Thumbnail Image

Fisheries and Aquaculture in our Changing Climate [Brochure]









Also available in:

Related items

Showing items related by metadata.

  • Thumbnail Image
    Book (stand-alone)
    Deep-ocean climate change impacts on habitat, fish and fisheries
    FAO Fisheries and Aquaculture Technical Paper No. 638
    2019
    Also available in:
    No results found.

    This publication presents the outcome of a meeting between the FAO/UNEP ABNJ Deep-seas and Biodiversity project and the Deep Ocean Stewardship Initiative. It focuses on the impacts of climatic changes on demersal fisheries, and the interactions of these fisheries with other species and vulnerable marine ecosystems. Regional fisheries management organizations rely on scientific information to develop advice to managers. In recent decades, climate change has been a focus largely as a unidirectional forcing over decadal timescales. However, changes can occur abruptly when critical thresholds are crossed. Moreover, distribution changes are expected as populations shift from existing to new areas. Hence, there is a need for new monitoring programmes to help scientists understand how these changes affect productivity and biodiversity. The principal cause of climate change is rising greenhouse gases and other compounds in the atmosphere that trap heat causing global warming, leading to deoxygenation and acidification in the oceans. Three-dimensional fully coupled earth system models are used to predict the extent of these changes in the deep oceans at 200–2500 m depth. Trends in changes are identified in many variables, including temperature, pH, oxygen and supply of particulate organic carbon (POC). Regional differences are identified, indicating the complexity of the predictions. The response of various fish and invertebrate species to these changes in the physical environment are analysed using hazard and suitability modelling. Predictions are made to changes in distributions of commercial species, though in practice the processes governing population abundance are poorly understood in the deep-sea environment, and predicted
  • Thumbnail Image
    Booklet
    Climate-Smart Agriculture in Seychelles 2019
    Also available in:
    No results found.

    The climate smart agriculture (CSA) concept reflects an ambition to improve the integration of agriculture development and climate responsiveness. It aims to achieve food security and broader development goals under a changing climate and increasing food demand. CSA initiatives sustainably increase productivity, enhance resilience, and reduce/remove greenhouse gases (GHGs), and require planning to address trade-offs and synergies between three pillars: productivity, adaptation and mitigation. The priorities of different countries and stakeholders are reflected to achieve more efficient, effective, and equitable food systems that address challenges in environment, social, and economic dimensions across productive landscapes. The country profile provides a snapshot of a developing baseline created to initiate discussion, both within countries and globally, about entry points for investing in CSA at scale. Seychelles is a small island state in the western Indian Ocean, which has developed a high-income economy and eliminated extreme poverty. Agriculture contributes about 2.2% of the country’s gross domestic product with tourism and the fisheries and seafood industries serving as the main pillars of the economy. Agricultural land occupies about 3.4% of the total land area of the country. A large portion of the land area (88.4%) is covered by forest mainly natural and established plantations for commercial purposes. Seychelles is divided into two large agro-climatic zones based on biophysical characteristics- mountainous/forest zone high ground and coastal plateau. In terms of agriculture, two agroecological zones can be distinguished mainly based on soil: upland and sandy soil. Main cropping systems includes food crop-based systems and perennial crop-based systems. Livestock production include goat, pig and chicken. Most crop production is under rainfed or irrigation system. Most farms are under 2 ha with backyard farming done to supplement household food or income. The main crops and products include coconut, cinnamon, vanilla, sweet potato, cassava, banana and tuna. Seychelles has the highest rate of overweight and obesity in Africa due to the shift from predominantly unprocessed traditional foods to a more westernised dietary intake consisting mainly of refined and processed foods. most greenhouse gas (GHG) emission come from the energy sector, followed by waste and agriculture which contributes 0.79% of the total. Seychelles has outlined in its nationally determined contributions mitigation actions in the forestry, energy and transport, and waste sectors. In agriculture, actions to mitigate climate change include: promotion of agricultural practises such as agroforestry which would involve mainstreaming strategies to limit deforestation and increase the sink capacity of forests. Challenges for the agricultural sector include (i) deforestation and unsuccessful intensification, (ii) uncontrolled urbanisation, land clearing, bush fires and population pressure, and (iii) high reliance on food imports. Agriculture in Seychelles is limited by a lack of arable land and extreme rainfall patterns and meteorological events like tropical storms, floods and droughts. Climate change poses serious challenges to the country such as uncontrolled economic and social consequences of floods, land degradation, sea-level rise, coastal erosion, declining agricultural yields, health vulnerability, and increased occurrence of drought. CSA technologies and practises present opportunities for addressing climate change challenges as well as for economic growth and development of the agriculture sector. Identified CSA practises in use in the country include: crop production under shade houses, inter cropping, use of organic manure and mulch, use of weather information, water control through irrigation, anti-erosion arrangement, windbreak and shelter, and use of climate-adapted seeds. Seychelles has several key institutions and policies aimed at supporting and increasing agriculture productivity and advancing CSA practises. These include government ministries and agency structures of ministries, firms operating in the agricultural sector, academic institutions, specialised laboratories and agricultural research institutes and training centres. The Ministry of Environment, Energy and Climate Change (MEECC) serving as the country’s UNFCCC focal point and nationally designated authority to the Green Climate Fund is responsible for country’s climate change plans and policies. On the agriculture front the ministry of agriculture and fisheries is the key government institution for partnerships for climate-smart agriculture work in the communities as well as for policy and investment related issues through the national agricultural investment plan. A number of csa-related policies and strategies have been developed: National Programme on climate change strategy, national strategy for disaster risk management, national biodiversity strategy and action plan and the mainstreaming of climate change adaptation into the country’s strategic plan- a definitive document intended to guide land-use management up to the year 2040. A number of projects that foster the development of knowledge and evidence on the effectiveness of climate smart agriculture in improving food security, mitigating climate change and improving the adaptive capacities of production systems and populations in Seychelles have received support from various donors and financing schemes. In addition, AfDB, COMESA, FAO, EU, IFAD, etc. have invested hugely in several aspects of the climate/agricultural sector of Seychelles which also include the development and promotion of csa innovations. From various sources of climate finance available internationally, Seychelles is currently eligible for only a limited number of these and has not wholly accessed major funding instruments such as the Green Climate Fund and Adaptation Fund. The county is a small island nation whose prospects rely heavily on external demand, especially tourism. This poses major challenges for diversification and resilience. Its commitment to csa is relatively new with limited institutions and sources of funding.
  • Thumbnail Image
    Book (stand-alone)
    Implications of climate change on fisheries and aquaculture: Challenges for adaptation and mitigation in the Asia-Pacific region 2011
    Also available in:
    No results found.

    It is now widely recognized that the effects of climate change will impact the fisheries sector and result in increased uncertainty in the supply of fish from capture fisheries and aquaculture. The warming of the sea surface, rivers and lakes, changing precipitation, water salinity and ocean acidity and sea level rise will affect marine, coastal and inland environments. Food quality may also be threatened with increased risk of species invasions and the spreading of vector-borne diseases. Positi ve impacts like access to new species and markets may also arise as a result of climate change. This technical workshop was convened in Kathmandu, Nepal from 24 to 26 May 2011 to review mitigation and adaptation strategies for the fisheries and aquaculture sectors in Asia and the Pacific. The workshop brought together 50 participants from member countries and partner organizations to share available information and knowledge, and discuss and analyze the specific potential impacts of different ty pes of climate change patters on marine capture fisheries, inland capture fisheries, coastal aquaculture and inland aquaculture. Recommendations are included in the report covering, among others, advocacy for increased policy emphasis on climate change adaptation and mitigation strategies in the sector, strengthening of governance, and use of integrated management approaches and monitoring tools.

Users also downloaded

Showing related downloaded files

No results found.