.95 g/day 37 MP/year Globally Karami et al., 
2017b

SALT 5 g/day 40.6–1085.2 MP/year Italy Renzi and 
Blašković, 
2018

SALT 14.8–18.01 g/day 64–302 MP/year Türkiye Gündoğdu, 
2018
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TABLE 7	 ESTIMATES OF DIETARY EXPOSURE (DERIVED MP INTAKE) TO MICROPLASTICS (MP)  
IN SEAFOOD, VEGETABLES, WATER, SALT, FRUIT AND VEGETABLES  (continued)

CONSUMPTION DERIVED MP INTAKE COUNTRY REFERENCE

SALT 2.3 g/day 40–680 MP/year Globally Kosuth et al., 
2018

SALT 10.06 g/day 0–42600 MP/year 
(average 3000)

Globally Kim et al., 
2018

SALT 5 g/day 510 MP/year Spain Iñiguez et al., 
2017

SALT 5 g/day 117 µg/year India Seth and 
Shriwastav, 
2018

APPLES*

PEARS*

BROCCOLI*

LETTUCE*

CARROTS*

165.3 g/day
115.7 g/day
165.3 g/day
115.7 g/day
53.0 g/day
24.2 g/day
53.0 g/day
24.2 g/day
20.3 g/day
18.0 g/day

4.62x105 MP/kg of body weight per day 
(adults)
1.41x106 MP/kg of body weight per day 
(children)
4.48x105 MP/kg of body weight per day 
(adults)
1.37x106 MP/kg of body weight per day 
(children)
9.55x104 MP/kg of body weight per day 
(adults)
1.91x105 MP/kg of body weight per day 
(children)
3.83x104 MP/kg of body weight per day 
(adults)
7.65x104 MP/kg of body weight per day 
(children)
2.96x104 MP/kg of body weight per day 
(adults)
1.15x105 MP/kg of body weight per day 
(children)

Italy Oliveri Conti  
et al., 2020

Note: High exposure in the fruits and vegetables correspond to the reportedly high occurrence of the microplastics in those commodities, 
as per Oliveri Conti et al. (2020) (see Table 4). As mentioned in Section 1.0, published data are presented at face value.
Source: Authors’ own elaboration 
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Model organisms and cell culture have generally been used to evaluate the biological 
alterations that can be induced following exposure to microplastics. Few studies have 
investigated the effects of plastic materials in humans, with most studies focusing 
on the effects of prostheses and cellular responses in vitro. In a study by Ormsby 
et al. (2016), it was observed that wear particles from ultra-high molecular weight 
polyethylene (UHMWPE) hip replacements can cause perilacunear bone loss, 
commonly leading to aseptic loosening and failure of the replacement. Liu et al. 
(2015) also identified particle size, shape and composition as the main factors driving 
osteolytic cytokine release in response to debris from the wearing of HMWPE 
implants. Polypropylene used as mesh in implants aimed at replacing damaged 
tissue in the human body could be considered inert, providing other substances 
such as stabilizers, plasticizers and antioxidants are not added during manufacture. 
However, where present, these chemicals can leach from the mesh once it starts to 
degrade. Meshes made of PP are extremely susceptible to oxidation, which usually 
occurs during inflammatory responses mediated by neutrophils and can lead to the 
production of free radicals and a loss of integrity (Sternschuss et al., 2012).

Toxicological alterations exerted by (micro)plastics are likely to be dependent on 
particle size. A smaller size means an increase in the surface-to-volume ratio of a 
plastic particle, which subsequently leads to an increase in the body’s bioavailability, 
accumulation and systemic exposure to these materials (Deng et al., 2017;  
Lei et al., 2018; Yang et al., 2019). Many authors have provided evidence of higher 
immunological and oxidative stress responses from smaller (micro)plastics (Brown 
et al., 2001; Hwang et al., 2019; Jeong et al., 2017, 2016; Schirinzi et al., 2017).

As regards the immunotoxicology of micro- and nanoplastics, the available 
scientific literature points to gut deposition and the excretion of larger micro- and 
macroplastics, while smaller microplastics and nanoplastics can potentially pass 
through intestinal barriers and end up in the blood stream, potentially resulting 
in immunotoxicity. Occurrence and human exposure data are limited for these 
materials from food consumption. However, data is available on the immunotoxicity 
of nanomaterials, especially polymeric nanoparticles, which can be considered 
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in designing experiments for nanoplastics. Physical and chemical properties 
such as particle size, shape, surface chemistry, surface charge, hydrophobicity/
hydrophilicity, as well as the composition of nanoplastics all play a significant 
role in immunotoxicity (Dobrovolskaia and McNeil, 2016). For this reason, it is 
inappropriate to extrapolate immunotoxicology data from pristine commercial 
particles (such as polystyrene), since the real-life particle properties and surface 
functionalities resulting from bulk plastic degradation/oxidation and trophic transfer 
may be different. Protein corona formation on these particles may also be different 
for the same reason. Appropriate studies utilizing real-life particles and mixtures 
should be considered for a thorough assessment of the potential immunotoxicity 
of micro- and nanoplastic mixtures.

9.1	 TRANSLOCATION

As presented earlier in this report, ingestion and inhalation are two of the three means 
of microplastic exposure in humans. Once in the body, the systemic movement 
(translocation) of micro- and nanoparticles largely depends on their size. In the gut, 
these materials can either be eliminated from the body, or absorbed from the intestine. 
Absorption is strictly restricted to extremely small particles – typically in the nano 
range (0.1 µm – to pass through the gut epithelium and reach the portal circulation), 
while particles bigger than that size range will most likely be eliminated from the 
gut. After ingestion of 0.05, 0.5 and 6 µm polystyrene microbeads, only the smallest 
beads were retained and distributed throughout the body, while the larger beads were 
mostly concentrated in the digestive tract (Jeong et al., 2017). Van Cauwenberghe and 
Janssen (2014) noted that the only microplastics present after gut depuration in mussels 
were those in the size range below 20 µm, suggesting a possible absorption into the 
circulatory system. Transport to other tissues via this system was also hypothesized 
for mice, a model mammal (Deng et al., 2017). The most reliable route of microparticle 
entrance into the circulatory system is thought to be their uptake by the microfold 
cells (M cells) in Peyer’s patches in the ileum, ultimately reaching the gut-associated 
lymphatic system and liver before being excreted (Galloway, 2015). 

Other possible uptake mechanisms will also depend on particle size and may include 
endocytosis (< 0.5 µm) and phagocytosis (> 0.5 µm) (Monti et al., 2015; Yoo et al., 
2011). Some have also suggested a paracellular uptake pathway, whereby particles 
pass through the tight junctions between cells (Powell et al., 2010). It is assumed 
that very small particles could eventually end up being filtered through the spleen 
(> 0.2 µm) or kidney (< 10 nm) and then be eliminated (Yoo et al., 2011). Forte et al. 
(2016) observed a higher and faster intake of 44 nm compared to 100 nm polystyrene 
particles in human gastric adenocarcinoma cells, which were also shown to affect 
cell morphology, viability and immunological responses. These synthetic particles 
were internalized in cells via clathrin-mediated endocytosis along with some other 
possible energy-dependent mechanisms. Their uptake seemed to be influenced by 
exposure concentration, time, and particle size. Nevertheless, information on their 
distribution in environmental matrices and in biota is poor, as detection techniques 
and methodologies are not yet able to identify and measure them. 
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When nanoparticles enter biological media, they likely associate with biomolecules 
such as proteins, which create a corona structure on their surface. The corona is 
highly specific, and its structure can be influenced by the type of nanoparticles, 
and especially their surface properties (e.g. hydrophobicity) and size, as was seen 
for PS nanoparticles in human plasma (size: 50 nm, 100 nm; Lundqvist et al., 2008).  
This association could play a role in the transport of the nanoparticles.  
Under laboratory conditions, Cedervall et al., (2012) observed in fish blood, in 
vitro, the binding of 24 nm polystyrene nanoparticles to the apolipoprotein A,  
an important protein in the mobilization of fat resources. The authors hypothesized 
that, once absorbed through the gut wall, the nanoparticles could have been transported 
through the blood to other organs thanks to this molecule and high-density lipoproteins 
(HDL). Chae et al., (2018) also observed the presence of nanosized PS particles in the 
yolk sac of fish embryos, which could have plausibly entered the embryonic membrane 
and interacted with the lipids by virtue of their lipophilic nature. An investigation of 
the toxicity of polylactic acid microparticles showed that these do not have a substantial 
impact on the viability of human intestinal Caco-2 cells after 24 hours and 48 hours, 
with minor effects only seen at concentrations of 500 μg/mL (Shopova et al., 2020).

9.2	 OXIDATIVE STRESS

Most studies have noted that oxidative stress might be the main and most common 
biological response after exposure to microplastics. Microplastics are known 
to contain a variable number of reactive oxygen species (ROS), deriving in part 
from their manufacturing (e.g. polymerization reactions). Microplastics can thus 
play a role in the induction of oxidative stress, beginning with the production 
and accumulation of ROS in the cells (Choi et al., 2018), which may induce 
and activate response pathways that could lead to inflammation and apoptosis  
(Cheng et al., 2015). Levels of intracellular ROS have been correlated with the 
induction of signalling pathways such as the mitogen-activated protein-kinase 
(MAPK), involved in the regulation of cellular functions and oxidative stress 
responses (Jeong et al., 2017, 2016). A size-dependent antioxidant enzyme induction 
was seen in the marine copepod Paracyclopina nana exposed to PS microbeads, with 
0.05 µm particles leading to significant increases of ROS and antioxidant enzyme 
activities (Jeong et al., 2017). Similar size-dependent, intracellular ROS increases and 
MAPK activation were also observed in the rotifer Brachionus koreanus, with the 
ultimate activation of antioxidant enzymes superoxide dismutase (SOD), glutathione 
peroxidases (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) 
(Jeong et al., 2016). Induction of antioxidant enzymes has been measured by many 
authors (Table 6). An increase in SOD and GPx and high levels of GSH were also 
detected after the exposure of juvenile crabs to PS microspheres at concentrations 
of 40 and 400 µg/L. At the highest tested concentrations (4 000 and 40 000 µg/L) 
decreases in the activity of these enzymes was observed, possibly as a result of 
the organism’s inability to bear the high-energy cost of the antioxidant response  
(Yu et al., 2018). The same authors also reported an induction of the MPAK pathway 
and a concentration-dependent lipid peroxidation. 
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Further evidence of the induction of lipid peroxidation in the brain and muscle 
was seen in European bass (Dicentrarchus labrax) (Barboza et al., 2018b).  
Barboza et al. (2020) also observed higher peroxidation levels (up to twofold) in 
the gills, brain and muscle lipids of wild fish species that had ingested microplastics 
when compared to those specimens that had not been exposed. In the nematode 
species Caenorhabditis elegans, oxidative alterations (increase in cellular ROS, 
expression of oxidative-stress-related genes and lipofuscin accumulation)  
were only observed when nematodes were exposed to the highest concentration 
of PS microparticles (100 µg/L; Yu et al., 2020). Moreover, Schirinzi et al. (2017) 
observed a higher production of ROS in human cell cultures exposed to PS compared 
to PE, possibly because of the smaller size of the investigated particles.

9.3	 IMMUNOLOGICAL RESPONSES

Micro- and nanoplastics can be recognized by the immune system. The injection of 
700 nm PS particles in zebrafish embryos at different stages of development showed 
that macrophage and neutrophils co-localized themselves around these xenobiotic 
materials, and there was also an induction of the innate immune system via the 
expression of genes belonging to the alternative complement pathway (Veneman 
et al., 2017). Samuelsen et al. (2009) demonstrated the activation of the innate 
immune system and inflammatory responses in mouse lungs exposed to micro- 
and nano-sized PS particles, with higher responses induced by coarse particles, 
plausibly because they are more easily phagocyted. This is an important defence 
system against pathogens and foreign materials. In the size range of 0.5 μm, PS were 
seen to induce inflammation, with the upregulation of the interleukin genes IL1a,  
IL1b and IFN, and the concentration of their proteins in the gut of zebrafish  
(Danio rerio) (Jin et al., 2018). The authors also hypothesized that this response 
could have been the consequence of exposure to microplastics, inducing an alteration 
in the diversity of gut microbiota. 

Concentrations of PVC and PE particles higher than those found in the environment 
were seen to impair immunological defences in an in vitro assay using head-kidney 
leukocytes from two fish species; this caused a decrease in phagocytosis and an increase 
in respiratory burst (Espinosa et al., 2018). In this case, the authors suggested that 
phagocytosis was most probably hindered by the size of microplastics (40–150 μm),  
which was bigger than the investigated fish leukocytes. Longer exposure times 
enhanced the inflammatory response, evidenced by the formation of granulocytomas 
engulfing the foreign HDPE particles and disruption of the stability of lysosomal 
membranes in the digestive tubules of blue mussels (Mytilus edulis) (Von Moos et 
al., 2012).

9.4	 GASTROINTESTINAL ALTERATIONS

Among the many effects, intestinal hyperpermeability and damage, with alterations 
in the regulation of genes involved in its development, was observed in the nematode 
Caenorhabditis elegans (Yu et al., 2020). Gut barrier functioning in mice can be 
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negatively affected by exposure to PS microplastics, because of decreased mucus 
secretion, as reported by Jin et al. (2019) and Lu et al. (2018). On the contrary, 
mucus production increased in the gut of adult zebrafish, where dysbiosis (a change 
in gut microflora) was also observed (Jin et al., 2018). Microplastics exposure was 
able to cause damage to villi and enterocytes in the intestine of zebrafish, as well as 
moderate-to-severe alterations in the distal part of the intestine of European seabass; 
severity increased with exposure time, thus compromising intestinal function  
(Lei et al., 2018; Pedà et al., 2016). 

9.5	 LIVER DAMAGE

Microplastics have been reported to damage liver cells and organelles in crabs 
(Eriocheir sinensis), leading to an alteration in the activities of aspartate transaminase 
(GOT) and alanine aminotransferase (GPT) enzymes (Yu et al., 2018). Moreover, 
a decrease in triglyceride (TG) and total cholesterol (T-CHO) levels and in the 
expression of genes involved in lipogenesis was measured in the livers of mice, 
suggesting that micro-PS could induce metabolic alterations in hepatic fats  
(Lu et al., 2018). The authors also hypothesized that this change could have been 
the result of alterations in gut microbiota. The exposure to high concentrations 
of microscale PS particles (70 nm–5μm) caused lipid accumulation and liver 
inflammation in zebrafish (Danio rerio), which showed signs of vacuolation, 
infiltration and necrosis of hepatocytes (Lu et al., 2016). Disruption in lipid and 
energy metabolism, possibly because of food malabsorption caused by microplastics 
has also been reported (Deng et al., 2017; Lu et al., 2018, 2016). Under high exposure 
conditions, hepatocytes breakdown and liver histopathological alterations were seen 
in rice fish (Oryzias sinensis) and dark chub (Zacco temminckii) (Chae et al., 2018). 
The extent to which these changes could occur in humans remains to be investigated.

9.6	 NEUROTOXICITY

The most widely analysed marker of neurotoxicity is the activity of the enzyme 
acetylcholine esterase (AChE). Although Deng et al. (2017) observed an increase 
in AChE activity and in the serum levels of threonine, taurine and aspartate, AChE 
inhibition is maybe the most common signal detected in microplastics toxicity assays 
(Barboza et al., 2018b; Yu et al., 2018). An increased brain AChE activity observed 
in microplastic‑contaminated wild fish was reported in a recent study, indicating that 
AChE induction may also occur under long-term exposure to low concentrations 
of environmental contaminants like microplastics (Barboza et al., 2020b). 

9.7	 APICAL ENDPOINTS

In model organisms, microplastic exposure has been observed to lead to rapidly 
identifiable in vivo endpoints. Effects on body growth, size and length, reproduction, 
motility and lifespan seem to be most common (Chae et al., 2018; Choi et al., 2018; 
Jeong et al., 2017, 2016; Lei et al., 2018; Yu et al., 2018, 2020). A reduction in body 
size and growth has been suggested as a consequence of decreased nutrition and 
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malabsorption, as the ingestion of microplastics results in an insufficient, if not 
null, uptake of nutrients (Jeong et al., 2016; Yu et al., 2018). Choi et al. (2018) 
demonstrated that the shape of microplastics was another factor that influenced 
swimming behaviour in sheepshead minnow (Cyprinodon variegatus), with a 
significant decrease caused by irregular fragments. Reproductive toxicity could 
arise from the endocrine-disrupting effects of plastic polymers and their associated 
contaminants. For instance, exposure to both virgin (manufactured) and marine-
deployed plastic pellets led to down-regulation of the estrogen receptor (ERα), 
vitellogenin (VTG I) and choriogenin (Chg H) genes in female rice fish (Oryzias 
latipes) (Rochman et al., 2014). Cedervall et al. (2012) also noticed that polystyrene 
nanoparticles transported through the food chain were able to affect the feeding time 
of fish, which was consistently delayed, in addition to their motility and hunting 
behaviour.

Table 8 shows a summary of the information found on adverse effects of the exposure 
to micro- and nanoplastics. 
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CHAPTER 10
COMBINED EFFECTS 
OF MICROPLASTICS 
AND ENVIRONMENTAL 
CONTAMINANTS

Despite the many laboratory tests involving virgin polymers, this may not be 
indicative of actual environmental exposure. Organisms are exposed to a mixture 
of microplastics, plastic additives and environmental contaminants in the natural 
environment. This means that, when consuming an organism that has ingested 
microplastics from the environment, humans could also be exposed to any number 
of combinations of polymers and associated contaminants (additives or sorbed 
environmental contaminants). Some researchers have evaluated the combined effects 
of the exposure to microplastics and other contaminants, observing in some cases 
that the presence of microplastics can enhance the accumulation and uptake of 
some contaminants in living organisms (Table 7). For instance, Zhou et al. (2020) 
observed a more intense bioaccumulation of two antimicrobials in the blood clam 
(Tegillarca granosa) when the exposure was combined with microplastics, even 
though the target hazard quotient (THQ) was substantially lower than the safe 
limit. The authors hypothesized that consumption of clams containing the observed 
concentrations of antimicrobials could induce antimicrobial resistance (AMR) in 
the human body. 

An increase in triclosan and roxithromycin uptake was also observed in green-lipped  
mussels (Perna canaliculus) and Nile tilapia (Oreochromis niloticus) exposed 
to a mixture of these antimicrobial agents and microplastics (Webb et al., 2020;  
S. Zhang et al., 2019). A mixture of microplastics and mercury also led to a 
higher bioaccumulation of the metal in European bass (Dicentrarchus labrax), 
with a significant increase in lipid peroxidation in muscle and brain and AChE 
inhibition (Barboza et al., 2018b). AChE inhibition was also seen in freshwater 
clams (Corbicula flumineai) co-exposed to a mixture of microplastics and the 
antimicrobial florfenicol (Guilhermino et al., 2018), with an additional increase 
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in bile pyrene metabolites in common goby (Pomatoschistus microps) juveniles 
exposed to microplastics and pyrene (Oliveira et al., 2013). The authors suggested 
this could be a possible consequence of the modulation of the biotransformation 
mechanisms, and alteration of the activity of an enzyme belonging to the energy 
production pathway. 

The consequences of combined exposure to microplastics and pharmaceuticals were 
reviewed by Santos et al. (2021), who provided three main possible consequences: 
an alleviation, an enhancement or no alteration in   the toxicity of pharmaceuticals. 
Chronic oral exposure to contaminated PVC microparticles led to most severe 
histopathological alterations in the distal part of the intestine of European bass 
(Dicentrarchus labrax) in a time-dependent way (Pedà et al., 2016). Male rice fish 
(Oryzias latipes) exposed to microplastic pellets deployed at sea showed an increase 
in germ cell proliferation and a decrease in the genetic expression of choriogenin, 
possibly caused by the mixture’s endocrine-disruptive activity (Rochman et al., 
2014). Unfortunately, the information on the biological responses to combined 
exposures of microplastics and associated contaminants is poor, and the many 
variables and external factors involved in these interactions make it quite difficult 
to provide clear interpretations of the results. Finally, Tang et al., (2020) observed 
immunological alterations exerted by the co-exposure to microplastics, benzo(a)
pyrene and estradiol, noticing a size dependency in the effects, one probably caused 
by a size-dependent interaction of the two pollutants with the plastic microparticles.

Table 9 shows a summary of the information found on the combined effects of 
(micro)plastics and environmental pollutants.  
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CHAPTER 11
INTERNATIONAL 
STANDARDS AND 
RELEVANT REGULATIONS

Currently, there is no legislation that specifically regulates the presence of microplastics 
in foodstuffs and food safety, as according to current knowledge the ingestion of 
these synthetic particles per se is not considered a significant threat to human health.  
Data on their occurrence in foods is still scarce and mainly concerns aquatic products.  
What could pose a much higher concern is the exposure to their associated contaminants, 
some of which have been scientifically proven to induce some biological alterations and 
adverse effects in animals and humans. Some regulatory measures exist concerning the 
migration of plastic components from packaging and food-contact materials.

The European Commission Directive 2002/72/EC provides a list of all the 
monomers, additives and other substances that can be used in the manufacturing 
of food-contact materials (FCM) made of plastics. This list includes their migration 
limits into food. In order to establish the safety of packaged foods, specific migration 
limits (SML) in food-contact materials have been established for all those compounds 
of uncertain toxicity, or known toxic compounds. These parameters are calculated 
by considering the daily consumption of 1 kg of packaged food by an adult with 
average weight of 60 kg and are listed in Commission Regulation (European 
Union) No 10/2011 for all the authorized chemicals used in food-contact materials 
and plastic items. This document also establishes guidelines for migration testing 
using food simulants, classifying all foods as aqueous, alcohol, acidic ,fatty or dry. 
The Commission Regulation, or Union list, does not include many NIAS, whose 
presence in foodstuffs is not permitted; however, it establishes a maximum migration 
level of 0.010 mg/kg for non-authorized substances in food (except for substances 
that are mutagenic, carcinogenic or toxic to reproduction), which migrate through 
the functional barrier in multilayer packaging. This limit was exceeded by two 
oligomers contained in some baby food samples in contact with multilayer material, 
with the majority of NIAS potentially migrating from the PU layer (Bauer et al., 
2019). When no information on a substance’s SML is provided, a generic migration 
limit of 10 mg/dm2 should apply (alternatively expressed as 60 mg/kg). 
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This quantity also coincides with the overall migration limit (OML) permitted for 
the total leaching of plastic constituents into foodstuffs and for FCM used in food 
intended for young children and infants (European Commission, 2011a). Standard good 
manufacture should create a product in order to make the release of substances lower 
than the limit of 10 mg/1 dm2 of food contact surface (European Commission, 2011a). 
Migration from these plastics is higher for low-molecular-weight substances (< 1000 Da)  
such as monomers; hypothetically, these may contain up to one hundred times the 
number of contaminants found in other sources of contamination (Grob et al., 2006). 
Estimates have indicated an approximate concentration of 10 mg of plastic-migrated 
substances per kg of food. Plastic additives are generally given a SML of 50 µg per 
kg of food, or even higher. Nevertheless, as pointed out by Welle and Franz (2018),  
the exposure to substances transferred from plastics in food should be negligible, mostly 
because of poor absorption in the body. However, in recent years multiple plastic layers 
bonded together by PU adhesives have been developed to create food-contact materials. 
These have an additional barrier to prevent migration, the limit for which has been 
suggested as 0.01 mg/kg (European Commission, 2011a). It is worth noting that the 
OML only gives information about the inertness of plastic food-contact materials, while 
the SML is a safety limit for specific substances extrapolated from toxicological studies.

The release of plastic components into foodstuffs that are in direct contact with 
packaging and coating is likely to occur but, as stated in commission regulation 
1935/2004, materials in contact with food should be manufactured in a way that 
does not deteriorate the composition and organoleptic properties of commodities and 
endanger human health (European Commission, 2004). The quantity of migration 
and final concentration of these substances in food is, in any event, very low, as some 
studies have pointed out. However, no precise considerations can be outlined on this 
topic, as information on the identity and toxicity of the chemical components of plastic 
packaging is mostly lacking. The number of unknown and unregulated substances is 
still high. As an example, García Ibarra et al. (2018) were able to detect 48 compounds 
in packaging materials, of which only 19 were regulated by the current legislation.

Some countries have brought forward legislation which, while it does not directly 
address food safety, may be considered to affect exposure to microplastics in food. 
For example, under its Waste Minimisation Act of 2008, New Zealand is working 
towards phasing out certain types of plastic, including those that rapidly degrade 
to microplastics. Moreover, the Waste Minimisation (Microbeads) Regulations 
2017 prohibit the inclusion of plastic microbeads in certain products. Microbeads 
are plastics which are typically 5 mm or smaller in size, which are used in the 
manufacture of health and beauty products. Concerns have been raised over 
their potential transfer to aquatic environments where they may be ingested by 
organisms and potentially passed along the food chain. Similar regulations have 
been introduced in the United States of America (The Microbead-Free Waters Act, 
and in China, where the National Development and Reform Commission indicated 
that the production of cosmetics containing plastic microbeads would be banned 
by the end of 2020, and the sale of cosmetics containing plastic microbeads would 
be banned by the end of 2022 .
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CHAPTER 12
CONCLUSIONS

Although it is generally believed that micro- and nanoplastics may potentially 
raise concerns for public health, there is a scarcity of data on their occurrence and 
exposure in foods. Most of the limited scientific literature available focuses on 
fishery products, while much less is known about the occurrence of microplastics 
in other food commodities. A few studies have investigated contamination levels 
in salt, water, beer, honey and sugar. In general, the available evidence suggests 
considerably low concentrations of micro- and nanoplastics in foods. 

Information on the toxicity and toxic dynamics of microplastics is not readily 
available. Most studies focus on model organisms and attempt to use these to 
extrapolate plausible effects in humans. These limitations make it rather difficult 
to establish more definitive conclusions on the public health implications of 
microplastic exposure. Based on the literature reviewed, some adverse effects such 
as the activation and impairment of the immunological system, oxidative stress 
and metabolic alterations were observed, albeit in experimental settings where the 
levels of microplastics considered significantly exceeded the real-life exposure of 
humans to the particles. This discrepancy may severely limit the applicability of 
these studies’ results to humans.

At present, the methodologies for sampling, sample preparation and analysis of 
microplastics in foods are neither harmonized nor standardized. Furthermore, a 
consensus is yet to be reached with respect to the terminology employed in research 
on the subject, which hampers the interpretation, comparison, and valorization of 
research findings. 

On the basis of the available occurrence and ingestion data, it appears that human 
exposure to micro- and nanoplastics may not be a significant public health concern 
per se. However, chemical components of known toxicity may occur in (micro)
plastics and may migrate into foods and potentially raise health concerns. The extent 
to which either of these may be the case needs to be established.

The information provided in this document could be used to support future 
exposure assessments, as well as the development of appropriate legislation and 
guidance documents on food production, processing, distribution and consumption 
in relation to microplastic contamination.
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CHAPTER 13
RESEARCH GAPS

One fundamental requirement for progress in our understanding of the nature and 
potential health effects of micro- and nanoplastics is that generated data be reliable, 
interpretable, reproducible and comparable. The development of harmonized (and 
eventually standardized) analytical methods on sampling, sample preparation, 
analysis (detection and quantitation) and the reporting of results (e.g. numbers 
vs. size) should therefore be considered of primary importance to enhancing the 
usability of collected data. It is also vital that the following (knowledge gaps) are 
addressed:

	> The occurrence of microplastics in edible tissues of fish and shellfish (i.e. muscle) 
should receive continued attention in future research, to improve the exposure 
assessment

	> More studies should investigate the contamination of food commodities other 
than seafood, which could give an important contribution to microplastics 
exposure

	> The contribution of the inhalation route of exposure to microplastics should 
be assessed in detail 

	> Information on the composition of plastic packaging materials and the toxicity 
of its components should be more accessible for future risk estimates

	> Methodologies for the identification of non-intentionally added substances 
(NIAS) should be developed/refined 

	> Risk assessment for compounds used in plastic food-contact materials (FCM) 
should be performed

	> Considering that knowledge on the toxicity of microplastics is limited, it is 
important that researchers keep carrying on experiments and analyses on 
the biological consequences of these chemicals on model organisms to better 
illustrate their action.

To support the formulation of legislation and food production guidance documents 
on microplastics, the following should be considered:

	> Evaluation of the toxicological effects induced by exposure to microplastics 
both in vivo and in vitro
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	> Evaluation of the toxicological dynamics in biological systems through suitable 
(in silico) models when information cannot be obtained by experimental analyses

	> Assessment of size-dependent micro- and nanoplastics transport across cells and 
tissues as well as the mechanisms of absorption and accumulation of micro- and 
nanoplastics on different tissues

	> Assessment of the feasibility of establishing NOELs and NOAELs applicable 
to micro- and nanoplastics

	> Estimation of acute and chronic exposure for different microplastics to better 
characterize risks from different polymers

	> Use of concentration levels that mimic real-life conditions to identify any 
possible harm caused by realistic exposure scenarios 

	> Evaluation of the impact of microplastics and contaminant mixtures to clearly 
identify possible interactions

	> Testing of more polymer types, shapes and sizes for toxicity

	> Evaluation of the impact of the potential effects of microplastics on (gut) 
microbiome

	> Evaluation of the impact of compositional differences in food-contact materials 
on the release of microplastics
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CHAPTER 14
RECOMMENDATIONS

The following recommendations are offered as guidance for national and 
international authorities and food safety management stakeholders:

	> Increase the amount and transparency of information provided to consumers on 
plastic‑packaged food commodities, both to allay unfounded fears and prevent 
plausible adverse health effects.

	> Recognize the impact of packaging and food-contact materials on the quality 
of food products, including their potential impact on organoleptic properties.

	> Evaluate and identify additional/novel routes of microplastics entry into the 
human food value chain.

Despite the poor information currently available on the toxicity of microplastics, 
it is vital that authorities, stakeholders and legislative bodies find a way to tackle 
the issue. Where necessary, limits on human exposure to these substances should 
be introduced by implementing suitable precautionary measures as needed. Some 
suggestions include: 

	> identifying an adequate limit for certain food commodities, in order to limit the 
exposure and intake of microplastics through diet;

	> monitoring the intake of microplastics via food consumption, in order to produce 
up-to-date estimates of intake and give management bodies the instruments to 
evaluate risk mitigation options;

	> considering appropriate methods to improve the plastic circular economy and 
increase the use of biodegradable plastics.
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MICROPLASTICS IN FOOD COMMODITIES 
A FOOD SAFETY REVIEW ON HUMAN EXPOSURE  
THROUGH DIETARY SOURCES

Plastic contamination in the environment is one of the most currently discussed topics. In addition 

to environmental matrices, microplastics have been detected in fisheries and aquaculture species, 

but also in other important food commodities. Food consumption is considered as one of the   

main and most important pathways of human exposure to microplastics. Concerns might arise 

not only from the exposure to the plastic polymer itself which, although generally considered  

as biologically inert, might still contain some reactive monomers in its structure, but also to associated 

chemicals. Many researchers have reported oxidative stress and immunotoxicity among the main 

consequences of exposure to virgin micro and nanoplastic particles, with the least having a longer 

retention time within the organism. Moreover, many studies have also reported information on the 

individual toxicity of many plastic additives and components (e.g. flame retardants, plasticizers, 

monomers), in addition to the possible adverse effects elicited by the environmental pollutants sorbed to 

the microplastics. This document gathers and illustrates what is already known and the knowledge gaps 

on the presence of microplastics and plastic associated chemicals in food commodities, performing an 

exposure assessment on the dietary exposure to these synthetic materials and providing information on 

their possible biological effects on humans.

The report was consolidated by a group of selected experts, and sets up the basis for future risk assessment 

exercises and the information can be used for the provision of risk management options.
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