Thumbnail Image

Characteristics of growth and heartwood formation in planted teak in South China

XV World Forestry Congress, 2-6 May 2022











Also available in:
No results found.

Related items

Showing items related by metadata.

  • Thumbnail Image
    Article
    Journal article
    Characteristics and dynamics of arbuscular mycorrhizal fungal communities along a chronosequence of teak (Tectona grandis) plantations in Mt. Jianfengling, Hainan Island, China
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    Teak (Tectona grandis L.f.) is one of the most promising timber species in the tropical and subtropical areas in south China. Arbuscular mycorrhizal (AM) fungi play a crucial role in promoting plant growth, enhancing plant stress resistance and sustaining healthy ecosystem. However, little is known about mycorrhizal status in teak plantations. This study aims to characterize the dynamics of AM fungal communities in the rhizosphere of teak plantations at different ages. Fine roots and rhizosphere soils in teak plantations at varying ages (22, 35, 45 and 55 years old), and the adjacent native grassland without teak plantation (CK) were assessed for soil properties, and AM fungal communities using amplicon sequencing technology. With the increase of stand ages, catalase and ammonium nitrogen in the rhizosphere soil were also increased; soil organic carbon, total phosphorous (P), acid phosphatase, available potassium (AK) and available phosphorus (AP) were first increased and then declined at 55-year-old stand. In total, 12 and 9 AM fungal genera were detected in the rhizosphere soil and in teak root samples, respectively. The OTUs data revealed that AM fungi presented in the rhizosphere soil and roots were mostly belonged to Glomus. In the rhizosphere soil, the relative abundance of Glomus was first increased and then declined, while Gigaspora and Scutellospora were declined, although the diversity and richness of AM fungi showed no significant variation with stand ages. In roots, the composition of AM fungal community and its diversity did not change with stand ages, whereas the richness was increased with the stand age. The monte carlo permutation test indicated that AK, nitrate nitrogen and C/P ratio largely explained the shift in the composition of AM fungal community in the rhizosphere soil. The results demonstrated that AM fungal communities in the rhizosphere soil and teak roots shifted across plantation ages. These changes were largely attributed to the age-induced variation in soil properties. Keywords: Tectona grandis; arbuscular mycorrhizal fungi; stand age; soil properties; plantations ID: 3623633
  • Thumbnail Image
    Document
    Other document
    Growth performance of the Teak's (Tectona grandis Linn.f) different planting stocks
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    The growth of plantation is dependent on a complex series of interactions between genetics and environmental factors, and the planting stocks including planting methods. For the successful establishment of a plantation, the economically effective means should be explored, as teak plantation is being established in Myanmar especially for commercial purposes including forest rehabilitation purposes. This study was conducted in the 12 years old Teak plantation that was established in compartment No. 24 of Ngalaik Reserved Forest and managed by Forest Research Institute. This plantation was established with different planting stocks; tissue culture seedling, shoot cutting seedling, potted seedling, fresh stump seedling, and grafted seedling in 2008. The main objective of this trial is to explore the growth performance of Teak plantation by applying the different planting stocks. Randomized completely block design (RCBD) was used with 5 replications (5 blocks). In one block, there are 5 plots in which totally of 49 trees were planted in each sub-plot with 2.7 m by 2.7 m spacing. There was a total of 1,225 planted trees in this trial. As a preliminary step, in 2019 through the measurement data, the total basal area of trial area (0.92 ha) is 16.46 m2 (17.89 m2 ha-1), the total volume is 96.47 m3 (104.86 m3 ha-1) [here calculated cone factor = 0.359822 is used], and mean annual increment (MAI) is 9.53 m3 ha-1 yr -1. Among the different planting stocks, the potted seedling plant was significantly better in growth as compared to those of other planting stocks, nonetheless, survival percentages among them were not significant. Now, we conduct this follow-up study to explore the growth performance of this 12 years old teak plantation of different planting stocks. We expect this study’s findings will be supported the useful and applicable information for the commercial plantation program to raising environmentally friendly and economically successful teak plantations. Keywords: Sustainable forest management, Deforestation and forest degradation, Research ID: 3485372
  • Thumbnail Image
    Document
    Other document
    Effects of drought stress and nitrogen fertilization on growth and physiological characteristics of Pinus densiflora seedlings under elevated temperature and CO2 concentrations
    XV World Forestry Congress, 2-6 May 2022
    2022
    Also available in:
    No results found.

    Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomena has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertilization according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2- Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5°C; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering (control versus drought), fertilization (control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and soil water content (SWC) were measured to examine physiological responses and growth. Relative SWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertilization were high before drought yet decreased rapidly after 13 days under drought. The fastest mortality showed in aCeT but the longest survival was observed in eCeT. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertilization were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simlulated environmental stressors. Keywords: Climate change ID: 3621653

Users also downloaded

Showing related downloaded files

  • Thumbnail Image
    Book (series)
    Flagship
    The State of Food Security and Nutrition in the World 2021
    Transforming food systems for food security, improved nutrition and affordable healthy diets for all
    2021
    In recent years, several major drivers have put the world off track to ending world hunger and malnutrition in all its forms by 2030. The challenges have grown with the COVID-19 pandemic and related containment measures. This report presents the first global assessment of food insecurity and malnutrition for 2020 and offers some indication of what hunger might look like by 2030 in a scenario further complicated by the enduring effects of the COVID-19 pandemic. It also includes new estimates of the cost and affordability of healthy diets, which provide an important link between the food security and nutrition indicators and the analysis of their trends. Altogether, the report highlights the need for a deeper reflection on how to better address the global food security and nutrition situation.To understand how hunger and malnutrition have reached these critical levels, this report draws on the analyses of the past four editions, which have produced a vast, evidence-based body of knowledge of the major drivers behind the recent changes in food security and nutrition. These drivers, which are increasing in frequency and intensity, include conflicts, climate variability and extremes, and economic slowdowns and downturns – all exacerbated by the underlying causes of poverty and very high and persistent levels of inequality. In addition, millions of people around the world suffer from food insecurity and different forms of malnutrition because they cannot afford the cost of healthy diets. From a synthesized understanding of this knowledge, updates and additional analyses are generated to create a holistic view of the combined effects of these drivers, both on each other and on food systems, and how they negatively affect food security and nutrition around the world.In turn, the evidence informs an in-depth look at how to move from silo solutions to integrated food systems solutions. In this regard, the report proposes transformative pathways that specifically address the challenges posed by the major drivers, also highlighting the types of policy and investment portfolios required to transform food systems for food security, improved nutrition, and affordable healthy diets for all. The report observes that, while the pandemic has caused major setbacks, there is much to be learned from the vulnerabilities and inequalities it has laid bare. If taken to heart, these new insights and wisdom can help get the world back on track towards the goal of ending hunger, food insecurity, and malnutrition in all its forms.
  • Thumbnail Image
    Book (stand-alone)
    Technical book
    Russian Federation: Meat sector review
    Country highlights prepared under the FAO/EBRD Cooperation
    2014
    Also available in:

    World food demand has seen massive changes, including a shift from staple foods to animal proteins and vegetable oils. In the short to medium term, this trend in global food demand will continue. There will be an increased demand for vegetable oils, meat, sugar, dairy products and livestock feed made from coarse grains and oilseed meals. There are numerous mid-term forecasts for the Russian Federation’s meat sector. Most of them agree on the following trends: (i) the consumption of poultry and p ork meat will increase; (ii) the consumption of beef will decrease or stabilize; and (iii) the Russian Federation will remain a net importer of meat on the world market. According to OECD and FAO projections, meat imports from the Russian Federation will decrease from 3 to 1.3 million tonnes, owing to an anticipated growth in domestic chicken meat and pork production. The country’s share in global meat imports is anticipated to decrease from 12 percent in 2006–2010, to 4 percent in 2021. While t he Russian Federation will continue to play an important role in the international meat market, it will fall from its position as the largest meat importing country in 2006–2010 to the fourth largest global meat importer by 2021, behind Japan, sub-Saharan African countries, and Saudi Arabia.
  • Thumbnail Image
    Booklet
    Corporate general interest
    Emissions due to agriculture
    Global, regional and country trends 2000–2018
    2021
    Also available in:
    No results found.

    The FAOSTAT emissions database is composed of several data domains covering the categories of the IPCC Agriculture, Forestry and Other Land Use (AFOLU) sector of the national GHG inventory. Energy use in agriculture is additionally included as relevant to emissions from agriculture as an economic production sector under the ISIC A statistical classification, though recognizing that, in terms of IPCC, they are instead part of the Energy sector of the national GHG inventory. FAO emissions estimates are available over the period 1961–2018 for agriculture production processes from crop and livestock activities. Land use emissions and removals are generally available only for the period 1990–2019. This analytical brief focuses on overall trends over the period 2000–2018.