Related items
Showing items related by metadata.
-
DocumentWood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation
XV World Forestry Congress, 2-6 May 2022
2022Also available in:
Error: Could not load results for '/discover/search/objects?sort=dc.language.iso,ASC&page=0&size=5&configuration=item&query=(fao.identifier.jobnumber_keyword%3Acc2630*%20OR%20fao.identifier.jobnumber_keyword%3ACC2630*)%20-fao.identifier.jobnumber_keyword%3ACC2630EN%20AND%20archived%3Atrue'.Although conifers have significant ecological and economic value, information on transcriptional regulation of wood formation in conifers is still limited. Here, to gain insight into secondary cell wall (SCW) biosynthesis and tracheid formation in conifers, we performed wood tissue-specific transcriptome analyses of Pinus densiflora (Korean red pine) using RNA sequencing. In addition, to obtain full-length transcriptome information, PacBio single molecule real-time (SMRT) iso-sequencing was carried out using RNAs from 28 tissues of P. densiflora. Subsequent comparative tissue-specific transcriptome analysis successfully pinpointed critical genes encoding key proteins involved in biosynthesis of the major secondary wall components (cellulose, galactoglucomannan, xylan, and lignin). Furthermore, we predicted a total of 62 NAC (NAM, ATAF1/2 and CUC2) family transcription factor members and identified seven PdeNAC genes preferentially expressed in developing xylem tissues in P. densiflora. Protoplast-based transcriptional activation analysis found that four PdeNAC genes, homologous to VND, NST and SND/ANAC075, upregulated GUS activity driven by an SCW-specific cellulose synthase promoter. Consistently, transient overexpression of the four PdeNACs induced xylem vessel cell-like SCW deposition in both tobacco (Nicotiana benthamiana) and Arabidopsis leaves. Taken together, our data provide a foundation for further research to unravel transcriptional regulation of wood formation in conifers, especially SCW formation and tracheid differentiation. Keywords: Research, Genetic resources ID: 3622610 -
DocumentImprovement of reclaimed soil for sustainable wood energy forest and analysis of growth inhibitory factors by growing season of Populus euramericana
XV World Forestry Congress, 2-6 May 2022
2022Also available in:
Error: Could not load results for '/discover/search/objects?sort=dc.language.iso,ASC&page=0&size=5&configuration=item&query=(fao.identifier.jobnumber_keyword%3Acc2606*%20OR%20fao.identifier.jobnumber_keyword%3ACC2606*)%20-fao.identifier.jobnumber_keyword%3ACC2606EN%20AND%20archived%3Atrue'.In this study, the effect of soil amendment and ferilization on soil physicochemical properties and tree growth(Populus euramericana) in reclaimed land was investigated. The stduy plot were established with two tillage levels and three soil additive levels: control(till 20cm, additives 0kg), T1(20cm, 4kg), T3(40cm, 8kg); each soil amendment treatments can be divided by two fertilization treatment(N: non-ferilized, F: ferilized). The first year after soil amendment treatments, NaCl and EC decreased compared to pre-treatment; however, there were no differences among the four treatments. The organic matter, total nitrogen and available phosphorus measured 3years after treatments, significantly increased compared to control while EC and NaCl notably lowered than control. Especially, EC in all treatments except the control was within the optimum range of tree growth(below 0.4dS/m). In terms of fertilization, chlorophyll concentration(SPAD) and biomass productivity in fertilization treatment were hight than no-fertilized treatment. The PCA analysis was performed to examine the relationship between soil abiotic properties and poplar growth each at the initial stage(rootage) and after rootage. The PCA analysis indicated that the major factor for poplar growth each at the initial stage was soil physical properties which play an important role in the early root development. After root development, soil pH and NaCl in the soil were the major growth inhibitory factors. This findings confirmed that the essential conditions for the efficient production of the wood energy feedstock in the reclaimed land were soil physical properties at the initial stage of (Populus euramericana) (before rootage) but soil chemical properties became important at the lateralstage of (Populus euramericana). Keywords: Adaptive and integrated management, Climate change, Economic Development ID: 3622988 -
DocumentSpatial distributions pattern and associations of dead woods in natural spruce-fir secondary forests
XV World Forestry Congress, 2-6 May 2022
2022Also available in:
Error: Could not load results for '/discover/search/objects?sort=dc.language.iso,ASC&page=0&size=5&configuration=item&query=(fao.identifier.jobnumber_keyword%3Acc4420*%20OR%20fao.identifier.jobnumber_keyword%3ACC4420*)%20-fao.identifier.jobnumber_keyword%3ACC4420EN%20AND%20archived%3Atrue'.Natural secondary forest is the main part of forest resources in China. Studying dead woods (DW) could better reveal the community succession rule and promote the healthy development of them. We investigated basic characteristics and coordinates of each tree (DBH≥1 cm) within a plot (100 m×100 m) using the adjacent grid method and studied the spatial distributions pattern and associations of DW (in the last five years) in a typical natural spruce-fir secondary forest in Jingouling Forest Farm, Wangqing Forestry Bureau, Jilin Province, China. The results showed that the diameter class distribution of DW showed the pattern of left-single-peak curve, while the logs showed the pattern of multi-peak curve. DW number was related to the mixing degree of one species, but not to the total number of it. The distribution of DW was concentrated at 0~8m scale. As the scale increases, it changed to random or uniform. The aggregation distribution of DW of medium (10 cm≤DBH<20 cm) and small (1 cm≤DBH<10 cm) DBH at small scale below 8 m was the main reason for the aggregation distribution of DW. The DW of large (DBH≧20 cm) DBH and Saplings (1 cm≤DBH<5 cm) showed a significant positive association at 2~25 m scale. There was no significant spatial association between DW and Small trees(5 cm≤DBH<15 cm). At 0~3m scale, there was a positive association between Medium trees (15 cm≤DBH<25 cm) and DW of small and medium DBH. At the 9 m, 11~14 m scale and the 15 m, 42~45 m scale, the DW of small and medium DBH were significantly negatively associated with Large trees (DBH≥25 cm). In conclusion, the biological traits, diameter class distribution and spatial distribution affected the abundance and diameter class distribution of DW of one species. The spatial distributions of DW and the associations between DW and standing trees varied across diameter classes and scales. Rational utilization of spatial information could optimize stand structure and promote positive community succession. Keywords: Deforestation and forest degradation, Sustainable forest management, Adaptive and integrated management ID: 3618474
Users also downloaded
Showing related downloaded files
No results found.