Thumbnail Image

Round Table on Imagining Future Healthy and Inclusive Food Systems in Asia and the Pacific















Related items

Showing items related by metadata.

  • Thumbnail Image
    Book (stand-alone)
    Dynamic development, shifting demographics and changing diets
    The story of the rapidly evolving food system in Asia and the Pacific and why it is constantly on the move
    2018
    Also available in:

    Asia and the Pacific is experiencing major demographic shifts and urbanizing rapidly. E-agriculture technologies (remote sensing, drones, sensors) are emerging, with potentially profound implications for the entire food system and management of the natural resource base. Structural transformation of the economy has also changed the nature of the food security problem. Earlier, many governments thought that producing more staple food was sufficient to improve food security. However, today’s economy, increasingly based on human capital and less on physical strength, requires that policies and programmes promote healthy diets for healthy people. This need for improved nutrition will require shifts in agricultural production and trade patterns. Solving the malnutrition problem in urban areas will also require different solutions than in rural areas, due to the difference in urban and rural food environments. In line with the structural transformation of the economy, farm households also increasingly rely on non-farm income to support their livelihoods and risk management strategies, which has implications for the uptake of new technologies. The demographic shifts, urbanization and structural changes in the economy, coupled with climate change, have made the food security and nutrition problem more complex than it was in the past. Solutions require input from different stakeholders, both public and private, as well as a range of government ministries, including Health, Finance, Education, Environment, Trade and Social Welfare in addition to Agriculture.
  • Thumbnail Image
    Booklet
    Climate-Smart Agriculture in Guinea-Bissau 2019
    Also available in:
    No results found.

    The climate smart agriculture (CSA) concept reflects an ambition to improve the integration of agriculture development and climate responsiveness. It aims to achieve food security and broader development goals under a changing climate and increasing food demand. CSA initiatives sustainably increase productivity, enhance resilience, and reduce/remove greenhouse gases (GHGs), and require planning to address trade-offs and synergies between three pillars: productivity, adaptation and mitigation. The priorities of different countries and stakeholders are reflected to achieve more efficient, effective, and equitable food systems that address challenges in environment, social, and economic dimensions across productive landscapes. The country profile provides a snapshot of a developing baseline created to initiate discussion, both within countries and globally, about entry points for investing in CSA at scale. The agricultural sector is the main stay of the economy of Guinea-Bissau. In the absence of other resources, the sector despite being underdeveloped plays a leading role in supporting food security and job creation. Presently it contributes about 46% of national gross domestic product (GDP) with 84% of the population actively employed in primary production agriculture largely dominated by women. The majority of these farmer are small scale farmers farming on less than two hectare (2 ha). More than half (58%) of the total land in Guinea-Bissau is used for agriculture with area under forest heavily degraded by rapid exploitation. However, there are huge potentials for agricultural and forestry land including arable land estimated at about 1.5 million hectares. Farmers engage in the production of diverse crops and livestock such as cashew, rice (country’s staple food), sorghum, maize, etc largely cultivated by subsistence farmers. Women usually take up horticulture in the urban areas. Livestock production concentrated mainly in the north and east of the country is one of the main economic activities supporting food security and thousands of livelihoods. The country is divided into three agroecological zones based on ecological, climatic and demographic characteristics. Agriculture is mainly rainfed with very limited irrigated farming practised. About 82% of water withdrawn is used for agricultural purposes impelling a necessity for huge investments in irrigation to support agriculture production. The projected population growth and food demand is expected to have serious implications on food security with a potential to affect the agricultural sector. Despite the agro-forestry-pastoral potential and fisheries resources of Guinea-Bissau, many studies have shown that, the current food situation in the country is very precarious with poverty identified as the underlining cause. Greenhouse gas (GHG) emission from the agricultural sector has been identified as very high with the country indicating reforestation as the major action for mitigating GHG emissions in its nationally determined contribution (NDC). Some challenges for the agricultural sector identified include (i) growth in population and food demand, (ii) land use change and natural resource depletion, (iii) limited marketing opportunities of agricultural commodities, and (iv) climate change and variability. Guinea-Bissau has a typical hot, humid monsoon-like tropical climate with two well-defined seasons. Agriculture is exposed to the effects of climate change with the country vulnerable to droughts, floods and sea level rise. The projected changes in temperature and rainfall are expected to have substantial impact on water resources which are already limited in their capacity to provide sufficient water for the agriculture sector. CSA technologies and practises present opportunities for addressing climate change challenges as well as for economic growth and development of the agriculture sector. Identified CSA practises in use in the country include (i) use of organic manure, (ii) use of weather information, (iii) water supply through drip irrigation, (iv) anti-erosion arrangement, (v) forage/fodder production, (vi) crop rotation, and (vii) rainwater harvesting through the Zai technique. There are a number of institutions and policies aimed at supporting and increasing agriculture productivity and advancing CSA practises in Guinea-Bissau. These include government, private sector, the national institute for agrarian research and general directorate of rural engineering with each most of the institutions profiles having CSA-related activities that deliver on all three pillars of CSA. The Ministry of environment which serves as the country’s UNFCCC focal point and Nationally Designated Authority to the Green Climate Fund (GCF), Adaptation fund, Climate Investment Fund and Global Environment Facility is responsible for the country’s climate change plans and policies. The food and agriculture organisation of the United Nations, the United Nations development programme and the international union for conservation of nature play instrumental roles in the promotion of sustainable agriculture and environmental sustainability. Most of the climate change and CSA-related funding have come from international sources with the UNDP being of great support through its signature programmes.
  • Thumbnail Image
    Document
    Pilot project to improve data collection for tuna, sharks and billfish from artisanal fisheries in the Indian Ocean 2013
    Also available in:
    No results found.

    The Indian Ocean Tu Commission (IOTC), acknowledging the need for improved artisal fisheries reporting by the countries in the region, proposed a study to investigate the issues affecting these countries and possible solutions to the problems. This study concentrated on the capacity that countries in the Indian Ocean have to report artisal fishery catches on near-real time but recommendations were also made in some specific cases about semi-industrial and industrial fisheries if deficiencies wer e observed. Nine countries were visited and initial assessments made on their capacities to report catches from artisal fleets in near real-time. Speed of reporting and quality of data were investigated and recommendations made where appropriate. The countries visited capture over 87% of the total catch through coastal fisheries of the three species of interest (bigeye, yellowfin and skipjack tu) to the IOTC. Other countries were not visited for a variety of reasons. Pakistan and Yemen have impo rtant catches (6.7%) but could not be visited due to security concerns; Comoros has an IOTC- OFCF project in progress, and Oman has a good reporting system in place. The limitations of this study must be appreciated. Understanding the plethora of issues in such a short amount of time, sometimes as little as five days in a country, presents particular challenges that cannot be ignored. The amount of time spent and size of each country, complexities of the fisheries, people met, institutiol linkag es, politics, and other factors influenced the understanding of the issues by the consultant as well as the actions proposed. Much of the information collected may not be considered factual but anecdotal as on many occasions people from the same or different organizations contradicted each other and it was not always possible to verify the accuracy of their claims. In addition, the lack of consistency on how data are gathered in the same country shows that the region is a long way from having co nsistent methodologies in place. Although many artisal fisheries do not target tu due to limitations in the vessels the changes proposed here apply not only to tus, sharks and billfishes but also to the rest of species as the issues encountered with experimental design, sampling and reporting are pervasive and common to all fisheries. The objectives of the mission were 1. to meet with relevant officials including the Chief of Statistics, personnel responsible for aggregation and handling of fish eries data, and representatives at the provincial and district levels; 2. to visit various ports to determine the flow of information and possible areas for improvement; 3. to describe the issues affecting the timely report of artisal fishery data and investigation of possible solutions, implementation and costs; and 4. to recommend on data collection and magement activities that would make possible close to real-time reporting of data from artisal fisheries including implementation of pilot sam pling activities and strengthening of existing data collection and magement systems. These activities aimed to answer the question posed by the Commission on whether countries in the region, as a whole, have the capacity to report accurate catches in near-real time The short answer to the question made by the Commission is an unequivocal no. There are many issues affecting the capacity of these countries to produce not only reliable but timely statistics and in this document these concerns are a ddressed individually in the country reports. This does not mean, however, that there are no countries that with small changes and a dose of political will could report significantly improved statistics in the time frame proposed. Some of the countries visited could have reduced timelines and improved statistics if collection of fisheries data were given the priority it deserves. At this time, however, the great majority of countries cannot, or do not report, their catches discrimited by species , gear and month in the proposed timeframe of one to two weeks after the end of each month. It is necessary for IOTC to define artisal vessels as the temporary definition used in this study includes boats from semi industrial and industrial fleets. Because of the diversity and complexity of fishing fleets found throughout the region, neither size nor any other single characteristic will be sufficient to describe an artisal vessel. The definition will have to be based on a series of criteria (e.g . fulfilling three out of five characteristics that may include gear used, size of boat, size of motor, autonomy, type of storage, etc). The fleets encountered in many countries show a range of interchangeable fishing techniques, capacity to fish close or far to shore, capabilities to stay from a few to many days away from port and other characteristics that are usually associated with more developed fleets. Even if a definition by IOTC exists, countries need to define their fisheries magement u nits to clearly separate artisal, semi industrial and industrial components to avoid aggregation of vessels that may use similar gear but have different capacities (e.g. sizes, autonomy, etc) and therefore different catches. Contracting and Cooperating Non-contracting Parties (CPCs) in the region have the obligation to fulfil the requirements set by the Commission. At this time near-real time reporting is not one of them but countries should evaluate their needs and consider the suggestions give n here to improve their reporting systems. To successfully implement any activities to improve reporting systems, it will be necessary for the countries to critically assess the possibilities that they have to continue the work once support, fincial and logistical, is suspended regardless if the support is exterl or in-country. It is not very useful to realize improvements if the proposed activities are discontinued soon after support stops because the responsible departments do not assign the p riority, funds or capacity to maintain them. Ideally, these changes should be incorporated into existing structures and given the importance needed to ensure procedural continuity and high quality of data. A common problem through the region is the aggregation of species under a common label (e.g. sharks). Substantial amounts of money and time have been spent on the design, compilation and production of identification guides (e.g. FAO in Tanzania and Kenya) but they have serious shortcomings as they present one or two species from groups such as tu, a resolution that leaves much to be desired. For fisheries magement purposes, data must be collected with species resolution and these guides fall short of their intended objective. A possible replacement to printed guides is the use of electronic tablets that can be used for identification purposes as well as for data collection. The use of this technology would resolve the most common problem encountered in this mission, that of considera ble delays in report production due to hold ups in entry of data. The costs of said tablets and the development of the software in most cases would be less or comparable to the cost of purchasing laptops and other computers, photocopying forms, and mailing these to the various centres. Furthermore, the use of tablets would allow for remote supervision, thus reducing the need for on-site monitoring, as many of these tablets have GPS or other methods to determine position that allow for immediate localization and monitoring of personnel in the field. This technology, however, may not be appropriate to all countries visited, as it would need reliable Internet connection and technical support. It would be possible for countries like India and Sri Lanka to start using this technology as they have already expressed interest in its use and would address the issues presented above which are relevant to these countries. The countries visited exhibited a wide range of fisheries, gears, species, and of course issues thus they are presented individually in the country reports although general comments follow to highlight the most important findings and recommendations. India possesses one of the most complex fisheries in the region because of its size, large number of boats and people. In addition, the large numbers of landing sites make this country a challenge to sample. Nonetheless, there is infrastructure and institutiol capacity to address these concerns. The Central Marine Fisherie s Research Institute gathers data in far more detail than the State Unions and at this time harmonization of techniques and sampling by the two groups is taking place. There is no direct weighing of the catch but estimates are made visually. It is proposed that validation of this technique is done frequently to ensure the reliability of the estimates. Although there is stratified random sampling in place, it is suspected that there is substantial underestimation of the catches. There is an urgen t need to revise the stratification to allocate more sampling time to major ports. Manpower, however, is the most important issue as there are only 80 enumerators to cover 8,118 km of coastline where 1,896 ports and landing sites and 3,937 fishing villages are found. Increased sampling coverage and effort are proposed as the critical issue in India. Indonesia is one of the countries of high interest due to its geographically extensive fishery and to the large volume of fish caught. It is here pr oposed that with minor modifications to its port sampling and reporting procedures, Indonesia can report its artisal catches on time and reliably. Some of these changes include improved identification and classification of species, harmonization of datasheets throughout the various districts in the country, and reduced aggregation of data as they are passed along the chain of reporting. Although there are issues with the Indonesian fishery reporting system, there are no indications to suggest th at large underreporting is taking place. There are problems with identification of species and underreporting, not so much from omission of data as for mishandling of information. In some cases tu weights are reported from processed (gilled and gutted) animals and these weights are not converted to live weight. Although it is likely that there is some underreporting due to the size of the country and the complexity of the fishery, it appears that most of the catch is reported, albeit partly iden tified incorrectly. One of the main issues of concern in Indonesia is the catch of large numbers of small bigeye and yellowfin tu associated to “rumpons”, i.e. anchored Fish Aggregating Devices (FADs). Their monitoring is proposed as a priority. Iran is home to one of the largest fleets of gillnet vessels in the Indian Ocean and currently has the best reporting system for total retained catch sampled in port of the countries visited. Large numbers of these vessels have the capacity to fish offsh ore and there is an urgent need to separate the coastal or EEZ fleet from that one that fishes on the high seas. The system in Iran covers effectively the effort (trips) for fishing vessels in its EEZ as this is mandatory and strictly enforced, but there is the need to improve the logbook system for vessels fishing on the high seas. Enumerators interview about 10% of the fleet but the same vessels are always sampled and this could be a source of bias that needs to be addressed. In addition, info rmation on gear configuration is needed to be able to standardise the effort per fishing event, something missing at this time. An important issue for the fleet fishing in this country may be bycatch of turtles, marine mammals and birds, and this will only be address accurately with observers on board the vessels. Kenya has a small fishery for tu, sharks and billfish. Although there is basic infrastructure and personnel in place, there is a need to improve the reporting system substantially, som ething already in development by the Fisheries Department in the country, with the creation of a new sampling protocol, datasheets and database. It is necessary to have dedicated enumerators (at this time personnel work on many tasks and sampling is sporadic) and basic equipment including hardware and software. The recreatiol fishery is effectively covered and there is a working database in use that houses a large dataset although it presents problems in specimen weights as these are estimated. Madagascar’s sampling and statistics infrastructure needs a complete overhaul. This will require massive amounts of money, time and expertise, assets that would be, in this consultant’s opinion, misplaced if we consider IOTC’s interests. Furthermore, the total catches of the species of interest, except sharks, are thought to be very low. It is very likely that the foreign fleet present in the Malagasy Exclusive Economic Zone (EEZ) catches most of the tu and sharks in the country. A small longlin e fleet targets bigeye and yellowfin but the catches are relatively small and the operators appear to record their catches in detail although it is unknown what the relevant authorities do with the information. The reporting of this component needs to improve to take advantage of the detailed information collected by operators. The main concern for Madagascar’s fishery is the large number of sharks caught which in many cases may go unreported. Investigation of the unreported shark catch and how to measure it is here proposed as a priority for this country. The tu fishery in Maldives is simpler than in other countries in the region. The main gear is pole and line although handlines and trolling are also used and there are plans to introduce longline. The main species caught are skipjack and yellowfin, the latter mainly for export. There are very good records of number of individuals caught and their weights for exported fish but the same cannot be said for fish that stay for local consu mption. The large number of islands and their relative isolation make it challenging to sample and monitor the fleet. An increase in effort in the various ports and landing sites and a revision of the sampling strategy are priorities for Maldives. In addition, there is mislabelling of bigeye (called yellowfin) although the numbers are low compared to the other species. Mozambique possesses one of the best data collection systems encountered. Although the artisal fleet catches small quantities of tu, the system and the personnel in place gather data with sufficient detail about gears, species and effort to allow for detailed alysis. There are reporting problems, however, as the institutiol obligations are not clear and Mozambique does not report its artisal catches to the IOTC. The semi industrial fleet, also included here because of the IOTC definition, does not have a comparable system as catch data are collected from logbooks without verification. Furthermore, concerns exist on under reporting from this and the foreign industrial fleet fishing in its EEZ. Sri Lanka’s fishery, even if similar to India’s because both are multi-gear, multi-species, is not as complex because the country does not land as much fish in as many landing places with as many gears. The harbours visited are relatively well organized and seem fairly easy to sample. As in India, the main problem is shortage of enumerators and the fact that two institutions sample for landings with different methodologies. This leads to duplication of work and it is proposed here that one institution conducts the sampling. Although there is stratified random sampling, sampling effort is not sufficient and there is a need to cover the landing sites more intensively and extensively. Collaboration between the two institutions responsible for fisheries data collection and reporting will improve the data gathering efforts in Sri Lanka. Tanzania (mainland and Zanzibar), like Kenya, has experienced marked changes in its tu fishery. Most vessels fishing for tu were from foreign fleets but they have moved away from the area due to piracy threats in this part of the Indian Ocean. Extremely small catches of tu, billfish and sharks are reported from the artisal fleet because the boats are basic and this forces them to remain very close to shore where tu species are not found in abundance. In most cases, data from artisal fisheries (within 12 nm from shore) are collected by Beach Magement Units (BMUs) who then pass the information to their respective fisheries department for collation and production of statistics. Further training of the BMUS was identified as a priority for Tanzania. The countries that need the most urgent intervention on their current sampling and reporting methodologies are India (tus and sharks), Indonesia (tus and sharks), Madagascar (sharks), Maldives (tus) and Sri Lanka (tus and sharks). These are the countries with the highest catches of tus and sharks that currently present issues with their data collection and reporting structure. In addition to the fisheries covered in this report, there are others that are industrial and which are not monitored or reported adequately. This includes the longline fishery of India and Indonesia, gillnet in Iran, and both fishing arts by the fleet from Sri Lanka. Although logbook systems are sometimes in place, the reporting from these fleets is sporadic at best and needs substantial improvement. At present, most of these fleets would not be able to report data in near-real time as proposed by the IOTC. Even though port sampling should register most of the species caught, there are species that are discarded for a variety of reasons. Furthermore, some fleets are semi-industrial or industrial because the boats are larger than 24m or they fish outside their EEZ, but the required coverage of 5 % of fishing events is not being met and they should be monitored more closely, thus the need to implement an observer programme as required by the IOTC. This is not feasible in many of the countries due to the small size of the vessels but monitoring at sea may be possible from patrol vessels where the observer does not need to spend more than a short amount of time on a boat to document the complete catch. Fishers in the countries visited may keep all of the catch (e.g. India) or in some cases may get rid of certain bycatch species because it is illegal to possess them (e.g. sharks in Maldives) or because they have no commercial v alue (e.g. birds) but this is difficult to verify. Thus it is important to ensure that observer programmes are implemented where possible to guarantee that all species caught, and their fates, are recorded and included in regiol statistics. Many programmes have been carried out in countries in the region to support the development of fisheries magement but few, if any, have taken root and become an integral part of the way countries collect, process and utilize information. When support is given it must be clearly defined and the commitment to sustain and develop their monitoring and sampling must be secured from the receiving countries as part of this effort. It is common practice that after the period of support ends, initiatives and projects grind to a halt because of lack of funds, shifting priorities within ministries or departments, or lack of political will to continue. This model clearly does not work and the result is the loss of massive amounts of money, time and effort from aid agencies and RFMOs, therefore an altertive is needed. Collaboration with the fishing community in data gathering activities may be a possibility for some of the countries in the region such as Tanzania, but for countries with large and complex fisheries this model is not workable. In this case, governmental support in funds, personnel and infrastructure is the only way in which countries will have an independent, reliable and workable fisheries framework. The changes proposed in the country reports are applicable not only to tu, billfish and shark fisheries, but they are measures to improve reporting systems as a whole, changes that are sorely needed for the magement of all species. The key to the success of any initiative will be political commitment from the concerned countries and the need to realize the importance of fisheries magement to the stability of the fishing industry and food security, and preservation of the resources.

Users also downloaded

Showing related downloaded files

No results found.