Página precedente Indice Página siguiente


Capítulo 6. Malezas acuáticas


Eichhornia crassipes (Martius) Solms-Laubach
Salvinia molesta Mitchell


Eichhornia crassipes (Martius) Solms-Laubach


Caracterización
Métodos de control
Referencias


K.L.S. Harley

Caracterización

A nivel mundial el jacinto de agua, Eichhornia crassipes (Martius) Solms-Laubach, (Fotos 5a., 5b.) causa problemas más serios y amplios que ninguna otra maleza acuática flotante. Esto es el resultado de su alta intensidad de crecimiento y reproducción, alta habilidad competitiva con relación a otras plantas acuáticas flotantes, el movimiento de las plantas por el viento y las corrientes de agua, y, debido a sus flores atractivas, propagadas por el hombre. Es una planta acuática de libre flotación con rosetas de hojas soportadas por peciolos que pueden ser cortos y abultados o largos y delgados, de hasta 50 o aún 100 cm de longitud. Se propaga rápidamente mediante estolones que se desarrollan a partir de la base de la roseta. Los estolones crecen hasta 30 cm de longitud antes de desarrollar una roseta hija. La intensidad de la propagación por este medio puede resultar en la duplicación del área infestada cada 6 a 15 días. Los tallos florecedores, a partir del centro de la roseta, producen una inflorescencia vistosa de flores azules/violetas, las cuales se convierten en cápsulas frutales cada una conteniendo hasta 400 semillas pequeñas. Se ha investigado ampliamente y aunque se conoce mucho acerca de su biología, control y potencial de utilización (ver Gopal y Sharma 1981; Gopal 1987 por reseñas), aún existen fallas significativas en nuestro conocimiento sobre esta planta.

Distribución/importancia. El centro de origen del jacinto de agua parece ser la Amazonia, Brasil, con propagación natural a otras áreas del continente sud-americano (Barrett y Forno, 1982). En sus áreas nativas en los neo-trópicos la E. crassipes se ha convertido ocasionalmente en una maleza en las presas o cuerpos de agua naturales donde el régimen hidrológico se ha alterado por las actividades del hombre y/o el nivel de nutrientes en el agua se ha incrementado. El jacinto de agua se ha introducido por el hombre en muchos países en los trópicos y subtropicos donde se ha propagado hasta convertirse en una maleza acuática extremadamente grave desde los 40°N hasta los 45°S (Holm et al. 1977). Se han desarrollado infestaciones extensas en el sur de los EE.UU. (especialmente en Lousiana y la Florida), en México, Panamá y muchas regiones de Africa (especialmente los sistemas de los ríos Nilo y Congo), el sub-continente Indio, el sudeste Asiático, Indonesia y Australia (Sculthorpe, 1971; Holm et al. 1977; Pieterse 1978; Gopal y Sharma 1981).

El jacinto de agua se reproduce vegetativamente mediante estolones, los cuales junto a las plantas aisladas, así como mantos a la deriva se distribuyen fácilmente por las corrientes de agua, el viento, los botes y las balsas. Sin embargo, en la mayor parte de sus áreas la planta tambien produce grandes cantidades de semilla de larga longevidad, y la persistencia y diseminación por este medio puede ser muy significativa (Sculthorpe, 1971). El crecimiento está grandemente influído por los niveles de nutrientes en el agua, especialmente, los niveles de nitrógeno, fósforo y potasio (Reddy et al. 1989, 1990, 1991). El incremento de estos elementos a menudo es causado porque una parte de los fertilizantes aplicados a las áreas agrícolas y de pastos alcanzan los cuerpos de agua a través de la escorrentía o de los drenajes agrícolas y a través de los efluentes urbanos e industriales.

Foto 5a. Eichhornia crassipes

Foto 5b. Infestación extensa de Eichhornia crassipes

Aún dentro de las áreas nativas del jacinto de agua los cambios en el regimen hidrológico debidos, por ejemplo, a la construcción de presas y a incrementos en los niveles de nutrientes, han producido un crecimiento excesivo (Donselaar 1968; Harley 1992). El jacinto de agua no tolera agua salobre (Holm et al. 1977) y la salinidad puede limitar o modificar su distribución. El jacinto de agua que se acumula en las lagunas costeras de Africa Occidental durante el período de lluvias se reduce en aquellas áreas que se convierten en salinas durante el período seco. Se conoce que el jacinto de agua se ha extendido en su propagación desde 43 países en 1884 hasta 59 en 1980 y hasta otros tres países después de 1980. En dos de los últimos (Benin y Nigeria) y en un grupo de otros países las regiones más norteñas (tropicales) del Africa sub-Sahariana la propagación del jacinto de agua se ha incrementado grandemente durante los últimos 5-8 años. Esta situación es casi seguro el resultado de un incremento de la población humana que le ocasiona mayores afectaciones al medio ambiente. El medio ambiente ha sufrido a través de la eutrofícación o pérdida de oxígeno del agua fresca debido a la descarga de efluentes de áreas urbanas e industriales, al incremento de la agricultura, la deforestación y la degradación general de las cuencas de agua. La velocidad actual de propagación del jacinto de agua en Africa parece ser mayor que en otros lugares y está afectando seriamente el manejo de los recursos hídricos, la ecología, la conservación de la biodiversidad y el bienestar de las comunidades humanas rivereñas.

Composición química del agua. El crecimiento del jacinto de agua es favorecido por el agua rica en nutrientes, en especial por el nitrógeno, el fósforo y el potasio. La habilidad del jacinto de agua para absorber los nutrientes y otros elementos ha sido ampliamente investigado. Además de estos elementos, toma calcio, magnesio, azufre, hierro, manganeso, el aluminio, el boro, cobre, molibdeno y zinc. La habilidad del jacinto de agua de extraer los nutrientes y los metales pesados puede ser explotada para tratar los efluentes de alcantarillados pasándolos a través de canales que contienen la planta. Para un tratamiento exitoso las plantas se tienen que mantener en crecimiento activo mediante la eliminación del exceso de plantas. Sin embargo el jacinto de agua nunca deberá introducirse en una región donde él no exista. El riesgo de crear un serio problema de maleza es muy grande. Con frecuencia las plantas acuáticas nativas se pueden usar eficientemente en el tratamiento de efluentes.

El contenido de oxígeno del agua es menor debajo del manto del jacinto de agua y puede reducirse hasta cero. Los efectos sobre los peces y otros animales acuáticos es catastrófico.

Evapotranspiración. La investigación ha mostrado que en todo el mundo las pérdidas de agua por evapotranspiración a través de una cubierta de jacinto de agua siempre es mayor que a partir de una superficie de agua descubierta. Sin embargo, las pérdidas por evapotranspiración varían grandemente debido a la temperatura, la humedad relativa, la velocidad del viento y las características de la infestación del jacinto de agua. Hamdoun y Tigani (1977) estimaron que se perdían cada año 7 mil millones de m3, o una décima parte del flujo promedio del Nilo, a través de la evapotranspiración del jacinto de agua. La magnitud de las pérdidas debidas a la evapotranspiración pueden poner en peligro la viabilidad de los esquemas de suministro de agua, especialmente, en los períodos de sequía.

Sedimentación, inundación y navegación. Los mantos de jacinto de agua pueden hacerse muy extensos y cubrir ríos, represas, canales, drenes y otras áreas húmedas. La reducción del flujo de agua causa aumentos de la sedimentación. Esto reduce la profundidad del agua y ocasionalmente torna cuerpos de agua abiertos en pantanos poco profundos. En los canales de irrigación y zanjas de drenaje el flujo del agua se reduce muy por debajo de los niveles diseñados, impidiendo así la entrega del agua de riego y el drenaje de los campos. Durante períodos de alta precipitación se producen inundaciones y se dañan los canales. Las represas también se obstaculizan y se sedimentan; se reduce su capacidad y vida útil, se afecta la pesca y la caza. Adicionalmente, las plantas arrastradas hacia las entradas de estaciones generadoras hidroeléctricas y obras cabeceras de irrigación pueden causar daños costosos y conducir al cierre por reparación de dichas instalaciones.

Cuando los ríos se infestan intensamente se dificulta la navegación hasta hacerse imposible. Los muelles o atracaderos de los ríos pueden quedar bloqueados y dañarse. Un ejemplo extremo es el del Río Nilo en Sudán. El jacinto de agua infestó el río y sus tributarios desde Juba, en el sur, hasta la Presa Jebel Aulia, cerca de Jartúm, una distancia de 1700 km. La longitud total infestada del río excede los 3000 km, incluyendo los tributarios (Irving y Beshir 1982; Philipp et al. 1983; Beshir y Bennett 1985). Desde 1963 el Ministerio de Agricultura de Sudán ha estado tratando de controlar la infestación de la maleza para mantener abierto el acceso acuático para el trafico por barco, mediante la aplicación de herbicidas con una flota de 42 botes y 3 naves aéreas, con base en 3 puntos o estaciones a lo largo del río (Beshir y Bennett 1985). El costo anual de la operación de control químico fue de alrededor de un millón de libras sudanesas. Adicionalmente, las pérdidas de tiempo por reparaciones y mantenimiento complementario a las embarcaciones debido a la incidencia del jacinto de agua costó anualmente alrededor de 500, 000 libras sudanesas (Hamdoun y Tigani 1977). A pesar de esta asignación masiva de recursos, no se logró el control requerido.

El jacinto de agua puede aumentar sustancialmente el nivel de las aguas de inundación con los consiguientes daños. Las plantas bloquean los canales naturales de drenaje y los construídos por el hombre, se acumulan con la corriente superior y represan con eficacia el agua. Como el drenaje normal queda obstaculizado, el agua puede inundar y erosionar los campos, entrar en edificios y poblados, dañar y provocar arrastres en carreteras y puentes.

Estilo de vida, salud y educación. En muchos países el estilo de vida de las comunidades humanas rivereñas está dictado por las características del cuerpo de agua. Con frecuencia el único medio de transporte es el bote y el cuerpo de agua es la única fuente de agua de beber, cocer y lavar, aparte que los componentes de la dieta se extraen también del mismo. Una fuerte infestación de jacinto de agua impide la navegación en canoas y aún en grandes botes motorizados. Esto impide ocasionalmente la asistencia de los niños a la escuela, visitas por atención médica, visitas a los mercados, etc. Además, los vectores de malaria, schistosomiasis, filariasis, encefalitis y otras enfermedades humanas y animales suelen aumentar, lo que causa un deterioro de la salud humana y pérdidas de animales domésticos. Se ha afirmado que el organismo causal del cólera se concentra alrededor de las raíces del jacinto de agua.

Pesca y alimentos. Las fuentes de alimentos frecuentemente sólo son accesibles a través del agua y muchas comunidades dependen en gran medida de los peces como fuente de alimento y como artículo de comercio. Por lo tanto, cuando un cuerpo de agua adyacente a una aldea o poblado está cubierto de jacinto de agua, la comunidad puede sufrir hambre, más aún, la reducción de los niveles de oxígeno debajo de un manto de jacinto de agua causa una alta mortalidad a las poblaciones de peces. Por ejemplo, en Nigeria, 500 km2 de lagunas costeras están infestadas con el jacinto de agua, 24, 000 pescadores están seriamente afectados y esta cifra puede elevarse hasta 2 millones (T A Farri comunicación personal). En Benin se ha estimado que las capturas de peces se han reducido en 50% o más (R van Thielen comunicación personal).

Fitoplancton. El fitoplancton requiere luz para su crecimiento. Por lo tanto, la sombra proyectada por el jacinto de agua puede inhibir el crecimiento del fitoplancton, lo cual, a su vez, reduce la densidad poblacional de zooplancton y se afecta la cadena alimenticia. Sin embargo, estos efectos de la sombra están dados por la intensidad luminosa, la duración del día, la turbidez, las velocidades del flujo y el nivel de nutrientes del agua.

Flora. El jacinto de agua interactúa con la vegetación nativa y puede reducir significativamente la densidad poblacional de especies individuales a través de la sombra que proyecta y la competencia por los recursos esenciales. Las plantas sumergidas y aquéllas de menor altura que el jacinto de agua son las más amenazadas, ya que están expuestas a recibir insuficiente luz para su fotosíntesis. La competencia prolongada por una población densa de jacinto de agua puede reducir la biodiversidad floral del cuerpo de agua.

Fauna. Una población densa de jacinto de agua afecta la fauna acuática directamente, a través de la reducción del contenido de oxígeno del agua, e indirectamente, a través de la reducción del fitoplancton y zooplancton, de las plantas alimenticias y de los lugares adecuados de reproducción. Los efectos sobre la flora y la fauna no han recibido el estudio que merecen. Sin embargo, existen muchos registros de muertes de peces a consecuencia de la reducción de los niveles de oxígeno. Aunque ciertas especies podrían favorecerse, en general, la infestación del jacinto de agua en un cuerpo de agua debe provocar una reducción de la biodiversidad.

Usos. La enorme biomasa del jacinto de agua ha estimulado muchos pruebas para su utilización, pero esta tiene aplicación limitada en la fabricación de papel de pobre calidad, en la generación de biogás, para el tratamiento de efluentes y para producción de alguna artesanía. No existe duda alguna de que los efectos dañinos del jacinto de agua sobrepasan sus beneficios. Aún una utilización máxima sólo eliminará una pequeña cantidad de la maleza y no contribuirá a una reducción sustancial de sus efectos dañinos. El mundo no puede tolerar el costo ambiental de no tratar el jacinto de agua como un problema extraordinariamente serio, el cual debe ser detenido y efectivamente controlado (Gopal y Sharma 1981). Se puede evitar cualquier conflicto de intereses entre los defensores de la utilización y los del control ilimitado mediante la aplicación de un esquema de manejo de la maleza que permita la utilización en pequeña escala y el control paralelo de las infestaciones más problemáticas (Wright y Center 1984).

Métodos de control

Herbicidas. Sólo en pocas ocasiones se ha intentado el control mediante herbicidas de infestaciones grandes de jacinto de agua que crecen bajo condiciones favorables (Scott et al. no fechado) y aún cuando se han invertido enormes recursos, como en Sudan, este tratamiento ha tenido poco efecto. Sin embargo, este método ha sido exitoso para el control de infestaciones pequeñas, de fácil acceso por tierra o mediante botes (Smith et al. 1984; Jamieson et al. 1977; C. Julian comunicación personal) y para erradicar infestaciones menores en regiones que son climáticamente desfavorables para el crecimiento de esta planta. Los herbicidas más comunmente usados han sido 2, 4-D, aminotriazole y glifosato, siendo el primero el más extensamente usado, además de ser relativamente barato.

El control mediante herbicidas requiere de un alto insumo de mano de obra y equipos mecánicos, po lo que puede resultar costoso. La inspección sistemática unida al tratamiento deben realizarse indefinidamente para evitar la regeneración de la infestación a partir de plantas y semillas dispersas. Este compromiso a largo plazo es con frecuencia difícil de mantener y constituye un costo continuado.

Existe también un costo ambiental en el uso de herbicidas. Los residuos de éstos en el agua y en los sedimentos pueden afectar el ambiente acuático y aniquilar los peces directamente o mediante la reducción de los niveles de oxígeno disuelto, como consecuencia de la descomposición de las malezas. Si los residuos son excesivos, el agua será inadecuada para consumo humano o para irrigación (Anon. 1985). El ser humano cobra más conciencia de los efectos de la contaminación sobre el ambiente, sobre si mismo y sobre sus animales domésticos. Muchas comunidades no toleran más la contaminación de su medio por plaguicidas.

Extracción física, drenaje. La extracción física tiene limitaciones obvias en su magnitud, además de seguramente tendrán lugar reinfestaciones a partir de fragmentos de plantas y semillas. Sin embargo, este método es ambientalmente "seguro" y útil para reducir pequeñas infestaciones y para el mantenimiento de canales. Si la extracción física es el único método de control usado, entonces la demanda de recursos será interminable. La extracción física puede ser por vía manual, por dragado o mediante una máquina cosechadora especialmente diseñada.

El drenaje permanente para secar un estanque o lago controla el jacinto de agua (Smith et al. 1984). Sin embargo, las semillas de la maleza poseen una larga longevidad (Matthews et al. 1977), por lo que si el área acumula de nuevo agua, las semillas podrán germinar y se producirá una reinfestación. El drenaje permanente puede ser un método efectivo de control en situaciones apropiadas donde la pérdida del agua no producirá inconvenientes a los poblados adyacentes de dejar sin agua a los animales domésticos, destruír una fuente local de alimentos (por ej. peces) o provocar otros efectos ambientales adversos.

Control Biológico. La investigación sobre el control biológico del jacinto de agua comenzó en 1961 y los primeros agentes de control fueron liberados en EE.UU. alrededor de 10 años después (Perkins 1972, 1973). Actualmente se utilizan uno o más agentes de control en por lo menos 22 países (Julien 1992; Limon 1984). Como consecuencia, el jacinto de agua se ha controlado en algunos países y las infestaciones se han reducido en otros.

Seis artrópodos y 3 hongos (Tabla 1) han contribuído al control biológico del jacinto de agua (Harley y Wright 1984; Julien 1992), pero las especies que han resultado más exitosas son dos picudos (gorgojos): Neochettina bruchi Hustache y N. eichhorniae Warner, y una polilla Sameodes albiguttalis (Warren). Sin embargo, no se ha logrado un control óptimo en todas las situaciones, por lo que se evaluan otros agentes.

La situación actual es que:

· Se han descubierto agentes de control biológico en las áreas nativas del jacinto de agua

· La investigación ha demostrado que estos agentes no pueden sobrevivir y reproducirse sobre ninguna otra planta, excepto sobre jacinto de agua

· Estos agentes han controlado exitosamente esta maleza en varios países

· Se prevé que la investigación en curso mejore el nivel general de control

Esto significa que ya se disponen de agentes de control cabalmente investigados y comprobados. Estos agentes ha sido extensamente utilizados y la experiencia muestra que se pueden introducir en nuevas regiones, sin riesgos para el cultivo o el ambiente. Los costos de la introducción en las nuevas regiones son relativamente bajos, pero los proyectos tienen que ser dirigidos por científicos experimentados en el control biológico del jacinto de agua. Sin una dirección experta es probable que los proyectos fracasen y los escasos recursos se pierdan. El momento es excelente para un exitoso control biológico del jacinto de agua en la mayoría de las situaciones donde la planta resulte ser una maleza exótica (Harley y Forno 1989).

Los hongos Acremonium zonatum (Sawada) Gams y Cercospora piaropi Tharp (estrechamente relacionado con C. rodmanii Conway que se ha usado como agente de control en algunas situaciones en EE.UU.) parecen haberse diseminado por todo el mundo con el jacinto de agua y estos no deben ser normalmente introducidos como agentes de control biológico. Los síntomas generalmente son más evidentes en las hojas más viejas. Estos hongos por si solos no son especialmente dañinos, pero frecuentemente sus efectos se incrementan, sobre todo cuando las plantas están sometidas a stress por el ataque de insectos. El daño por el ácaro, Orthogalumna terebrantis, generalmente es más evidente sobre las hojas más viejas y este artrópodo es de dudoso valor como agente de control.

Manejo de las cuencas de agua y control integrado. La proliferación del jacinto de agua en su habitat exótico está determinado principalmente por dos factores: el suministro de nutrientes y la ausencia de enemigos naturales de la maleza. Las estrategias de control serán completamente efectivas siempre que el manejo de las cuencas de agua como el control directo de la maleza sean bien dirigidos.

El manejo de las cuencas de agua puede tener efectos sobre los niveles de nutrientes de los ríos, lagos y otros cuerpos de agua, lo cual ya ha sido mencionado. Las cuencas de agua deben manejarse para controlar el jacinto de agua y otras malezas acuáticas flotantes, lo cual podrá ofrecer un nivel de vida aceptable y sostenible para la población que vive aledaña a la cuenca de agua, y para también conservar la ecología y la biodiversidad de la región (ver Howard-Williams y Thompson 1985; y Mitchell 1985 para una mayor discusión).

El efecto de control que los enemigos naturales desarrollan sobre el jacinto de agua en su habitat nativo, se restablece en el habitat exótico a través del control biológico. La introducción agresiva del control biológico será el aspecto principal de una estrategia de control integrada, única vía que brindará un efecto economicamente sostenible, sin efectos colaterales adversos sobre la ecología, biodiversidad y también sobre la salud humana. Tal estrategia también incluirá la reducción del arrojo de nutrientes en el agua a través del manejo de la cuenca de agua y el uso de medidas de control a corto plazo, tales como el uso de los herbicidas, la extracción física y el drenáje en situaciones críticas. Se deben adoptar estrategias perfectamente formuladas como política de gobierno.

Tabla 1. Agentes para el control biológico del jacinto de agua.

Agente

Tipo de daño

INSECTOS


CURCULIONIDAE



Neochettina bruchi Hustache

Los adultos se alimentan del follage y los peciolos, las larvas perforan los peciolos y corolas.


N. eichhorniae Warner

Similar a N. bruchi

PYRALIDAE



Acigona infusella (Walker)

Las larvas perforan en las láminas y peciolos.


Sameodes albiguttalis (Warren)

Las larvas perforan en los peciolos y yemas.

NOCTUIDAE



Bellura densa (Walker)

Las larvas perforan en los peciolos y corolas.

ACAROS


GALUMNIDAE



Orthogalumna terebrantis Wallwork

Los inmaduros perforan en las láminas.

PATOGENOS


FUNGOSOSOS HIFOMICETOS



Acremonium zonatum (Sawada) Gams

Manchas zonales sobre las láminas


Cercospora piaropi Tharp

Manchas puntuales y clorosis sobre las láminas; necrósis de las láminas.


C rodmanii Conway

Similar a C. piaropi

Conciencia pública, supervisión. Se debe establecer una campaña pública de concientización y educación sobre los problemas causados por el jacinto de agua. Esta campaña debe enfatizar la importancia de no cultivar ni propagar el jacinto de agua, de no contaminar el agua y de informar las nuevas apariciones de la maleza acuática a las autoridades competentes.

En los programas escolares se debe incluir información sobre estos problemas y otros temas asociados. La campaña debe estar dirigida a todos los sectores de la comunidad. La responsabilidad para evaluar la propagación del jacinto de agua y establecer su control debe ser conferida a una agencia del gobierno central con autoridad y fondos para actuar.

Referencias

Anon. 1985. Guidelines for the use of Herbicides in or near Water. Department of Resources y Energy; Australian Water Resources Council. Australian Government Publishing Service, Canberra.

Barrett S.C.H. y I.W. Forno 1982. Style morph distribution in new world populations of Eichhornia crassipes (Mart.) Solms-Laubach (water hyacinth). Aquatic Botany 13: 299- 306.

Beshir M.O. y F.D. Bennett 1985. Biological control of water hyacinth on the White Nile, Sudan. In: E.S. Delfosse (Ed.). Proceedings, VI International Symposium Biological Control of Weeds, Agosto 1984, Vancouver, Canada. Agriculture Canada, pp 491-496.

Donselaar J. van 1968. Water y marsh plants in the artificial Brokopondo Lake (Surinam, S. America) during the first three years of its existence. Acta Botanica Neerlandica 17: 183-196.

Gopal B. 1987. Water Hyacinth. Elsevier, Amsterdam.

Gopal B. y K.P. Sharma 1981. Water-Hyacinth (Eichhornia crassipes) the most troublesome weed of the world. Hindasia, Delhi.

Hamdoun A.M. y K.B. El Tigani 1977. Weed problems in the Sudan. PANS 23: 190-194.

Harley K.L.S. 1992. Survey of water hyacinth and other floating aquatic weeds in Guyana, Unpublished report of a consultancy. Commonwealth Science Council, London.

Harley K.L.S. y I.W. Forno 1989. Management of aquatic weeds. Biological control by means of arthropods. En: A.H. Pieterse y K.J. Murphy (Eds.), Aquatic Weeds, Oxford University Press, Oxford, pp 177-186.

Harley K.L.S. y A.D. Wright 1984. Implementing a program for biological control of water hyacinth, Eichhornia crassipes. En: G. Thyagarajan (Ed.). Proceedings International Conference on Water Hyacinth, February 1983, Hyderabad, India. UNEP, Nairobi, pp 58-69.

Holm L.G., D.L. Plucknett, J.V. Pancho y J.P. Herberger 1977. The World's Worst Weeds. Distribution and Biology. The University Press of Hawaii, Honolulu.

Howard-Williams C. y K. Thompson 1985. The conservation and management of African wetlands. En: P. Denny (Ed.). The Ecology and Management of African Wetland Vegetation, W. Junk, Dordrecht.

Irving N.S. y M.O. Beshir 1982. Introduction of some natural enemies of water hyacinth to the White Nile, Sudan. Tropical Pest Management 28: 20-26.

Jamieson G.I., C. Kershaw y R.J. Ciesiolka 1977. Waterhyacinth control on the lower Fitzroy River. Journal Aquatic Plant Management 15: 5-9.

Julien M.H. 1992. Biological Control of Weeds. A World Catalogue of Agents and their Target Weeds. 3rd edition. CABI, Wallingford.

Limon L.G. 1984. Mexican agency studies aquatic weeds. Aquaphyte, Fall 1984, p 3.

Matthews L.J., B.E. Manson y B.T. Coffey 1977. Longevity of waterhyacinth (Eichhornia crassipes (Mart.) Solms) seed in New Zealand. Proceedings 6th Asian-Pacific Weed Science Conference, 1968 1: 273-277.

Mitchell D.S. 1985. African aquatic weeds and their management. En: P. Denny (Ed), The Ecology and Management of African Wetland Vegetation, W. Junk, Dordrecht, pp 177-202.

Perkins B.D. 1972. Potential for water hyacinth management with biological agents. Proceedings Annual Tall Timbers Conference on Ecological Animal Control by Habitat Management. February 1972. pp 53-64.

Perkins B.D. 1973. Release in the United States of Neochetina eichhorniae Warner, an enemy of water hyacinth. Proceedings of the 26th Annual Meeting of the Southern Weed Science Society (U.S.A.). p 368.

Philipp O., W. Koch y H. Koser 1983. Utilisation and control of water hyacinth in Sudan. GTZ, Dag-Hammarskjold-Weg.

Pieterse A.H. 1978. The water hyacinth (Eichhornia crassipes) - a review. Abstracts on Tropical Agriculture 4: 9-42.

Reddy K.R., M. Agami y J.C. Tucker 1989. Influence of nitrogen supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes) plants. Aquatic Botany 36: 33-43.

Reddy K.R., M. Agami y J.C. Tucker 1990. Influence of phosphorus on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquatic Botany 37: 355-365.

Reddy K.R, M. Agami, E.M. D'Angelo y J.C. Tucker 1991. Influence of potassium on growth and nutrient storage by water hyacinth. Bioresource Technology 37: 79-84.

Scott W.E., P.J. Ashton y D.J. Steyn, sin fecha. Chemical control of the water hyacinth on Hartbeespoort dam. Department of Water affairs, Pretoria.

Sculthorpe C.D. 1971. The Biology of Aquatic Vascular Plants. Edward Arnold, Londres

Smith L.W., R.E. Williams, M. Shaw y K.R. Green 1984. A water hyacinth eradication campaign in New South Wales, Australia. En: G. Thyagarajan (Ed.). Proceedings International Conference on Water Hyacinth, February 1983, Hyderabad, India. UNEP, Nairobi, pp 925-935.

Wright A.D. y T.D. Center 1984. Biological control: Its place in the management of water hyacinth. En: G. Thyagarajan (Ed.). Proceedings International Conference on Water Hyacinth, February 1983, Hyderabad, India. UNEP, Nairobi, pp 793-802.

Salvinia molesta Mitchell


Caracterización
Estrategias de manejo
Referencias


P.M. Room

Caracterización

Salvinia molesta, conocida ahora generalmente como salvinia, es un helecho acuático de libre rotación que posee hojas verde-amarillentas a verde oscuro tendidas inmediatamente encima de la superficie de agua, así como raíces filamentosas, pardas, las que flotan en el agua (Foto 5c). Las hojas varían desde círculos planos de 0.5 cm hasta 4 cm de diámetro, dobladas por la nervadura central. Las superficies superiores de las hojas están cubiertas por curiosos pelos en forma de "licuadora de huevo", las raíces generalmente son de 10 a 20 cm de longitud, pero pueden alcanzar hasta 50 cm de longitud en agua con poco contenido de nutrientes. Presenta un tallo o rizoma ramificado que se tiende horizontalmente inmediatamente debajo de la superficie del agua y que porta un par de hojas y un maciso manojo de raíces en cada nudo. El crecimiento se produce en los extremos de las ramas y fragmentos de las plantas, en la medida que las secciones más viejas de los rizomas se mueren y se descomponen.

Como es un helecho, salvinia con frecuencia produce esporocarpios. Estos son pequeñas esferas de alrededor de 3 mm de diámetro que cuelgan en cadenas entre las raíces. Sin embargo, las esporas que ellos contienen son todas estériles y nunca crecen. Como resultado de esto no existe reproducción sexual ni formas latentes de la planta. Esto significa que si cada mínimo fragmento de salvina es extraído de un estanque, no habrá ninguna reinfestación a partir de las esporas que existen en el agua. También esto significa que cada fragmento de salvinia pertenece al mismo individuo genético, que era probablemente el organismo individual más grande sobre la tierra cuando las infestaciones estaban en su pico, a mediados de los años 80, con un peso de muchos millones de toneladas!

Las mejores condiciones para el crecimiento de salvinia son las temperaturas de alrededor de 30°c, abundante luz solar directa y abundancia de nutrientes en el agua, como son producidas por las salidas de alcantarillados o los arrastres de fertilizantes de la agricultura. Bajo condiciones ideales, la planta puede duplicar su tamaño cada 2-5 días y bajo condiciones tropicales promedio se duplica cada 7 días (Room y Thomas 1986).

Distribución/importancia. Durante los últimos 50 años, salvinia ha sido llevada por el hombre desde su origen en el sudeste de Brasil e introducida en muchos países tropicales de Africa, Asia y el Pacífico (Room 1990). La planta no causa problemas en Brasil debido a que algunos insectos en ese país están acostumbrados a alimentarse sobre la misma y evitan que prolifere abundantamente. Estos insectos no existen en países donde salvinia ha sido introducida, por lo que allí la planta ha crecido sin restricciones hasta formar gruesos mantos que cubren completamente ríos, lagos, canales y campos de inundación. Estos mantos han impedido que las personas puedan usar embarcaciones, pescar, cultivar arroz y nadar. Malezas gramíneas y otras plantas, incluso pequeños arboles, con frecuencia crecen sobre gruesos mantos de salvinia.

Foto 5c. Salvinia molesta

Foto 5d. Cyrtobagous salviniae, picudo para el control biológico de S. molesta

Estrategias de manejo

Se pueden usar tres técnicas diferentes para controlar salvinia: la extracción física de la planta desde las aguas infestadas, los herbicidas y el control biológico a través del uso de un escarabajo.

La extracción física es útil para pequeñas áreas acuáticas, sobre todo si se puede extraer hasta el último fragmento de salvinia. En grandes cuerpos de agua, la extracción física es usualmente muy costosa debido al gran peso de masa húmeda a ser extraída y a la velocidad a la cual la maleza reconoliza la superficie libre del agua.

El control con herbicidas, tales como diquat, 2, 4-D y glifosato puede ser adecuado si el objetivo es erradicar la salvinia de cuerpos de agua de pequeño a mediano tamaño carente de franjas de vegetación que se desarrollen sobre ella, tales como cañuelas, entre las cuales salvinia puede ser no detectada y eliminada. Muchos herbicidas destruyen la planta (Anon. 1977), pero se debe buscar asesoría local para evitar efectos colaterales indeseables como la contaminación del agua donde la salvinia se desarrolla. La contaminación se puede minimizar al mezclar ciertos herbicidas con queroseno para hacerlos flotar y el uso de un agente humectante que asegure un contacto letal con las plantas flotantes (Diatloff et al. 1979). El uso de herbicidas generalmente no es práctico ni económico en grandes lagos, ya que bajo condiciones tropicales medias, si no se puede asperjar más de la mitad del área infestada en una semana, el crecimiento ocurrirá más rapidamente que la destrucción de la maleza.

El método de control más económico, que también tiene el menor riesgo de efectos colaterales indeseables, es el control biológico mediante el uso del escarabajo de salvinia, Cyrtobagous salviniae (Foto 5d.). Este logro se obtuvo por primera vez en Australia en 1981 (Room et al. 1981). El escarabajo fue descubierto en el mismo habitat nativo de salvinia, en Brasil, y después de amplias investigaciones que mostraron que el insecto no se alimenta de ninguna otra planta. Para este propósito 2000 escarabajos de salvinia fueron liberados sobre un manto de salvinia en el Lago Moondarra, en Australia. Durante los 18 meses subsiguientes, los escarabajos se multiplicaron hasta llegar a una cifra superior a 100 millones, población que ingirió hasta 50 000 toneladas de salvinia para limpiar el lago. Posteriormente la mayoría de los insectos murieron por inanición.

Este dramaticamente exitoso control se ha repetido en muchos ríos y lagos en otras partes de Australia y en Papua-Nueva Guinea, India, Sri Lanka, Malasia, Filipinas, Fiji, Botswana, Sudáfrica, Kenya y Zambia. En ningún caso estos escarabajos han atacado a planta alguna, excepto salvinia. Se ha temido que la destrucción rápida de los grandes mantos de salvinia podría liberar suficientes nutrientes para producir el florecimiento de algas u otros problemas de maleza. Esto no ha sucedido porque las salvinias muertas se descomponen y liberan los nutrientes con relativa lentitud.

En la mayoría de los casos el control biológico ha eliminado salvinia completamente de las partes centrales de los cuerpos del agua. Todo lo que queda son pequeños fragmentos de la maleza escondidos entre gramíneas y otro tipo de vegetación que crece en las pequeñas profundidades. Se ha establecido un equilibrio que consiste en "escondidos y búsquedas" entre los pocos escarabajos de salvinia restantes y unas pocas plantas de salvinia, las cuales se hacen más fáciles para los escarabajos encontrar si las plantas escapan del ataque durante suficiente tiempo para luego crecer moderadamente.

Un análisis económico en Sri Lanka demostró ingresos de $53 por cada $1 gastado en el control biológico de salvinia y 1673 horas de mano de obra por cada hora gastada en el control biológico (Doeleman 1989). Los beneficios a nivel mundial son de alrededor de $200 millones. Los únicos países que se conoce que tienen problemas de salvinia y no han intentado el control biológico, son Indonesia, la República Malgache y Costa de Marfil. Parece no existir suficiente especialización en esos países para reconocer los beneficios que se podrían ganar de aceptar el control biológico de salvinia como asistencia técnica gratuita de parte de Australia.

Referencias

Anon. 1977. Selective control of Salvinia molesta in rice. Pest Articles and News Summaries 23: 333-334.

Diatloff G., A.N. Lee y T.M. Anderson 1979. A new approach for Salvinia control. Journal of Aquatic Plant Management 17: 24-27.

Doeleman J.A. 1989. Biological Control of Salvinia molesta in Sri Lanka: an assessment of Costs and Benefits. ACIAR Technical Report 12.

Room P.M. 1990. Ecology of a simple plant-herbivore system: biological control of salvinia. Trenas in Ecology and Evolution.

Room P.M., K.L.S. Harley, I.W. Forno y D.P.A. Sands 1981. Successful biological control of the floating weed salvinia. Nature 294: 78-80.

Room P.M. y P.A. Thomas 1986. Population growth of the floating weed Salvinia molesta: field observations y a global model based on temperature and nitrogen. Journal of Applied Ecology 23: 1013-1028.


Página precedente Inicìo de página Página siguiente