Thumbnail Image

An indirect estimation approach for disaggregating SDG indicators using survey data

Case study based on SDG Indicator 2.1.2









FAO. 2022­. An indirect estimation approach for disaggregating SDG indicators using survey data - Case study based on SDG Indicator 2.1.2. Rome. 





Also available in:
No results found.

Related items

Showing items related by metadata.

  • Thumbnail Image
    Book (stand-alone)
    Integrating surveys with geospatial data through small area estimation to disaggregate SDG indicators at subnational level
    Case study on SDG Indicators 2.3.1 and 2.3.2
    2023
    Also available in:
    No results found.

    The present technical report illustrates a case study on the adoption of small area estimation techniques to produce granular sub-national estimates of SDG Indicators 2.3.1 and 2.3.2, by integrating survey microdata with auxiliary information retrieved from various trustworthy geospatial information systems. The technical report provides practical guidance to national statistical offices and other institutions wanting to implement small area estimation techniques on SDG Indicators 2.3.1 and 2.3.2 or similar indicators based on surveys microdata.
  • Thumbnail Image
    Book (stand-alone)
    Using small area estimation for data disaggregation of SDG indicators
    Case study based on SDG Indicator 5.a.1
    2022
    Also available in:
    No results found.

    This technical report presents a case study based on the use of a small area estimation (SAE) approach to produce disaggregated estimates of SDG Indicator 5.a.1 by sex and at granular sub-national level. In particular, after introducing the framework for using SAE techniques, the report discusses a possible model-based technique to integrate a household or agricultural survey measuring the indicator of interest with census microdata, in order to borrow strength from a more comprehensive data source and produce estimates of higher quality. The discussed estimation approach could also be extended or customized for the integration of survey data with alternative data sources, such as administrative records, and/or geospatial information, and for the disaggregation of other (SDG) indicators based on survey microdata.
  • Thumbnail Image
    Book (stand-alone)
    Guidelines on data disaggregation for SDG Indicators using survey data 2021
    Also available in:
    No results found.

    As a member of the working group on data disaggregation, the Food and Agriculture Organization of the United Nations (FAO) has taken numerous steps towards supporting Member Countries in the production of disaggregated estimates. Within this framework, these Guidelines offer methodological and practical guidance for the production of direct and indirect disaggregated estimates of SDG indicators having surveys as their main or preferred data source. Furthermore, the publication provides tools to assess the accuracy of these estimates and presents strategies for the improvement of output quality, including Small Area Estimation methods.

Users also downloaded

Showing related downloaded files

No results found.