FAO. 2021. Strategic Framework 2022-31. Rome. https://www.fao.org/3/cb7099en/cb7099en.pdf
UN Food Systems Summit. 2021. Secretary-General’s Chair Summary and Statement of Action on the UN Food Systems Summit. 23 September 2021. https://www.un.org/en/food-systems-summit/news/making-food-systems-work-people-planet-and-prosperity
World Food Summit. 1996. Rome Declaration on World Food Summit. 13–17 November 1996. Rome. https://www.fao.org/3/w3613e/w3613e00.htm#Note1
Bell, W. 2003. Foundations of Futures Studies: History, Purposes, and Knowledge, Human Science for a New Era, Vol. 1. London, Routledge, Taylor & Francis Group.
DEFRA. 2002. Horizon Scanning & Futures Home. In: The National Archives. London, UK. Cited 14 November, 2021. https://webarchive.nationalarchives.gov.uk/ukgwa/20070506093923/http:/horizonscanning.defra.gov.uk/
FAO. 1969. Provisional indicative world plan for agricultural development: A synthesis and analysis of factors relevant to world, regional and national agricultural development. 2 Vol. Rome.
FAO. 2014. Horizon Scanning and Foresight. An overview of approaches and possible applications in Food Safety. Background paper 2. Food Safety and Quality Programme. Rome. https://www.fao.org/3/I4061E/i4061e.pdf
FAO. 2017. The future of food and agriculture – Trends and challenges. Rome. https://www.fao.org/3/i6583e/i6583e.pdf
FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Rome. https://www.fao.org/3/I8429EN/i8429en.pdf
FAO. 2021. Strategic Framework 2022-31. Rome. https://www.fao.org/3/cb7099en/cb7099en.pdf
FAO & WHO. 2021. A Guide to World Food Safety Day 2021. Safe food now for a healthy tomorrow. Rome. https://www.fao.org/3/cb3404en/cb3404en.pdf
Kuosa, T. 2012. The Evolution of Strategic Foresight: Navigating Public Policy Making. Farmham, Ashgate Publishing Ltd.
Miles, I., Keenan, M. & Kaivo-oja, J. 2002. Handbook of knowledge society foresight. Dublin, European Foundation for the Improvement of Living and Working Conditions.
Popper, R. 2009. Foresight Methodology. In: L. Georghiou, J. Cassingena Harper, M. Keenan, I. Miles & R. Popper, eds. The Handbook of Technology Foresight: Concepts and Practice, pp. 44–88. Edward Elgar Publishing Ltd.
Rockström, J., Edenhofer, O., Gaertner, J. & DeClerck, F. 2020. Planet-proofing the global food system. Nature Food, 1: 3–5. https://doi.org/10.1038/s43016-019-0010-4
UN. 2015. Transforming our world: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015. Seventieth session. https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
UN. Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights. New York, USA, UN. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
Callaghan, M., Schleussner, C., Nath, S., Lejeune, Q., Knutson, T.R., Reichstein, M., Hansen, G. et al. 2021. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nature Climate Change, 11(11): 966–972. https://doi.org/10.1038/s41558-021-01168-6
Chersich, M.F., Scorgie, F., Rees, H. & Wright, C.Y. 2018. How climate change can fuel listeriosis outbreaks in South Africa. South African Medical Journal, 108(6): 453–454.
Chhaya, R.S., O’Brien, J. & Cummins, E. 2021. Feed to fork risk assessment of mycotoxins under climate change influences - recent developments. Trends in Food Science & Technology: S0924224421004842. https://doi.org/10.1016/j.tifs.2021.07.040
Dengo-Baloi, L.C., Sema-Baltazar, C.A., Manhique, L.V., Chitio, J.E., Inguane, D.L. & Langa, J.P. 2017. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One, 12(8): e0181496. Cited 15 November 2019. https://doi.org/10.1371/journal.pone.0181496
Elmali, M. & Can, H.Y. 2017. Occurrence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Science and Technology, 37(2): 280–285. https://doi.org/10.1590/1678-457X.19516
FAO. 2008. Climate change: Implications for food safety. Rome. http://www.fao.org/3/i0195e/i0195e00.pdf
FAO. 2019. The State of Food and Agriculture. Moving forward on food loss and waste reduction. Rome. https://www.fao.org/3/ca6030en/ca6030en.pdf
FAO. 2020. Climate change: Unpacking the burden on food safety. Food safety and quality series No. 8. Rome. https://www.fao.org/3/ca8185en/CA8185EN.pdf
FAO & WHO. 2020. Report of the Expert Meeting on Ciguatera Poisoning. Rome, 19-23 November 2018. Food Safety and Quality series No. 9. Rome. https://doi.org/10.4060/ca8817en
FAO, IFAD, UNICEF, WFP & WHO. 2021. The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome. https://www.fao.org/3/cb4474en/cb4474en.pdf
He, X. & Sheffield, J. 2020. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophysical Research Letters, 47(14): e2020GL087924. https://doi.org/10.1029/2020GL087924
Henderson, J.C., Herrera, C.M. & Trent, M.S. 2017. AlmG, responsible for polymyxin resistance in pandemic Vibrio cholerae, is a glycyltransferase distantly related to lipid A late acyltransferases. Journal of Biological Chemistry, 292(51): 21205–21215.
IPCC. 2021. Summary for Policymakers. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu & B. Zhou, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 1–41. Cambridge, UK, Cambridge University Press, In Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
Kuhn, K.G., Nygård, K.M., Guzman-Herrador, B., Sunde, L.S., Rimhanen-Finne, R., Trönnberg, L., Jepsen, M.R. et al. 2020. Campylobacter infections expected to increase due to climate change in Northern Europe. Scientific Reports, 10(1): 13874. https://doi.org/10.1038/s41598-020-70593-y
Lake, I.R. 2017. Food-borne disease and climate change in the United Kingdom. Environmental Health, 16(S1): 117. https://doi.org/10.1186/s12940-017-0327-0
MacFadden, D.R., McGough, S.F., Fisman, D., Santillana, M. & Brownstein, J.S. 2018. Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6): 510–514.
McGough, S.F., MacFadden, D.R., Hattab, M.W., Mølbak, K. & Santillana, M. 2020. Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000–2016. Eurosurveillance, 25(45): pii=1900414. https://doi.org/10.2807/1560-7917.ES.2020.25.45.1900414
Nature. 2021. Controlling methane to slow global warming - fast. In: Nature. Cited 6 November 2021. https://www.nature.com/articles/d41586-021-02287-y
Olaimat, A.N., Al-Holy, M.A., Shahbaz, H.M., Al-Nabulsi, A.A., Abu Ghoush, M.H., Osaili, T.M., Ayyash, M.M. & Holley, R.A. 2018. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 17(5): 1277–1292.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D. et al. 2021. Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11(3): 226–233. https://doi.org/10.1038/s41558-020-00972-w
Poirel, L., Madec, J.Y., Lupo, A., Schink, A.K., Kieffer, N., Nordmann, P. & Schwarz, S. 2018. Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4). doi: 10.1128/ microbiolspec.ARBA-0026-2017
UN Climate Change. 2021a. World leaders kick start accelerated climate action at COP26. Press release. In: United Nations Climate Change. Bonn, Germany. Cited 6 November 2021. https://unfccc.int/news/world-leaders-kick-start-accelerated-climate-action-at-cop26
UN Climate Change. 2021b. Water at the Heat of Climate Action. In: United Nations Climate Change. Cited 6 November 2021. Bonn, Germany. https://unfccc.int/news/water-at-the-heart-of-climate-action
UNEP. 2021. Emissions Gap Report 2021: The Heat is On – A world of Climate Promises Not Yet Delivered. In: United Nations Environment Programme. Nairobi. https://www.unep.org/resources/emissions-gap-report-2021
UNFCCC. 2021. Nationally determined contributions under the Paris Agreement. Synthesis report. Conference of the Parties serving as the meeting of the Parties to the Paris Agreement. Third session. 31 October to 12 November 2021. Glasgow. https://unfccc.int/sites/default/files/resource/cma2021_08_adv_1.pdf
Van Puyvelde, S., Pickard, D., Vandelannoote, K., Heinz, E., Barbe, B., de Block, T., Clare. et al. 2019. An African Salmonella typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nature Communications, 10(1): 4280.
Wang, Z., Zhang, M., Deng, F., Shen, Z., Wu, C., Zhang, J., Zhang, Q. & Shen, J. 2014. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrobial Agents and Chemotherapy, 58(9): 5405–5412.
Wang, X., Biswas, S., Paudyal, N., Pan, H., Li, X., Fang, W. & Yue, M. 2019. Antibiotic resistance in Salmonella typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Frontiers in Microbiology, 10: 985.
Aggett, P.J. 2012. Dose-response relationships in multi-functional food design: Assembling the evidence. International journal of Food Science, 63: 37–42. https://doi.org/10.3109/09637486.2011.636344
Bakowska-Barczak, A., de Larminat, M. and Kolodziejczyk, P.P. 2020. The application of flax and hempseed in food, nutraceutical and personal care products. In: The textile Institute Book Series, Handbook of Natural Fibres (Second edition), pp. 557–590, Woodhead Publishing.
Baptista, J.P. & Gradim, A. 2020. Understanding fake news consumption: A review. Social Sciences, 9(10): 185. https://doi.org/10.3390/socsci9100185
Berhaupt-Glickstein, A. & Hallman, W.K. 2015. Communicating scientific evidence in qualified health claims. Critical Reviews in Food Science and Nutrition, 57(13): 2811–2824. https://doi.org/10.1080/10408398.2015.1069730
Borsellino, V., Kaliji, S.A. & Schimmenti, E. 2020. COVID-19 Drives consumer behavior and agro-food markets towards healthier and more sustainable patterns. Sustainability, 12: 8366. https://doi.org/10.3390/su12208366
Camp, K.M. and Trujillo, E. 2014. Position of the Academy of Nutrition and Dietetics: Nutritional Genomics. Journal of the Academy of Nutrition and Dietetics, 114(2): 299–312. https://doi.org/10.1016/j.jand.2013.12.001
Carnés, J., de Larramdeni, C.H., Ferrer, A., Huertas, A.J., López-Matas, M.A., Pagán, J.A., Navarro, L.A., García-Abujeta, J.L., Vicario, S. and Peña, M. 2013. Recently introduced foods as new allergenic sources: Sensitization to Goji berries (Lycium barbarum). Food Chemistry, 137: 130–135. http://dx.doi.org/10.1016/j.foodchem.2012.10.005
Cerullo, G., Negro, M., Parimbelli, M., Pecoraro, M., Perna, S., Liguori, G., Rondanelli, M., Cena, H. and D’Antona, G. 2020. The long history of vitamin C: From prevention of the common cold to potential aid in the treatment of COVID-19. Frontiers in Immunology, 11: 574029. doi: 10.3389/fimmu.2020.574029
Clayton, J., Sims, T. & Webster, A. 2021. COVID-19 and Views on Food Safety. Food Safety Magazine. Cited 12 September 2021. https://www.food-safety.com/articles/6991-covid-19-and-views-on-food-safety
Clydesdale, F. 2004. Functional foods: opportunities and challenges. Food Technology, 58(12): 35–40.
Dendup, T., Feng, X., Clingan, S. & Astell-Burt, T. 2018. Environmental risk factors for developing type-2 diabetes mellitus: A systematic review. International Journal of Environmental Research and Public Health, 15: 78. doi:10.3390/ijerph15010078
Donelli, D., Antonelli, M. & Firenzuoli, F. 2020. Considerations about turmeric-associated hepatotoxicity following a series of cases occurred in Italy: is turmeric really a new hepatotoxic substance? Internal and Emergency Medicine, 15: 725–726. https://doi.org/10.1007/s11739-019-02145-w
Edelman Trust Barometer. 2021. 21st Annual Edelman Trust Barometer. Global Report. https://www.edelman.com/sites/g/files/aatuss191/files/2021-03/2021%20Edelman%20Trust%20Barometer.pdf
EIT Food. 2020. The EIT Food Trust Report. Budapest, EIT Food. https://www.eitfood.eu/media/news-pdf/EIT_Food_Trust_Report_2020.pdf
Ferraro, P.M., Curhan, G.C., Gambaro, G. & Taylor, E.N. 2016. Total, Dietary, and Supplemental Vitamin C Intake and Risk of Incident Kidney Stones. American Journal of Kidney Diseases, 67(3): 400–407. https://doi.org/10.1053/j.ajkd.2015.09.005
Forsyth, J.E., Nurunnahar, S., Islam, S.S., Baker, M., Yeasmin, D., Islam, M.S., Rahman, M. et al. 2019. Turmeric means “yellow” in Bengali: Lead chromate pigments added to turmeric threaten public health across Bangladesh. Environmental Research, 179: 108722. https://doi.org/10.1016/j.envres.2019.108722
Forsyth, J.E., Weaver, K.L., Maher, K., Islam, M.S., Raqib, R., Rahman, M., Fendorf, S. et al. 2019. Sources of Blood Lead Exposure in Rural Bangladesh. Environmental Science & Technology, 53(19): 11429–11436. https://doi.org/10.1021/acs.est.9b00744
Gardner, C.D., Trepanowski, J.F., Del Gobbo, L.C., Hauser, M.E., Rigdon, J., Ioannidis, J.P.A., Desai, M. et al. 2018. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA, 319(7): 667. https://doi.org/10.1001/jama.2018.0245
Grebow, J. 2021. Will vitamin C’s drastic growth in 2020 continue this year? 2021 ingredient trends to watch for food, drinks, and dietary supplements. In: Nutritional Outlook. Cited 7 October 2021. https://www.nutritionaloutlook.com/view/will-vitamin-c-s-drastic-growth-in-2020-continue-this-year-2021-ingredient-trends-to-watch-for-food-drinks-and-dietary-supplements
Griffen, M. 2020. Study reveals new consumer attitudes. In: Pro Food World. Cited 15 September 2021. https://www.profoodworld.com/food-safety/article/21204875/study-reveals-new-consumer-attitudes
Hallman, W.K., Senger-Mersich, A. & Godwin, S.L. 2015. Online purveyors of raw meat, poultry, and seafood products: Delivery policies and available consumer food safety information (Review). Food Protection Trends, 35(2): 80–88.
Hasler, C.M. 2002. Functional foods: Benefits, concerns and challenges – A position paper from the American Council on Science and Health. American Society for Nutritional Sciences, 132(12): 3772–3781. doi: 10.1093/jn/132.12.3772
Labelinsight. 2016. How consumer demand for transparency is shaping the food industry. The 2016 label insight food revolution study. Chicago, Illinois and St. Louis, Missouri, USA, Labelinsight. https://www.labelinsight.com/hubfs/Label_Insight-Food-Revolution-Study.pdf
Larramendi, C.H., García-Abujeta, J.L., Vicario, S., García-Endrino, A., López-Matas, M.A., García-Sedeño, M.D. & Carnés, J. 2012. Goji berries (Lycium barbarum): Risk of allergic reactions in individuals with food allergy. Journal of Investigational Allergology and Clinical Immunology, 22(5): 345–350.
Lindsey, H. 2005. Environmental factors & cancer: Research roundup. Oncology Times, 27(4): 8, 11, 12. doi: 10.1097/01.COT.0000287822.71358.43
Liu P. & Ma L. 2016. Food scandals, media exposure, and citizens’ safety concerns: A multilevel analysis across Chinese cities. Food Policy, 63: 102–111. doi: 10.1016/j.foodpol.2016.07.005.
Locas, A., Brassard, J., Rose-Martel, M., Lambert, D., Green, A., Deckert, A. & Illing, M. 2022. Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. Journal of Food Protection, 85(1): 85–97. https://doi.org/10.4315/JFP-21-218
Lombardi, N., Crescioli, G., Maggini, V., Ippoliti, I., Menniti-Ippolito, F., Gallo, E., Brilli, V. et al. 2021. Acute liver injury following turmeric use in Tuscany: An analysis of the Italian Phytovigilance database and systematic review of case reports. British Journal of Clinical Pharmacology, 87(3): 741–753. https://doi.org/10.1111/bcp.14460
Luber, R.P., Rentsch, C., Lontos, S., Pope, J.D., Aung, A.K., Schneider, H.G., Kemp, W. et al. 2019. Turmeric Induced Liver Injury: A Report of Two Cases. Case Reports in Hepatology, 2019: 1–4. https://doi.org/10.1155/2019/6741213
Ma, Z.F., Zhang, H., Teh, S.S., Wang, C.W., Zhang, Y., Hayford, F., Wang, L. et al. 2019. Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action. Oxidative Medicine and Cellular Longevity, 2019: 1–9. https://doi.org/10.1155/2019/2437397
Macready, A.L., Hieke, S., Klimczuk-Kochańska, M., Szumiał, S., Vranken, L. & Grunert, K.G. 2020. Consumer trust in the food value chain and its impact on consumer confidence: A model for assessing consumer trust and evidence from a 5-country study in Europe. Food Policy, 92: 101880. https://doi.org/10.1016/j.foodpol.2020.101880
Marcum, J.A. 2020. Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare. Current Nutrition Reports, 9(4): 338–345. https://doi.org/10.1007/s13668-020-00327-z
Magkos, F., Tetens, I., Bügel, S.G., Felby, C., Schacht, S.R., Hill, J.O., Ravussin, E. et al. 2020. The Environmental Foodprint of Obesity. Obesity, 28(1): 73–79. https://doi.org/10.1002/oby.22657
Mohanty, S. & Singhal, K. 2018. Functional foods as personalised nutrition: Definitions and genomic insights. In: V. Rani & U. Yadav U. eds. Functional Food and Human Health. Singapore, Springer. https://doi.org/10.1007/978-981-13-1123-9_22
Montoya, Z., Conroy, M., Vanden Heuvel, B.D., Pauli, C.S. & Park, S.-H. 2020. Cannabis contaminants limit pharmacological use of cannabidiol. Frontiers in Pharmacology, 11: 571832. doi: 10.3389/fphar.2020.571832
Nunes, J.C., Ordanini, A. & Giambastiani, G. 2021. The Concept of Authenticity: What It Means to Consumers. Journal of Marketing, 85(4): 1–20. doi:10.1177/0022242921997081
Pennycook, G. & Rand, D.G. 2020. Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. Journal of Personality, 88(2): 185–200. https://doi.org/10.1111/jopy.12476
Potterat, O. 2010. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1): 7–19. doi: 10.1055/s-0029-1186218
Rodrigues, J.F., dos Santos Filho, M.T.C., de Oliveira, L.E.A., Siman, I.B., de Fátima Barcelos, A., de Paiva Anciens Ramos, G.L., Esmerino, E.A. et al. 2021. Effect of the COVID-10 pandemic on food habits and perceptions: A study with Brazilians. Trends in Food Science & Technology, 116: 992 – 1001. doi: 10.1016/j.tifs.2021.09.005
Rutsaert P., Regan Á., Pieniak Z., McConnon Á., Moss A., Wall P. & Verbeke W. 2013. The use of social media in food risk and benefit communication. Trends in Food Science & Technology, 30: 84–91. doi: 10.1016/j.tifs.2012.10.006
Salcedo, G., Sanchez-Monge, R., Diaz-Perales, A., Garcia-Casado, G. & Barber, D. 2004. Plant non-specific lipid transfer proteins as food and pollen allergens. Current Opinion in Allergy and Clinical Immunology, 34: 1336–1341. doi:10.1111/j.1365-2222.2004.02018.x
Scrinis, G. 2008. Functionals foods or functionally marketed foods? A critique of, and alternatives to, the category of functional foods. Public Health Nutrition, 11(5): 541–545. doi: 10.1017/S1368980008001869
Shelke, K. 2020. Clearing up clean label confusion. In: Food Technology Magazine. Cited 14 July 2021. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2020/february/features/clearing-up-clean-label-confusion
Shome, S., Das Talukdar, A., Dutta Choudhury, M., Bhattacharya, M.K. & Upadhyaya, H. 2016. Curcumin as potentnial therapeutic natural product: a nanobiotechnological perspective. Journal of Pharmacy and Pharmacology, 68: 1481 – 1500. doi: 10.1111/jphp.12611
Siegner, C. 2019. 1 in 4 consumers discuss responsible food sourcing online. In: Food Dive. Washington, DC, USA. Cited 24 September 2021. https://www.fooddive.com/news/1-in-4-us-consumers-discuss-responsible-food-sourcing-online/559096/
Taylor, S.L., Marsh, J.T., Koppelman, S.J., Kabourek, J.L., Johnson, P.E. & Baumert, J.L. 2021. A perspective on pea allergy and pea allergens. Trends in Food Science & Technology, 116: 186–198. https://doi.org/10.1016/j.tifs.2021.07.017
Thakkar, S., Anklam, E., Xu, A., Ulberth, F., Li, J., Li, B., Hugas, M. et al. 2020. Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regulatory Toxicology and Pharmacology, 114: 104647. https://doi.org/10.1016/j.yrtph.2020.104647
Thomas, L.D.K., Elinder, C., Tiselius, H., Wolk, A. & Åkesson, A. 2013. Ascorbic acid supplements and kidney stone incidence among men: A prospective study. JAMA Intenal Medicine, 173(5): 386–388. doi:10.1001/jamainternmed.2013.2296
Uasuf, C.G., De Angelis, E., Guagnano, R., Pilolli, R., D’Anna, C., Villalta, D., Brusca, I. & Monaci, L. 2020. Emerging allergens in Goji berry superfruit: The identification of new IgE binding proteins towards allergic patients’ sera. Biomolecules, 10: 689. doi:10.3390/biom10050689
Uthpala, T.G.G., Fernando, H.N., Thibbotuwawa, A. & Jayasinghe, M. 2020. Importance of nutrigenomics and nutrigenetics in food Science. MOJ Food Processing & Technology, 8(3): 114–119. doi: 10.15406/mojfpt.2020.08.00250
Wensing, M., Knulst, A.C., Piersma, S., O’Kane, F., Knol, E.F. & Koppelman, S.J. 2003. Patients with anaphylaxis to pea can have peanut allergy caused by cross-reactive IgE to vicilin (Ara h 1). The Journal of Allergy and Clinical Immunology, 111(2): 420–424. doi:10.1067/mai.2003.61
Ye, X. & Jiang, Y., eds. 2020. Phytochemicals in Goji Berries: Applications in Functional Foods. First edition. CRC Press. https://doi.org/10.1201/9780429021749
Zhang, J., Cai, Z., Cheng, M., Zhang, H., Zhang, H. & Zhu, Z. 2019. Association of Internet Use with Attitudes Toward Food Safety in China: A Cross-Sectional Study. International journal of environmental research and public health, 16(21): 4162. https://doi.org/10.3390/ijerph16214162
Agnolucci, P., Rapti, C., Alexander, P., De Lipsis, V., Holland, R.A., Eigenbrod, F. & Ekins, P. 2020. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food, 1: 562–571. https://doi.org/10.1038/s43016-020-00148-x
Beach, R.H., Sulser, T.B., Crimmins, A., Cenacchi, N., Cole, J., Fukagawa, N.K., Mason-D’Croz, D. et al. 2019. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. The Lancet Planetary Health, 3(7): e307–e317. https://doi.org/10.1016/S2542-5196(19)30094-4
Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F.N. & Leip, A. 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2: 198–209. https://doi.org/10.1038/s43016-021-00225-9
FAO. 2009. How to feed the world in 2050. High-level Expert Forum. Global agriculture towards 2050. 12–13 October 2009. Rome. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
FAO. 2017. Water for sustainable food and agriculture. A report produced for the G20 Presidency of Germany. Rome. https://www.fao.org/3/i7959e/i7959e.pdf
FAO. 2020. The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome. https://doi.org/10.4060/cb1447en
McDiarmid, J.I. & Whybrow, S. Conference on “Getting energy balance right” Symposium 5: Sustainability of food production and dietary recommendations. Proceedings of the Nutrition Society, 78: 380 – 387. doi: 10.1017/S0029665118002896
Poore, J. & Nemecek, T. 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360: 987–992.
Ritchie, H. 2019. Half of world’s habitable land is used for agriculture. In: Our World in Data. Cited 8 August 2021. https://ourworldindata.org/global-land-for-agriculture
Ritchie, H. & Roser, M. 2020. Environmental impacts of food production. In: Our World in Data. Cited 8 August 2021. https://ourworldindata.org/land-use
Sultan, B., Defrance, D. & Lizumi, T. 2019. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Scientific Reports, 9: 12834. https://doi.org/10.1038/s41598-019-49167-0
UN. Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights. New York, United Nations. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M. et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35): 9326–9331. https://doi.org/10.1073/pnas.1701762114
Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C.C., Paoletti, M.G. & Ricci, A. 2013. Edible Insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12: 296–313.
Broekman, H.C.H.P., Knulst, A.C., Den Hartog Jager, C.F., van Bilsen, J.H.M., Raymakers, F.M.L., Kruizinga, A.G., Gaspari, M., Gabriele, C., Bruijnzeel-Koomen, C.A.F.M., Houben, G.F. & Verhoeckx, K.C.M. 2017a. Primary respiratory and food allergy to mealworm. Journal of Allergy and Clinical Immunology, 140: 600–603.e7
Broekman, H.C.H.P., Knulst, A.C., De Jong, G., Gaspari, M., Den Hartog Jager, C.F., Houben, G.F. & Verhoeckx, K.C.M. 2017b. Is mealworm or shrimp allergy indicative for food allergy to insects? Molecular Nutrition & Food Research, 61: 1601061.
Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R., Zhu, F., Kone, N., Grant, M., Devic, E., Bruggeman, G., Prior, R. & Smith, R. 2015. Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insects as Food and Feed, 1: 7–16.
Dobermann, D., Swift, J.A. & Field, L.M. 2017. Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42: 293–308.
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck, D., Castenmiller, J., De Henauw, S., Hirsch-Ernst, K.I., Kearney, J., Maciuk, A. et al. 2021. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1). https://doi.org/10.2903/j.efsa.2021.6343
EFSA Scientific Committee. 2015. Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13: 4257. doi: 10.2903/j.efsa.2015.4257
FAO. 2013. Edible insects. Future prospects for food and feed security. FAO Forestry Paper 171. Rome. http://www.fao.org/3/i3253e/i3253e.pdf
FAO. 2021. Looking at edible insects from a food safety perspective. Challenges and opportunities for the sector. Rome. https://www.fao.org/3/cb4094en/cb4094en.pdf
Garofalo, C., Milanović, V., Cardinali, F., Aquilanti, L., Clementi, F. & Osimani, A. 2019. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Research International, 125: 108527.
Grabowski, N.T. & Klein, G. 2017. Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends in Food Science & Technology, 63: 80–90.
Greenfield, R., Akala, N. & van Der Bank, F.H. 2014. Heavy metal concentrations in two populations of mopane worms (Imbrasia belina) in the Kruger National Park pose a potential human health risk, Contamination and Toxicology, 93: 316–321.
Houbraken, M., Spranghers, T., De Clercq, P., Cooreman-Algoed, M., Couchement, T., De Clercq, G., Verbeke, S. & Spanoghe, P. 2016. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chemistry, 201: 264–269.
Imathiu, S. 2020. Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18: 1–11.
Jongema, Y. 2017. List of Edible Insect Species of the World. Laboratory of Entomology, Wageningen University, The Netherlands. https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm
Leni, G., Tedeschi, T., Faccini, A., Pratesi, F., Folli, C., Puxeddu, I., Migliorini, P., Gianotten, N., Jacobs, J., Depraetere, S., Caligiani, A. & Sforza, S. 2020. Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates. Scientific Reports, 10.
Meyer-Rochow, V. 1975. Can insects help to ease the problem of world food shortage. Search, 6: 261–262.
Miglietta, P., De Leo, F., Ruberti, M. & Massari, S. 2015. Mealworms for food: A water footprint perspective. Water, 7: 6190–6203.
Oibiopka, F.I., Akanya, H.O., Jigam, A.A., Saidu, A.N. & Egwim, E.C. 2018. Protein quality of four indigenous edible insect species in Nigeria. Food Science and Human Wellness, 7: 175–183.
Oonincx, D.G.A.B. & De Boer, I.J.M. 2012. Environmental impact of the production of mealworms as a Protein Source for Humans – A Life Cycle Assessment. PLOS ONE, 7: e51145. doi.org/10.1371/journal.pone.0051145
Oonincx, D.G.A.B., van Itterbeeck, J., Heetkamp, M.J.W., van Den Brand, H., van Loon, J.J.A. & van Huis, A. 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS ONE, 5: e14445. doi.org/10.1371/journal.pone.0014445
Osimani, A., Garofalo, C., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Pasquini, M., Mozzon, M., Raffaelli, N., Ruschioni, S., Rioli, P., Isidoro, N. & Clementi, F. 2017. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research and Technology, 243: 1157–1171.
Phiriyangkul, P., Srinroch, C., Srisomsap, C., Chokchaichamnankit, D. & Punyarit, P. 2015. Effect of food thermal processing on allergenicity proteins in Bombay locust (Patanga Succincta). ETP International Journal of Food Engineering, 1.
Reese, G., Ayuso, R. & Lehrer, S.B. 1999. Tropomyosin: an invertebrate pan–allergen. International Archives of Allergy and Immunology, 119: 247–258.
Rumpold, B.A. & Schlüter, O.K. 2013. Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57: 802–823.
Ribeiro, J.C., Cunha, L.M., Sousa-Pinto, B. & Fonseca, J. 2018. Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62: 1700030.
Srinroch, C., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P. & Phiriyangkul, P. 2015. Identification of novel allergen in edible insect, Gryllus bimaculatus and its crossreactivity with Macrobrachium spp. allergens. Food Chemistry, 184: 160–166.
Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B. & van Campenhout, L. 2016. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, pp. 122–127.
van der Fels-Klerx, H.J., Camenzuli, L., van Der Lee, M.K. & Oonincx, D.G.A.B. 2016. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLOS ONE, 11: e0166186. doi.org/10.1371/journal.pone.0166186
van Huis, A. & Oonincx, D.G.A.B. 2017. The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37.
Vandeweyer, D., Lievens, B. & van Campenhout, L. 2020. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nature Food, 1: 511–516.
Vijver, M., Jager, T., Posthuma, L. & Peijnenburg, W. 2003. Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 54: 277–289.
Wales, A.D., Carrique-Mas, J.J., Rankin, M., Bell, B., Thind, B.B. & Davies, R.H. 2010. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses and Public Health, 57: 299–314.
Westerhout, J., Krone, T., Snippe, A., Babé, L., McClain, S., Ladics, G.S., Houben, G.F. & Verhoeckx, K.C.M. 2019. Allergenicity prediction of novel and modified proteins: Not a mission impossible! Development of a random Forest allergenicity prediction model. Regulatory Toxicology and Pharmacology, 107: 104422.
Zhang, Z.-S., Lu, X.-G., Wang, Q.-C. & Zheng, D.-M. 2009. Mercury, cadmium and lead biogeochemistry in the soil–plant–insect system in Huludao City. Bulletin of Environmental Contamination and Toxicology, 83: 255–259.
Amaral, L., Raposo, A., Morais, Z. and Colmbra, A. Jellyfish ingestion was safe for patients with crustaceans, cephalopods and fish allergy. Asia Pacific Allergy, 8(1): e3. doi: 10.5415/apallergy.2018.8.e3
Bonaccorsi, G., Garamella, G., Cavallo, G. & Lorini, C. 2020. A systematic review of risk assessment associated with jellyfish consumption as a potential novel food. Foods, 9: 935. doi:10.3390/foods9070935
Basso, L., Rizzo, L., Marzano, M., Intranuovo, M., Fosso, B., Pesole, G., Piraino, S. & Stabili, L. 2019. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and human health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Science of the Total Environment, 692: 305–318. https://doi.org/10.1016/j.scitotenv.2019.07.155
Bleve, G., Ramires, F.A., Gallo, A. & Leone, A. 2019. Identification of safety and quality parameters for preparation of jellyfish based novel food products. Foods, 8: 263. doi:10.3390/foods8070263
Boero, F. 2013. Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and Reviews. General Fisheries Commission for the Mediterranean. No. 92. Rome, FAO, 53 pp. https://www.fao.org/3/i3169e/i3169e.pdf
Bosch-Belmar, M., Milisenda, G., Basso, L., Doyle, T.K., Leone, A. & Piraino, S. 2021. Jellyfish impacts on marine aquaculture and fisheries. Reviews in Fisheries Science & Aquaculture, 29(2): 242–259. doi: 10.1080/23308249.2020.1806201
Brotz, L. 2016. Jellyfish fisheries of the world. Vancouver, Canada, Department of Zoology, University of British Columbia. PhD Dissertation.
Brotz, L., Cheung, W.W.L., Kleisner, K., Pakhomov, E. & Pauly, D. 2012. Increasing jellyfish populations: Trends in Large Marine Ecoystems. Hydrobiologica, 690: 3–20. DOI 10.1007/s10750-012-1039-7
Brotz, L., Schiariti, A., López-Martínez, J., Álvarez-Tello, J., Peggy Hsieh, Y.-H., Jones, R.P., Quiñones, J. et al. 2017. Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds. Reviews in Fish Biology and Fisheries, 27(1): 1–29. https://doi.org/10.1007/s11160-016-9445-y
Condon, R.H., Duarte, C.M., Pitt, K.A., Robinson, K.L., Lucas, C.H., Sutherland, K.R., Mianzan, H.W. et al. 2013. Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences, 110(3): 1000–1005. https://doi.org/10.1073/pnas.1210920110
Costa, E., Gambardella, C., Piazza, V., Vassalli, M., Sbrana, F., Lavorano, S., Garaventa, F. et al. 2020. Microplastics ingestion in the ephyra stage of Aurelia sp. triggers acute and behavioral responses. Ecotoxicology and Environmental Safety, 189: 109983. https://doi.org/10.1016/j.ecoenv.2019.109983
Cuypers, E., Yanagihara, A., Karlsson, E. & Tytgat, J. 2006. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Letters, 580(24): 5728–5732. https://doi.org/10.1016/j.febslet.2006.09.030
Cuypers, E., Yanagihara, A., Rainier, J.D. & Tytgat, J. 2007. TRPV1 as a key determinant in ciguatera and neurotoxic shellfish poisoning. Biochemical and Biophysical Research Communications, 361(1): 214–217. https://doi.org/10.1016/j.bbrc.2007.07.009
Pineton de Chambrun, G., Body-Malapel, M., Frey-Wagner, I., Djouina, M., Deknuydt, F., Atrott, K., Esquerre, N. et al. 2014. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunology, 7(3): 589–601. https://doi.org/10.1038/mi.2013.78
De Domenico, S., De Rinaldis, G., Paulmery, M., Piraino, S. & Leone, A. 2019. Barrel jellyfish (Rhizostoma pulmo) as source of antioxidant peptides. Marine Drugs, 17: 134. doi:10.3390/md17020134
Dickie, G. 2018. Jellyfish threaten Norway’s salmon farming industry. In: Hakai Magazine. Victoria, Canada. Cited 21 July 2021. https://www.hakaimagazine.com/news/jellyfish-threaten-norways-salmon-farming-industry/
Dong, J., Jiang, L., Tan, K., Liu, H., Purcell, J.E., Li, P. & Ye, C. 2009. Stock enhancement of the edible jellyfish (Rhopilema esculentum Kishinouye) in Liaodong Bay, China: a review. Hydrobiologia, 616(1): 113–118. https://doi.org/10.1007/s10750-008-9592-9
Dong, Z., Liu, D. & Keesing, J.K. 2010. Jellyfish blooms in China: Dominant species, causes and consequences. Marine Pollution Bulletin, 60: 954–963. doi: 10.1016/j.marpolbul.2010.04.022
Dong, Z., Liu, D. & Keesing, J.K. 2014. Contrasting trends in populations of Rhopilema esculentum and Aurelia aurita in Chinese Waters. In: K. Pitt, & C. Lucas, eds. Jellyfish Blooms. Dordrecht, Springer. https://doi.org/10.1007/978-94-007-7015-7_9
EC. 2019. Jellyfish: out of the ocean and on to the menu. In: European Commission. Cited 21 August 2021. https://ec.europa.eu/research-and-innovation/en/projects/success-stories/all/jellyfish-out-ocean-and-menu
Epstein, H.E., Templeman, M.A. & Kingsford, M.J. 2016. Fine-scale detection of pollutants by a benthic marine jellyfish. Marine Pollution Bulletin, 107: 340–346. https://doi.org/10.1016/j.marpolbul.2016.03.027
FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainably in action. Rome. https://www.fao.org/publications/sofia/2020/en/
FAO & WHO. 2006. Evaluation of certain food additives and contaminants. Sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 940. Rome, FAO. https://apps.who.int/iris/handle/10665/43592
FAO & WHO. 2011. Evaluation of certain food additives and contaminants. Seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 966. Rome, FAO. https://apps.who.int/iris/handle/10665/44788
FAO & WHO. 2012. Safety evaluation of certain food additives and contaminants. WHO Food Additives Series: 65. Geneva, World Health Organization. https://apps.who.int/iris/handle/10665/44813
Gibbons, M.J. & Richardson, A.J. 2013. Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. Journal of Plankton Research, 35(5): 929–938. doi:10.1093/plankt/fbt063
Griffin, D.C., Harrod, C., Houghton, J.D.R. & Capellini, I. 2019. Unravelling the macro-evolutionary ecology of fish–jellyfish associations: life in the ‘gingerbread house’. Proceedings of the Royal Society B: Biological Sciences, 286(1899): 20182325. https://doi.org/10.1098/rspb.2018.2325
Hays, G.C., Doyle, T.K. & Houghton, J.D.R. 2018. A paradigm shift in the trophic importance of jellyfish? Trends in Ecology & Evolution, 33(11): 874–884. https://doi.org/10.1016/j.tree.2018.09.001
Hsieh, P. Y.-H., Leong, F.-M. & Rudloe, J. 2001. Jellyfish as food. Hydrobiologica, 451: 11–17. https://doi.org/10.1023/A:1011875720415
Iliff, S.M., Wilczek, E.R., Harris, R.J., Bouldin, R. & Stoner, E.W. 2020. Evidence of microplastics from benthic jellyfish (Cassiopea xamachana) in Florida estuaries. Marine Pollution Bulletin, 159: 111521. https://doi.org/10.1016/j.marpolbul.2020.111521
Imamura, K., Tsuruta, D., Tsuchisaka, A., Mori, T., Ohata, C., Furumura, M. & Hashimoto, T. 2013. Anaphylaxis caused by ingestion of jellyfish. European Journal of Dermatology, 23(3): 392–395. https://doi.org/10.1684/ejd.2013.2030
Khong, N.M.H., Yusoff, F.Md., Jamilah, B., Basri, M., Maznah, I., Chan, K.W. & Nishikawa, J. 2016. Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chemistry, 196: 953–960. https://doi.org/10.1016/j.foodchem.2015.09.094
Kiger, P.J. 2013. Jellyfish invasion shuts down nuclear reactor. In: National Geographic. Washington, DC, USA. Cited 21 August 2021. https://www.nationalgeographic.com/environment/article/jellyfish-invasion-shuts-down-nuclear-plant
Kramar, M.K., Tinta, T., Lučić, D., Malej, A. & Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS One, 14(1): e0198056. https://doi.org/10.1371/journal.pone.0198056
Leone, A., Lecci, R.M., Durante, M., Meli, F. & Piraino, S. 2015. The bright side of gelatinous blooms: nutraceutical value and antioxidant properties of three Mediterranean jellyfish (Scyphozoa). Marine Drugs, 13: 4654–4681. doi:10.3390/md13084654
Leone, A., Lecci, R.M., Milisenda, G. & Piraino, S. 2019. Mediterranean jellyfish as novel food: effect of thermal processing on antioxidant, phenolic, and protein contents. European Food Research and Technology, 245: 1611–1627. https://doi.org/10.1007/s00217-019-03248-6
Li, Z., Tan, X., Yu, B. & Zhao, R. 2017. Allergic shock caused by ingestion of cooked jellyfish: A case report. Medicine, 96(38): e7962. https://doi.org/10.1097/MD.0000000000007962
Lin, S.L., Hu, J.M., Guo, R., Lin, Y., Liu, L.L., Tan, B.K. & Zeng, S.X. 2016. Potential dietary assessment of alum-processed jellyfish. Bulgarian Chemical Communications, Special Issue H, 70–77.
Macali, A. & Bergami, E. 2020. Jellyfish as innovative bioindicator for plastic pollution. Ecological Indicators, 115: 106375. https://doi.org/10.1016/j.ecolind.2020.106375
Macali, A., Semenov, A., Venuti, V., Crupi, V., D’Amico, F., Rossi, B., Corsi, I. & Bergami, E. 2018. Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter. Scientific Reports, 8: 6105. https://doi.org/10.1038/s41598-018-24427-7
Mills, C.E. 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologica, 451: 55–68. https://doi.org/10.1023/A:1011888006302
Muñoz-Vera, A., Castejón, J.M.P. & García, G. 2016. Patterns of trace element bioaccumulation in jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) in a Mediterranean coastal lagoon from SE Spain. Marine Pollution Bulletin, 110(1): 143–154. doi: 10.1016/j.marpolbul.2016.06.069
Okubo, Y., Yoshida, K., Furukawa, M., Sasaki, M., Sakakibara, H., Terakawa, T. & Akasawa, A. 2015. Anaphylactic shock after the ingestion of jellyfish without a history of jellyfish contact or sting. European Journal of Dermatology, 25(5): 491–492. https://doi.org/10.1684/ejd.2015.2596
Peng, S., Hao, W., Li, Y., Wang, L., Sun, T., Zhao, J. & Dong, Z. 2021. Bacterial Communities Associated with Four Blooming Scyphozoan Jellyfish: Potential Species-Specific Consequences for Marine Organisms and Humans Health. Frontiers in Microbiology, 12: 647089. https://doi.org/10.3389/fmicb.2021.647089
Petter, O. 2017. We need to start eating jellyfish to reduce their growing numbers, advise scientists. In: Independent. Cited 13 August 2013. https://www.independent.co.uk/life-style/food-and-drink/jellyfish-numbers-need-eat-them-population-mediterranean-silvio-grecio-british-people-sting-a7891996.html
Purcell, J.E., Uye, S.-I. & Lo, W.-T. 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series, 350: 153–174. https://doi.org/10.3354/meps07093
Raposo, A., Coimbra, A., Amaral, L., Gonçalves, A. & Morais, Z. 2018. Eating jellyfish: safety, chemical and sensory properties. Journal of the Science of Food and Agriculture, 98(10): 3973–3981. https://doi.org/10.1002/jsfa.8921
Rinat, Z. 2019. Swarms of jellyfish invade power plant in southern Israel. In: Israel News. Tel Aviv, Israel. Cited 31 August 2021. https://www.haaretz.com/israel-news/swarms-of-jellyfish-invade-power-plant-in-southern-israel-1.7449716
Sanz-Martín, M., Pitt, K.A., Condon, R.H., Lucas, C.H., de Santana, N. & Duarte, C.M. 2016. Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Global ecology and Biogeography, 25: 1039–1049. doi: 10.1111/geb.12474
Siggins, L. 2013. Jellyfish ‘bloom’ kills thousands of farmed salmon off Co Mayo. In: The Irish Times. Dublin, Ireland. Cited 12 August 2021. https://www.irishtimes.com/news/ireland/irish-news/jellyfish-bloom-kills-thousands-of-farmed-salmon-off-co-mayo-1.1567468
Sun, X., Li, Q., Zhu, M., Liang, J., Zheng, S. & Zhao, Y. 2017. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine Pollution Bulletin, 115: 217–224. http://dx.doi.org/10.1016/j.marpolbul.2016.12.004
Tomljenovic, L. 2011. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? Journal of Alzheimer’s Disease, 23(4): 567–598. doi: 10.3233/JAD-2010-101494
Tucker, A. 2010. Jellyfish: The next king of the sea. In: Smithsonian Magazine. Washington, DC. Cited 3 July 2021. https://www.smithsonianmag.com/science-nature/jellyfish-the-next-king-of-the-sea-679915/
UN Nutrition. 2021. The role of aquatic food in sustainable healthy diets. Rome. FAO. https://www.unnutrition.org/news/launch-aquatic-foods
Vaidya, S. 2003. Jellyfish choke Oman desalination plants. In: Gulf News. Cited 5 August 2021. https://gulfnews.com/uae/jellyfish-choke-oman-desalination-plants-1.355525
Vodopivec, M., Peliz, A.J. & Malej, A. 2017. Offshore marine constructions as propagators of moon jellyfish dispersal. Environmental Research Letters, 12: 084003. doi: 10.1088/1748-9326/aa75d9
Wong, W.W.K., Chung, S.W.C., Kwong, K.P., Ho, Y.Y. & Xiao, Y. 2010. Dietary exposure to aluminium of the Hong Kong population. Food Additives and Contaminants, 27(4): 457–463. https://doi.org/10.1080/19440040903490112
Yokel, R.A. 2020. Aluminum reproductive toxicity: a summary and interpretation of scientific reports. Critical Reviews in Toxicology, 50(7): 551–593. doi: 10.1080/10408444.2020.1801575
Youssef, J., Keller, S. & Spence, C. 2019. Making sustainable foods (such as jellyfish) delicious. International Journal of Gastronomy and Food Science, 16: 100141. https://doi.org/10.1016/j.ijgfs.2019.100141
Zlotnick, B.A., Hintz, S., Park, D.L. & Auerbach, P.S. 1995. Ciguatera poisoning after ingestion of imported jellyfish: diagnostic application of serum immunoassay. Wilderness & Environmental Medicine, 6(3): 288–294.
Abrams, E.M. & Gerstner, T.V. 2015. Allergy to cooked, but not raw, peas: a case series and review. Allergy, Asthma & Clinical Immunology, 11(1): 10. https://doi.org/10.1186/s13223-015-0077-x
Antoine, T., Icard-Vernière, C., Scorrano, G., Salhi, A., Halimi, C., Georgé, S., Carrière, F. et al. 2021. Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion. Food Chemistry, 347: 128621. https://doi.org/10.1016/j.foodchem.2020.128621
Arroyo-Manzanares, N., Hamed, A.M., García-Campaña, A.M. & Gámiz-Gracia, L. 2019. Plant-based milks: unexplored source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC-MS/MS. Food Additives & Contaminants: Part B, 12(4): 296–302. https://doi.org/10.1080/19393210.2019.1663276
Bao, W., Rong, Y., Rong, S. & Liu, L. 2012. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Medicine, 119. https://doi.org/10.1186/1741-7015-10-119
Beach, C. 2021. New law puts sesame on fast track for allergen labelling requirements. In: Food Safety News. Cited 7 September 2021. https://www.foodsafetynews.com/2021/04/new-law-puts-sesame-on-fast-track-for-allergen-labeling-requirements/
Bennett, J.W. & Kilch, M. 2003. Mycotoxins. Clinical Microbiology Reviews, 16(3): 497–516. doi: 10.1128/CMR.16.3.497-516.2003
Cabanillas, B., Jappe, U. & Novak, N. 2018. Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Molecular Nutrition & Food Research, 62: 1700446. doi: 10.1002/mnfr.201700446
Cramer, H., Kessler, C.S., Sundberg, T., Leach, M.J., Schumann, D., Adams, J. & Lauche, R. 2017. Characteristics of Americans Choosing Vegetarian and Vegan Diets for Health Reasons. Journal of Nutrition Education and Behavior, 49(7): 561-567.e1. https://doi.org/10.1016/j.jneb.2017.04.011
Curtain, F. & Grafenauer, S. 2019. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients, 11: 2603. doi:10.3390/nu11112603
Divi, R.L., Chang, H.C. & Doerge, D.R. 1997. Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochemical Pharmacology, 54: 1087–1096. doi: 10.1016/s0006-2952(97)00301-8
Drewnowski, A. 2021. Plant-based milk beverages in the USDA Branded Food Products Database would benefit from nutrient density standards. Nature Food, 2: 567–569. https://doi.org/10.1038/s43016-021-00334-5
Elkin, E. 2021. Plant-based food sales to increase fivefold by 2030, BI says. In: Bloomberg. Cited 15 November 2021. https://www.bloomberg.com/news/articles/2021-08-11/plant-based-food-sales-to-increase-fivefold-by-2030-bi-says
Eshel, G., Shepon, A., Makov, T. & Milo, R. 2014. Land, irrigation, water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(23): 11996–12001. https://doi.org/10.1073/pnas.1402183111
Eshel, G., Stainier, P., Shepon, A. & Swaminathan, A. 2019. Environmentally optimal, nutritionally sound, protein and energy conserving plant-based alternatives to U.S. meat. Scientific Reports, 9: 10345. https://doi.org/10.1038/s41598-019-46590-1
FAO, IFAD, UNICEF, WFP & WHO. 2020. The State of Food Security and Nutrition in the World. Transforming food systems for affordable healthy diets. Rome, FAO. https://doi.org/10.4060/ca9692en
FAO & WHO. 2017. Evaluation of certain contaminants in food. Eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 1002. Geneva, WHO. https://apps.who.int/iris/bitstream/10665/254893/1/9789241210027-eng.pdf?ua=1#page=104%22%3E
FAO & WHO. 2018. General Standard for the Labelling of Prepackaged Foods. Rome, FAO. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B1-1985%252FCXS_001e.pdf
FAO & WHO. 2021. Ad hoc Joint FAO/WHO Expert Consultation on Risk Assessment of Food Allergens. Part 1: Review and validation of Codex priority allergen list through risk assessment. Summary and Conclusions. Rome, FAO. https://www.fao.org/3/cb4653en/cb4653en.pdf
Fearn, H. 2021. Pea protein is causing a mighty problem for people with allergies. In: HuffPost. Cited 16 November 2021. https://www.huffingtonpost.co.uk/entry/pea-protein-allergy_uk_618ad212e4b055e47d80f1da
Ferrer, B. 2021. Equinom & Dipasa harness AI for new high-protein sesame tipped to replace conventional plant-based bases. In: Food Ingredients. Cited 15 September, 2021. https://www.foodingredientsfirst.com/news/equinom-dipasa-harness-ai-to-develop-new-high-protein-sesame-variety-tipped-to-replace-conventional-plant-based-bases.html
Floris, R. 2021. Industry insights from NIZO: Safety challenges for plant-based foods. In: Food Navigator. Cited 18 October 2021. https://www.foodnavigator.com/Article/2021/04/21/Industry-insights-from-NIZO-Safety-challenges-for-plant-based-foods
Galai, T.M., Hassan, L.M., Ahmed, D.A., Alamri, S.A., Alrummam, S.A. & Eid, E.M. 2021. Heavy metals uptake by the global economic crop (Pisum sativum L.) in contaminated soils and its associated health risks. PLoS One, 16(6): e025229. https://doi.org/10.1371/journal.pone.0252229
Gao, B., Li, Y., Huang, G. & Yu, L. 2019. Fatty acid esters of 3-monochloropropanediol: a review. Annual Review of Food Science and Technology, 10: 259–284.
Geeraerts, W., De Vuyst, L. & Leroy, F. 2020. Ready-to-eat meat alternatives, a study of their associated bacterial communities. Food Bioscience, 37: 100681. https://doi.org/10.1016/j.fbio.2020.100681
Gibson, R.S., Heath, A. M. & Szymlek-Gay, E.A. Is iron and zinc nutrition a concern for vegetarian infants and young children in industrialized countries? The American Journal of Clinical Nutrition, 100(suppl.): 459S–468S. doi: 10.3945/ajcn.113.071241
Hamed, A.M., Arroyo-Manzanares, N., Garcia-Campaña, A.M. & Gámiz-Gracia, L. 2017. Determination of Fusarium toxins in functional vegetable milks applying salting-out-assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry. Food Additives & Contaminants: Part A, 34(11): 2033–2041. doi: 10.1080/19440049.2017.1368722
Hashempour-Baltork, F., Khosravi-Darani, K., Hosseini, H., Farshi, P. & Reihani, F. 2020. Mycoproteins as safe meat substitutes. Journal of Cleaner Production, 253: 119958. https://doi.org/10.1016/j.jclepro.2020.119958
He, J., Evans, N.M., Liu, H. & Shao, S. 2020. A review of research on plant-based meat alternatives: driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19(5): 2639–2656. https://doi.org/10.1111/1541-4337.12610
Heffler, E., Pizzimenti, S., Badiu, I., Guida, G. & Rolla, G. 2014. Buckwheat allergy: An emerging clinical problem in Europe. Journal of Allergy & Therapy, 5: 2. doi: 10.4172/2155-6121.1000168
Hoff, M., Trueb, R.M., Ballmer-Weber, B.K., Vieths, S. & Wuethrich, B. 2003. Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Quorn) in a patient allergic to moulds caused by acidic ribosomal protein P2. Journal of Allergy and Clinical Immunology, 111(5): 1106–1110. doi: 10.1067/mai.2003.1339
Holcomb, R. & Bellmer, D. 2021. ‘Upcycling’ promises to turn food waste into your next meal. In: The Conversation. In: Cited 28 October 2021. https://theconversation.com/upcycling-promises-to-turn-food-waste-into-your-next-meal-157500
Jacobson, M.F. & DePorter, J. 2018. Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Annals of Allergy, Asthma & Immunology, 120(6): 626–630. doi: 10.1016/j.anai.2018.03.020
Joshi, V. & Kumar, S. 2015. Meat Analogues: Plant based alternatives to meat products- A review. International Journal of Food and Fermentation Technology, 5(2): 107. https://doi.org/10.5958/2277-9396.2016.00001.5
Kakleas, K., Luyt, D., Foley, G. & Noimark, L. 2020. Is it necessary to avoid all legumes in legume allergy? Pediatric Allergy and Immunology, 31(7): 848–851. https://doi.org/10.1111/pai.13275
Kateman, B. 2021. Will upcycling be as popular as plant-based food? In: Forbes. Cited 17 November 2021. https://www.forbes.com/sites/briankateman/2021/03/30/will-upcycling-become-as-popular-as-plant-based-food/?sh=6ede3034237
Key, T.J., Appleby, P.N., Crowe, F.L., Bradbury, K.E., Schmidt, J.A. & Travis, R.C. 2014. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. The American Journal of Clinical Nutrition, 100(suppl_1): 378S–385S. https://doi.org/10.3945/ajcn.113.071266
Kim, H., Caulfield, L.E., Garcia-Larsen, V., Steffen, L.M., Coresh, J. & Rebholz, C.M. 2019. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. Journal of American Heart Association, 8: e012865. https://doi.org/10.1161/JAHA.119.012865
Lopez, S.H., Dias, J., Mol, H. & de Kok, A. 2020. Selective mutiresidue determination of highly polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry. Journal of Chromatography A, 1625: 461226. https://doi.org/10.1016/j.chroma.2020.461226
McClements, D.J. & Grossmann, L. 2021. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 20(4): 4049–4100. doi: 10.1111/1541-4337.12771
McDermott, A. 2021 Science and culture: Looking to ‘junk’ food to design healthier options. Proceedings of the National Academy of Sciences of the United States of America, 118(41): e2116665118. https://doi.org/10.1073/pnas.2116665118
McHugh, T. 2019. How plant-based meat and seafood are processed. In: IFT. Cited 24 October 2021. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2019/october/columns/processing-how-plant-based-meat-and-seafood-are-processed
Miró-Abella, E., Herrero, P., Canela, N., Arola, L., Borrull, F., Ras, R. & Fontanals, N. 2017. Determination of mycotoxins in plant-based beverages using QuEChERS and liquid chromatography-tandem mass spectrometry. Food Chemistry, 229: 366–372. http://dx.doi.org/10.1016/j.foodchem.2017.02.078
Morrison, O. 2020. Pea protein trend sparks allergy warning. In: Food Navigator. Cited 21 October 2021. https://www.foodnavigator.com/Article/2020/03/16/Pea-protein-trend-sparks-allergy-warning
Nasrabadi, M.N., Doost, A.S. & Mezzenga, R. 2021. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118: 106789. https://doi.org/10.1016/j.foodhyd.2021.106789
National Food Institute- Technical University of Denmark, Doulgeridou, A., Amlund, H., Sloth, J.J. & Hansen, M. 2020. Review of potentially toxic rare earth elements, thallium and tellurium in plant-based foods. EFSA Journal, 18(EU-FOR A Series 3). Cited 15 December 2021. https://data.europa.eu/doi/10.2903/j.efsa.2020.e181101
Patisaul, H.B. 2017. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proceedings of the Nutrition Society, 76(2): 130–144. doi: 10.1017/S0029665116000677
Petroski, W. & Minich, D.M. 2020. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients, 12: 2929. doi:10.3390/nu12102929
Poore, J. & Nemecek, T. 2019. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392): 987–992. doi: 10.1126/science.aaq0216
Ranga, S.K. & Raghavan, V. 2018. How well do plant-based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology, 55(1): 10–20. doi: 10.1007/s13197-017-2915-y
Ritala, A., Häkkinen, S.T., Toivari, M. & Wiebe, M.G. 2017. Single cell protein – state-of-the-art industrial landscape and patents 2001 – 2016. Frontiers in Microbiology, 8: 2009. doi: 10.3389/fmicb.2017.02009
Rizzo, G., Laganà, A., Rapisarda, A., La Ferrera, G., Buscema, M., Rossetti, P., Nigro, A. et al. 2016. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients, 8(12): 767. https://doi.org/10.3390/nu8120767
Rousseau, S., Kyomugasho, C., Celus, M., Hendrickx, M.E.G. & Grauwet, T. 2020. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition, 60(5): 826–843. doi: 10.1080/10408398.2018.1552243
Rozenfeld, P., Docena, G.H. Añón, M.C. & Fossati, C.A. 2002. Detection and identification of a soy protein component that cross-reacts with caseins from cow’s milk. Clinical & Experimental Immunology, 130: 49–58. doi: 10.1046/j.1365-2249.2002.t01-1-01935.x
Rubio, N.R., Xiang, N. & Kaplan, D.L. 2020. Plant-based and cell-based approaches to meat production. Nature Communications, 11: 6276. https://doi.org/10.1038/s41467-020-20061-y
Sabaté, J. & Soret, S. 2014. Sustainability of plant-based diets: back to the future. The American Journal of Clinical Nutrition, 100(suppl.1): 476S–482S. doi: 10.3945/ajcn.113.071522
Samtiya, M., Aluko, R.E. & Dhewa, T. 2020. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2: 6. https://doi.org/10.1186/s43014-020-0020-5
Satija, A., Bhupathiraju, S.N., Rimm, E.B., Spiegelman, D., Chiuve, S.E., Borgi, L., Willett, W.C. et al. 2016. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLOS Medicine, 13(6): e1002039. https://doi.org/10.1371/journal.pmed.1002039
Sethi, S., Tyagi, S.K. & Anurag, R.K. 2016. Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9): 3408 – 3423. doi: 10.1007/s13197-016-2328-3
Sha, L. & Xiong, Y.L. 2020. Plant-protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102: 51–61. https://doi.org/10.1016/j.tifs.2020.05.022
Sicherer, S.H. 2005. Food protein-induced enterocolitis syndrome: Case presentations and management lessons. Journal of Allergy and Clinical Immunology, 115(1): 149–156. doi: 10.1016/j.jaci.2004.09.033
Specht, L. 2019. Why plant-based meat will ultimately be less expensive than conventional meat. In: Good Food Institute. Cited 17 November 2021. https://gfi.org/blog/plant-based-meat-will-be-less-expensive
Thompson, L.U., Boucher, B.A., Liu, Z., Cotterchio, M. & Kreiger, N. 2006. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutrition and Cancer, 54(2): 184–201. doi: 10.1207/s15327914nc5402_5
Tuso, P.J., Ismail, M.H., Ha, B.P. & Bartolotto, C. 2013. Nutritional update for physicians: Plant based diets. The Permanente Journal, 17(2): 61–66. doi: 10.7812/TPP/12-085
UNEP. 2021. Food Waste Index Report 2021. Nairobi. https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/FoodWaste.pdf
van Vliet, S., Bain, J.R., Muehlbauer, M.J., Provenza, F.D., Kronberg, S.L., Pieper, C.F. & Huffman, K.M. 2021. A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Fact panels. Scientific Reports, 11: 13828. https://doi.org/10.1038/s41598-021-93100-3
van Vliet, S., Kronberg, S.L. & Provenza, F.D. 2020. Plant-based meats, human health, and climate change. Frontiers in Sustainable Food Systems, 4: 128. https://doi.org/10.3389/fsufs.2020.00128
Verma, A.K., Kumar, S., Das, M. & Dwivedi, P.D. 2013. A comprehensive review of legume allergy. Clinical Reviews in Allergy & Immunology, 45: 30 – 46. doi: 10.1007/s12016-012-8310-6
Villa, C., Costa, J. & Mafra, I. 2020. Lupine allergens: clinical relevance, molecular characterization, cross-reactivity, and detection strategies. Comprehensive Reviews in Food Science and Food Safety, 19: 3886–3915. doi: 10.1111/1541-4337.12646
WHO. 2020a. Salt reduction. In: World Health Organization. Geneva. Cited 17 November 2021. https://www.who.int/news-room/fact-sheets/detail/salt-reduction
WHO. 2020b. More than 3 billion people protected from harmful trans-fat in their food. In: World Health Organization. Geneva. Cited 29 November 2021. https://www.who.int/news/item/09-09-2020-more-than-3-billion-people-protected-from-harmful-trans-fat-in-their-food
Wensing, M., Knulst, A.C., Piersma, S., O’Kane, F., Knol, E.F. & Koppelman, S.J. 2003. Patients with anaphylaxis to pea can have peanut allergy caused by cross-reactive IgE to vicilin (Ara h 1). The Journal of Allergy and Clinical Immunology, 111(2): 420 – 424. doi:10.1067/mai.2003.61
Wild, F., Czerny, M., Janssen, A.M., Kole, A.P.W., Zunabovic, M. & Domig, K.J. 2014. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives. Agro Food Industry Hi-Tech, 25(1): 45–49.
Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T. et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170): 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
Zaraska, M. 2021. Upcycling food waste onto our plates is a new effort. But will consumers find it appetizing? In: The Washington Post. Cited 17 November 2021. https://www.washingtonpost.com/science/upcycling-food-waste/2021/09/17/90fd81b2-0045-11ec-85f2-b871803f65e4_story.html
Zhao, F.-J. & Wang, P. 2019. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 446: 1–21. https://doi.org/10.1007/s11104-019-04374-6
Almela, C., Jesus Clemente, M., Velez, D. & Montoro, R. 2006, Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed in Spain. Food and Chemical Toxicology, 44: 901–923.
Álvarez-Muñoz, D., Rodríguez-Mozaz, S., Maulvault, A. L., Tediosi, A., Fernández-Tejedor, M., Van den Heuvel, F., Kotterman, M., Marques, A. & Barceló, D. 2015. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environmental Research, 143: 56–64. https://doi.org/10.1016/j.envres.2015.09.018
Anderson, D.M., Gilbert, P.M. & Burkholder, J.M. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25(4): 704–726.
ANSES Opinion. 2017. Risks associated with the consumption of food supplements containing spirulina. Maisons-Alfort Cedex, France. French Agency for Food, Environmental and Occupational Health & Safety. https://www.anses.fr/en/system/files/NUT2014SA0096EN.pdf
Banach, J.L., Hoek-van den Hil., E.F. & van der Fels-Klerx, H.J. 2020. Food safety hazards in the European seaweed chain. Comprehensive Reviews in Food Science and Food Safety, 19: 332–364. doi: 10.1111/1541-4337.12523
Bito, T., Teng, F. & Watanabe, F. 2017. Bioactive compounds of edible purple laver Porphyra sp. (Nori). Journal of Agricultural and Food Chemistry, 65: 10685–10692. doi: 10.1021/acs.jafc.7b04688
Bizzaro, G., Vatland, A.K. & Pampanin, D.M. 2022. The One-Health approach in seaweed food production. Environmental International, 158: 106948. https://doi.org/10.1016/j.envint.2021.106948
Buck, B.H., Nevejan, N., Wille, M., Chambers, M.D. & Chopin, T. 2017. Offshore and multi-use aquaculture with extractive species: seaweeds and bivalves. In: B. Back & R. Langan, R. eds. Aquaculture perspective of multi-use sites in the open ocean. Springer, Cham. https://doi.org/10.1007/978-3-319-51159-7_2
Castlehouse, H., Smith, C., Raab, A., Deacon, C., Meharg, A. & Feldman, J. 2003. Biotransformation and accumulation of arsenic in soil amended with seaweed. Environmental Science and Technology 37, 951– 957.
Chen, Q., Pan, Q., Huang, B. & Han, J. 2018. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Scientific Reports, 8: 3578.
Cheney, D., Rajic, L., Sly, E., Meric, D. & Sheahan, T. 2014. Uptake of PCBs contained in marine sediments by the green macroalgae Ulva rigida. Marine Pollution Bulletin, 88(1-2): 207–214. doi: 10.1016/j.marpolbul.2014.09.004
Cherry, P., O’Hara, C., Magee, P.J., McSorley, E.M. & Allsopp, P.J. 2019. Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5): 307–329. https://doi.org/10.1093/nutrit/nuy066
Chojnacka, K. 2012, Using the biomass of seaweeds in the production of components of feed and fertilizers. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology, 478–490.
Circuncisão, A.R., Catarino, M.D., Cardoso, S.M. & Silva, A.M.S. 2018. Minerals from macroalgae origin: health benefits and risks for consumers. Marine Drugs, 16(11): 400. doi: 10.3390/md16110400
Concepcion, A., DeRosia-Banick, K. & Balcom, N. 2020. Seaweed production and processing in Connecticut: A guide to understanding and controlling potential food safety hazards. Connecticut Sea Grant and Connecticut Department of Agriculture Bureau of Aquaculture. https://seagrant.uconn.edu/wp-content/uploads/sites/1985/2020/01/Seaweed-Hazards-Guide_Jan2020_accessible.pdf
Costa, M., Cardoso, A., Afonso, C., Bandarra, N.M. & Prates, J.A.M. 2021. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. Animal Physiology and Animal Nutrition, 00: 1–28. https://doi.org/10.1111/jpn.13509
Cox, P.A., Banack, S.A., Murch, S.J., Rasmussen, U., Tien, G., Bidigare, R.R., Metcalf, J.S., Morrison, L.F., Codd, G.A. & Bergman, B. 2005. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences USA, 102: 5074–5078. https://doi.org/10.1073/pnas.0501526102
Cruz-Rivera, E. & Villareal, T. A. 2006. Macroalgal palatability and the flux of ciguatera toxins through marine food webs. Harmful Algae, 5(5): 497–525.
Domínguez-González, M. R., Chiocchetti, G. M., Herbello-Hermelo, P., Vélez, D., Devesa, V. & Bermejo-Barrera, P. 2017. Evaluation of iodine bioavailability in seaweed using in vitro methods. Journal of Agricultural and Food Chemistry, 65(38), 8435–8442. https://doi.org/10.1021/acs.jafc.7b02151
Duarte, C., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. 2017. Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4: doi.org/10.3389/fmars.2017.00100
Duinker, A., Roiha, I.S., Amlund, H., Dahl, L., Kögel, T., Maage, A. & Bjørn-Tore Lunestad. 2016. Potential risks posed by macroalgae for application as feed and food - a Norwegian perspective. Bergen, Norway. National Institute of Nutrition and Seafood Research. https://doi.org/10.13140/RG.2.2.27781.55524
Duncan, E., Maher, W. & Foster, S. 2014, Contribution of arsenic species in uni-cellular algae to the cycling of arsenic in marine ecosystems. Environmental Science and Technology, 49: 33–50.
EC SCF. 2002. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Iodine. (SCF/CS/NUT/UPPLEV/26 Final). Brussels, European Commission.
EFSA. 2017. Technical report of EFSA’s Activities on Emerging Risks in 2016. EFSA Supporting Publications, 14(11). https://doi.org/10.2903/sp.efsa.2017.EN-1336
FAO. 2003. A guide to the seaweed industry. FAO Fisheries Technical Paper No. 441. Rome. https://www.fao.org/3/y4765e/y4765e.pdf
FAO. 2004. Marine biotoxins. FAO Food and Nutrition Paper No. 80, Rome. https://www.fao.org/3/y5486e/y5486e00.htm
FAO. 2018. The global status of seaweed production, trade and utilization. Globefish Research Programme, No. 124. Rome. https://www.fao.org/3/CA1121EN/ca1121en.pdf
FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en
FAO. 2021. Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular No. 1229. Rome. https://www.fao.org/3/cb5670en/cb5670en.pdf
FAO & WHO. forthcoming. FAO/WHO Report of the Expert Meeting on Food Safety for Seaweed. Current Status and Future Perspectives. Rome.
FAO & WHO. 2002. Evaluation of certain food additives. Fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, World Health Organization. http://whqlibdoc.who.int/trs/WHO_TRS_913.pdf
FAO & WHO. 2011. Codex Guideline Levels for Radionuclides in Foods Contaminated Following a Nuclear or Radiological Emergency. Fact Sheet. https://www.fao.org/3/au209e/au209e.pdf
Fereshteh, G., Yassaman, B., Reza, A.M.M., Zavar, A. & Hossein, M. 2007. Phytoremediation of Arsenic by Macroalga: Implication in Natural Contaminated Water, Northeast Iran. Journal of Applied Sciences, 7(12): 1614–1619. https://doi.org/10.3923/jas.2007.1614.1619
Fernández, P.A., Leal, P.P. & Henríquez, L.A. 2019. Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario. Phycologia, 58(5): 542–551. https://doi.org/10.1080/00318884.2019.1628576
Francesconi, K. & Kuehnelt, D. 2004, Determination of arsenic species: a critical review of methods and applications. Analyst, 129: 373–395.
FSAI. 2020. Safety consideration of seaweed and seaweed-derived foods available on the Irish market. Report of the Scientific Committee of the Food Safety Authority of Ireland. Dublin, Food Safety Authority of Ireland. https://www.fsai.ie/SafetyConsiderations_SeaweedAndSeaweedDerivedFoods_IrishMarket/
Ganesan, A.R., Tiwari, U. & Rajauri, G. 2019. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Science and Human Wellness, 8(3): 252–263. https://doi.org/10.1016/j.fshw.2019.08.001
Goddard, C.C. & Jupp, B.P. 2001. The radionuclide content of seaweeds and seagrasses around the coast of Oman and the United Arab Emirates. Marine Pollution Bulletin, 42(12): 1411–1416. doi: 10.1016/s0025-326x(01)00218-1
Greenhalgh, E. 2016. Climate and lobsters. In: Climate.gov. Cited 6 February 2021. https://www.climate.gov/news-features/climate-and/climate-lobsters
Grosse, Y., Baan, R., Straif, K., Secretan, B., El Ghissassi, F. & Cogliano, V. 2006. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. The Lancet Oncology, 7(8): 628–629.
Gunther, M. 2018. Can deepwater aquaculture avoid the pitfalls of coastal fish farms? In: Yale Environment 360. Cited 8 October 2021. New Haven, Connecticut. https://e360.yale.edu/features/can-deepwater-aquaculture-avoid-the-pitfalls-of-coastal-fish-farms
Gupta, S. & Abu-Ghannam, N. 2011. Recent developments in the applications of seaweeds or seaweed extracts as a means for the safety and quality attributes of foods. Innovative Food Science and Emerging Technologies, 12: 600–609.
Gutow, L., Eckerlebe, A., Giménez, L. & Saborowski, R. 2016. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environmental Science & Technology, 50: 915–923. doi: 10.1021/acs.est.5b02431
Heisler, J., Glibert, P., Burkholder, J., Anderson, D., Cochlan, W., Dennison, W., Gobler,C., Dortch, Q., Heil, C., Humphries, E., Lewitus, A., Magnien, R., Marshall, H., Sellner, K., Stockwell, D., Stoecker, D. & Suddleson, M. 2008. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1): 3–13.
Hord, N.G., Tang, Y. & Bryan, N.S. 2009. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. The American Journal of Clinical Nutrition, 90(1): 1–10. https://doi.org/10.3945/ajcn.2008.27131
Joung, E., Gwon, W., Shin, T., Jung, B., Choi, J. & Kim, H. 2017. Anti-inflammatory action of the ethanolic extract from Sargassum serratifolium on lipopolysaccharide-stimulated mouse peritoneal macrophages and identification of active components. Journal of Applied Phycology, 29: 563–573.
Kamunde, C., Sappal, R. & Melegy, T.M. 2019. Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar. PLoS One, 14(7): e0219792. doi: 10.1371/journal.pone.0219792
Karthick, P., Sankar, R., Kaviarasan, T. & Mohanraju, R. 2012. Ecological implications of trace metals in seaweeds: Bio-indication potential for metal contamination in Wandoor, South Andaman Island. The Egyptian Journal of Aquatic Research, 38: 227–231.
Kinley, R.D., Martinez-Fernandez, G., Matthews, M.K., de Nys, R., Marnusson, M. & Tomkins, N.W. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259: 120836. https://doi.org/10.1016/j.jclepro.2020.120836
Klumpp, D. 1990. Characteristics of arsenic accumulation by the seaweeds Fucus spiralis and Ascophyllum nodosum. Marine Biology, 58: 257 – 264.
Kusumi, E., Tanimoto, T., Hosoda, K., Tsubokura, M., Hamaki, T., Takahashi, K. & Kami, M. 2017. Multiple norovirus outbreaks due to shredded, dried, laver seaweed in Japan. Infection Control & Hospital Epidemiology, 38(7): 88 –886. https://doi.org/10.1017/ice.2017.70
Krause-Jensen, D. & Duarte, C.M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9: 737–742. https://doi.org/10.1038/ngeo2790
Larrea-Marin, M., Pomares-Alfonso, Gomez-Jusristi, M., Sanchez-Munoz, F., Rodenas & de la Rocha, S. 2010. Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. Journal of Food Composition and Analysis, 23: 814–820.
Leston, S., Nunes, M., Viegas, I., Lemos, M. F. L., Freitas, A., Barbosa, J., Ramos, F. & Pardal, M. A. 2011. The effects of the nitrofuran furaltadone on Ulva lactuca. Chemosphere, 82(7): 1010–1016. https://doi.org/10.1016/j.chemosphere.2010.10.067
Leston, S., Nunes, M., Viegas, I., Ramos, F. & Pardal, M. Â. 2013. The effects of chloramphenicol on Ulva lactuca. Chemosphere, 91(4): 552– 557. https://doi.org/10.1016/j.chemosphere.2012.12.061
Leston, S., Nunes, M., Viegas, I., Nebot, C., Cepeda, A., Pardal, M. T. & Ramos, F. 2014. The influence of sulfathiazole on the macroalgae Ulva lactuca. Chemosphere, 100: 105–110. https://doi.org/10.1016/j.chemosphere.2013.12.038
Li, Q., Feng, Z., Zhang, T., Ma, C. & Shi, H. 2020. Microplastics in the commercial seaweed nori. Journal of Hazardous Materials, 388: 122060. https://doi.org/10.1016/j.jhazmat.2020.122060
Liu, L., Heinrich, M., Myers, S. & Dworjanyn, S.A. 2012. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. Journal of Ethnopharmacology, 142(3): 591–619. https://doi.org/10.1016/j.jep.2012.05.046
Ma, Z., Lin, L., Wu, M., Yu, H., Shang, T., Zhang, T. & Zhao, M. 2018. Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture, 497: 49–55.
Mahmud, Z.H., Kassu, A., Mohammad, A., Yamato, M., Bhuiyan, N.A., Balakrish Nair, G. & Ota, F. 2006. Isolation and molecular characterization of toxigenic Vibrio parahaemolyticus from the Kii Channel, Japan. Microbiological Research, 161(1): 25–37. https://doi.org/10.1016/j.micres.2005.04.005
Mahmud, Z.H., Neogi, S.B., Kassu, A., Wada, T., Islam, A.S., Balakrish Nair, G. & Ota, F. 2007. Seaweeds as a reservoir for diverse Vibrio parahaemolyticus populations in Japan. International Journal of Food Microbiology, 118(1): 92–96. https://doi.org/10.1016/j.ijfoodmicro.2007.05.009
Mahmud, Z.H., Neogi, S.B., Kassu, A., Huong, B.T.M., Jahid, I.K., Islam, M.S. & Ota, F. 2008. Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology, 64(2): 209–218. https://doi.org/10.1111/j.1574-6941.2008.00460.x
Makkar, H.P.S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F. & Ankers, P. 2016. Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212: 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018
Martin-León, V., Paz, S., D’Eufemia, P.A., Plasencia, J.J., Sagratini, G., Marcantoni, G., Navarro-Romero, M., Gutiérrez, Á., Hardisson, A. & Rubio-Armendáriz, C. 2021. Human exposure to toxic metals (Cd, Pb, Hg) and nitrates (NO3-) from seaweed consumption. Applied Sciences, 11: 6934. https://doi.org/10.3390/app11156934
McSheehy, S., Szpunar, J., Morabito, R. & Quevauviller, P. 2003. The speciation of arsenic in biological tissues and the certification of reference materials for quality control. TrAC Trends in Analytical Chemistry, 22(4): 191–209.
Meng, K.C., Oremus, K.L. & Gaines, S.D. 2016. New England cod collapse and the climate. PLoS One, 11(7): e0158487. https://doi.org/10.1371/journal.pone.0158487
Molazadeh, M., Ahmadzadeh, H., Pourianfar, H.R., Lyon, S. & Rampelotto, P.H. 2019. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7: 42. doi: 10.3389/fbioe.2019.00042
Monti, M., Minocci, M., Beran, A. & Iveša, L. 2007. First record of Ostreopsis cfr. ovata on macroalgae in the northern Adriatic Sea. Marine Pollution Bulletin, 54(5), 598– 601.
Moo-Puc, R., Robledo, D. & Freile-Pelegrin, Y. 2008. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. Journal of Ethnopharmacology, 120(1): 92–97. doi: 10.1016/j.jep.2008.07.035
Morais, T., Inácia, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L. & Bahcevandziev, K. 2020. Seaweed potential in the animal feed: a review. Journal of Marine Science and Engineering, 8: 559: doi: 10.3390/jmse8080559
Morrison, L., Baumann, H.A. & Stengel, D.B. 2008. An assessment of metal contamination along the Irish coast using the seaweed Ascophyllum nodosum (Fucales, Phaeophyceae). Environmental Pollution, 152: 293–303. doi:10.1016/j.envpol.2007.06.052
Nichols, C., Ching-Lee, M., Daquip, C.-L., Elm, J., Kamagai, W., Low, E., Murakawa, S., O’Brien, P., O’Connor, N., Ornellas, D., Oshiro, P., Voung, A., Whelen, A.C. & Park, S. Y. 201٧. Outbreak of salmonellosis associated with seaweed from a local aquaculture farm—Oahu, 2016. Paper presented at the CSTE. Boise, ID. https://cste.confex.com/cste/2017/webprogram/Paper8115.html
Nitschke, U. & Stengel, D. B. 2015. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chemistry, 172: 326 – 334. https://doi.org/10.1016/j.foodchem.2014.09.030
Nitschke, U. & Stengel, D. B. 201٦. Quantification of iodine loss in edible Irish seaweeds during processing. Journal of Applied Phycology, 28(6): 352٧– 3533. https://doi.org/10.1007/s10811-016-0868-6
Ott, H. 2018. Climate change eroding women’s status in Zanzibar. In: Pulitzer Center. Washington, DC, Pulitzer Center. Cited 10 November 2021. https://pulitzercenter.org/stories/climate-change-eroding-womens-status-zanzibar
Park, J.H., Jeong, H.S., Lee, J.S., Lee, S.W., Choi, Y.H., Choi, S.J., Joo, I.S. et al. 2015. First norovirus outbreaks associated with consumption of green seaweed (Enteromorpha spp.) in South Korea. Epidemiology and Infection, 143(3): 515–521. https://doi.org/10.1017/S0950268814001332
Pinsky, M.L., Fenichel, E., Fogarty, M., Levin, S., McCay, B., St. Martin, K., Selden, R.L. et al. 2021. Fish and fisheries in hot water: What is happening and how do we adapt? Population Ecology, 63(1): 17–26. https://doi.org/10.1002/1438-390X.12050
Polikovsky, M., Fernand, F., Sack, M., Frey, W., Müller, G. & Golberg, A. 2019. In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric field. Food Chemistry, 276: 735–744. https://doi.org/10.1016/j.foodchem.2018.09.134
Roleda, M. Y., Skjermo, J., Marfaing, H., Jónsdóttir, R., Rebours, C., Gietl, A., Stengel, D.B. & Nitschke, U. 2018. Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: Inherent variations determine species-specific daily allowable consumption. Food Chemistry, 254: 333– 339. https://doi.org/10.1016/j.foodchem.2018.02.024
Roque, B.M., Brooke, C.G., Ladau, J., Polley, T., Marsh, L., Najafi, N., Pandey, P. et al. 2019. Effect of the macroalgae Asparagopsis taxiformis on methane production and the rumen microbiome assemblage. Animal Microbiome, 1(3). https://doi.org/10.1186/s42523-019-0004-4
Roque, B.M., Venegas, M., Kinley, R.D., de Nys, R., Duarte, T.L., Yang, X. & Kebreab, E. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef teers. PLoS One, 16(3): e0247820. https://doi.org/10.1371/journal.pone.0247820
Rose, M., Lewis, J., Langford, N., Baxter, M., Origgi, S., Barber, M., MacBain, H. & Thomas, K. 2007, Arsenic in seaweed – forms, concentrations and dietary exposure. Food and Chemical Toxicology, 45: 1263–1267.
Roy-Lachapelle, A., Solliec, M., Bouchard, M.F. & Sauvé, S. 2017. Detection of cyanotoxins in algae dietary supplements. Toxins, 9: 76. doi:10.3390/toxins9030076
Sartal, C., Alonso, M. & Barrera, P. 2014. Arsenic in seaweed: presence, bioavailability and speciation. In: Seafood Science: Advances in Chemistry Technology and Applications, pp. 276–351. Boca Raton, FL, USA, CRC Press, Taylor and Francis Group.
Seghetta, M., Tørring, D., Bruhn, A. & Thomsen, M. 2016. Bioextraction potential of seaweed in Denmark — An instrument for circular nutrient management. Science of the Total Environment, 563: 513–529.
Squadrone, S., Brizio, P., Battuello, M., Nurra, N., Sartor, R.M., Riva, A., Staiti, M. et al. 2018. Trace metal occurrence in Mediterranean seaweeds. Environmental Science and Pollution Research, 25(10): 9708–9721. https://doi.org/10.1007/s11356-018-1280-3
Testai, E., Buratti, F.M., Funari, E., Manganelli, M., Vichi, S., Arnich, N., Biré, R. et al. 2016. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications, 13(2). https://doi.org/10.2903/sp.efsa.2016.EN-998
Thomas, I., Siew, L.Q.C., Watts, T.J. & Haque, R. 2018. Seaweed allergy. The Journal of Allergy and Clinical Immunology, 7(2): 714–715. doi: 10.1016/j.jaip.2018.11.009
Vijayaraghavan, K. & Joshi, U. 2015. Application of seaweed as substrate additive in green roofs: enhancement of water retention and sorption capacity. Landscape and Urban Planning, 143: 25 – 32.
Wan, A.H.L., Davies, S.J., Soler-Vila, A., Fitzgerald, R. & Johnson, M.P. 2019. Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture, 11: 458–492. doi: 10.1111/raq.12241
Whitworth, J. 2019. Norway norovirus outbreaks linked to seaweed salad from China. In: Food Safety News. Cited 28 October 2021. https://www.foodsafetynews.com/2019/09/norway-norovirus-outbreaks-linked-to-seaweed-salad-from-china/
Winckelmann, D., Bleeke, F., Thomas, B., Elle, C. & Klöck, G. 2015. Open pond cultures of indigenous algae grown on non-arable land in an arid desert using wastewater. International Aquatic Research, 7: 221–233. https://doi.org/10.1007/s40071-015-0107-9
Wells, M., Potin, P., Craigie, J., Raven, J., Merchant, S., Helliwell, K., Smith, A., Camire, M. & Brawley, S. 2017. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949–982.
Xu, D., Brennan, G., Xu, L., Zhang, X.W., Fan, X., Han, W.T., Mock, T., McMinn, A., Hutchins, D.A. & Ye, N. 2019. Ocean acidification increases iodine accumulation in kelp-based coastal food webs. Global Change Biology, 25: 629–639. doi: 10.1111/gcb.14467
Yun, E.J., Yu, S., Kim, Y.-A., Liu, J.-J., Kang, N.J., Jin, Y.-S. & Kim, K.H. 2021. In vitro prebiotic and anti-colon cancer activities of agar-derived sugars from red seaweeds. Marine Drugs, 19: 213. https://doi.org/10.3390/md19040213
Agmas, B. & Adugna, M. 2018. Antimicrobial residue occurrence and its public health risk of beef meat in Debre Tabor and Bahir Dar, Northwest Ethiopia. Veterinary World, 11(7): 902–908. https://dx.doi.org/10.14202%2Fvetworld.2018.902-908
Allan, S.J., Ellis, M.J. & De Bank, P.A. 2021. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. Journal of Biomedical Materials Research, 109(12): 2471–2482. doi: 10.1002/jbm.a.37241.
Alvaro, C. 2019. Lab-Grown Meat and Veganism: A Virtue-Oriented Perspective. Journal of Agricultural and Environmental Ethics, 32(1): 127–141. https://doi.org/10.1007/s10806-019-09759-2
Andreassen, R., Pedersen, M., Kristoffersen, K. & Beate Rønning, S. 2020. Screening of by-products from the food industry as growth promoting agents in serum-free media for skeletal muscle cell culture. Food & Function, 11(3): 2477–2488.
Bhat, Z.F., Kumar, S. & Fayaz, H. 2015. In vitro meat production: Challenges and benefits over conventional meat production. Journal of Integrative Agriculture, 14(2): 241–248. https://doi.org/10.1016/S2095-3119(14)60887-X
Bryant, C.J. & Barnett, J.C. 2019. What’s in a name? Consumer perceptions of in vitro meat under different names. Appetite. 137: 104–113. doi:10.1016/j.appet.2019.02.021
Bryant, C.J., Anderson, J.E., Asher, K.E., Green, C. & Gasteratos, K. 2019. Strategies for overcoming aversion to unnaturalness: The case of clean meat. Meat Science, 154: 37–45. https://doi.org/10.1016/j.meatsci.2019.04.004
Byrne, B. 2021. State of the industry report: Cultured Meat. In: The Good Food Institute. Washington, DC. Cited 10 November 2021. https://gfi.org/resource/cultivated-meat-eggs-and-dairy-state-of-the-industry-report/
Campuzano, S., Mogilever, N.B. & Pelling, A.E. 2020. Decellularized Plant-Based Scaffolds for Guided Alignment of Myoblast Cells. bioRXiv (pre-print). https://doi.org/10.1101/2020.02.23.958686
Choudhury, D., Tseng, T. & Swartz, E. 2020. The Business of Cultured Meat. Trends in Biotechnology, 38(6):573-577. https://doi.org/10.1016/j.tibtech.2020.02.012
Chriki, S. & Hocquette, J.-F. 2020. The Myth of Cultured Meat: A Review. Frontiers in Nutrition, 7: 7. https://doi.org/10.3389/fnut.2020.00007
Churchill, W. 1932. Fifty Years Hence. Popular Mechanics Magazine 57(3). Chicago, Illinois. Popular Mechanics Company.
Corbyn, Z. 2020. The Observer: Out of the lab and into your frying pan: the advance of cultured meat. The Guardian. Cited 12 November 2021. https://www.theguardian.com/food/2020/jan/19/cultured-meat-on-its-way-to-a-table-near-you-cultivated-cells-farming-society-ethics
Elliott, G., Wang, S. & Fuller, B. 2017. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76: 74–91. https://doi.org/10.1016/j.cryobiol.2017.04.004
FAO. 2018. World Livestock: Transforming the livestock sector through the Sustainable Development Goals. Rome. https://www.fao.org/3/ca1201en/ca1201en.pdf
FAO. 2020. Five practical actions towards resilient, low-carbon livestock systems. Rome. https://www.fao.org/3/cb2007en/CB2007EN.pdf
FAO. 2021a. Food safety and quality: Chemical risks and JECFA. In: FAO. Rome. Cited 15 November 2021. https://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/en/
FAO. 2021b. Food safety and quality: Microbiological risks and JEMRA. In: FAO. Rome. Cited 15 November 2021. https://www.fao.org/food/food-safety-quality/scientific-advice/jemra/en/
FAO & WHO. 2008. Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Animals. Rome, FAO. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B68-2008%252FCXG_068e.pdf
FAO & WHO. 2009. Foods derived from modern biotechnology. Rome, FAO. https://www.fao.org/3/a1554e/a1554e00.pdf
FAO & WHO. 2011. Principles for the Risk Analysis of Foods Derived from Modern Biotechnology. Rome, FAO. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B44-2003%252FCXG_044e.pdf
FAO & WHO. 2016. Risk communication applied to food safety handbook. Rome, FAO. https://www.fao.org/3/i5863e/i5863e.pdf
Hadi, J. & Brightwell, G. 2021. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods, 10(6): 1226. https://doi.org/10.3390/foods10061226
Hallman, W. K. & Hallman, W. K., II. 2020. An empirical assessment of common or usual names to label cell-based seafood products. Journal of Food Science, 85(8): 2267–2277. dx.doi.org/10.1111/1750-3841.15351
Hamdan, M.N., Post, M.J., Ramli, M.A. & Mustafa, A.R. 2018. Cultured Meat in Islamic Perspective. Journal of Religion and Health, 57(6): 2193–2206. https://doi.org/10.1007/s10943-017-0403-3
Henchion, M., Moloney, A.P., Hyland, J., Zimmermann, J. & McCarthy, S. 2021. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal, 15: 100287. https://doi.org/10.1016/j.animal.2021.100287
Jha, A. 2013. First lab-grown hamburger gets full marks for ‘mouth feel’. The Guardian. Cited 12 November 2021. https://www.theguardian.com/science/2013/aug/05/world-first-synthetic-hamburger-mouth-feel
Kadim, I.T., Mahgoub, O., Baqir, S., Faye, B. & Purchas, R. 2015. Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture, 14(2): 222–233. https://doi.org/10.1016/S2095-3119(14)60881-9
Krautwirth, R. 2018. Will Lab-Grown Meat Find Its Way to Your Table? The Yeshiva University Observer, 10 May 2018. New York, NY, USA. Citation 12 November 2021. https://yuobserver.org/2018/05/will-lab-grown-meat-find-way-table/
Kupferschmidt, K. 2013. Lab Burger Adds Sizzle to Bid for Research Funds. Science, 341(6146): 602–603. doi: 10.1126/science.341.6146.602
Lynch, J. & Pierrehumbert, R. 2019. Climate Impacts of Cultured Meat and Beef Cattle. Frontiers in Sustainable Food Systems, 3: 5. https://doi.org/10.3389/fsufs.2019.00005
MacDonald, G. A. & Lanier, T. C. 1997. Cryoprotectants for improving frozen-food quality. In M. C. Erickson & Y.-C. Hung, eds. Quality in Frozen Food, pp. 197–232. Boston, MA, Springer US. https://doi.org/10.1007/978-1-4615-5975-7_11
MacQueen, L.A., Alver, C.G., Chantre, C.O., Ahn, S., Cera, L., Gonzalez, G.M., O’Connor, B.B. et al. 2019. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. npj Science of Food, 3(1): 20. https://doi.org/10.1038/s41538-019-0054-8
Masters, J. & Stacey, G. 2007. Changing medium and passaging cell lines. Nature Protocols, 2(9): 2276–2284. https://doi.org/10.1038/nprot.2007.319
Mattick, C.S. 2018. Cellular agriculture: The coming revolution in food production. Bulletin of the Atomic Scientists, 74(1): 32–35. https://doi.org/10.1080/00963402.2017.1413059
Mattick, C.S., Landis, A.E. & Allenby, B.R. 2015. A case for systemic environmental analysis of cultured meat. Journal of Integrative Agriculture, 14(2): 249–254. doi: 10.1016/S2095-3119(14)60885-6
Nucci, M.L. & Hallman, W.K. 2015. The role of public (mis)perceptions in the acceptance of new food technologies: Implications for food nanotechnology applications. In: D. Wright, eds. Communication Practices in Engineering, Manufacturing, and Research for Food, Drug, and Water Safety, pp. 89-118. Hoboken, NJ, Wiley-IEEE Press. ISBN: 978-1-118-27427-9.
OECD & FAO. 2021. OECD-FAO Agricultural Outlook 2021-2030. OECD Publishing. Paris. https://doi.org/10.1787/19428846-en
OIE. 2021. Terrestrial Animal Health Code – Glossary. In: OIE. Cited 12 November 2021. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/2018/en_glossaire.htm
Ong, K.J., Johnston, J. Datar, I., Sewalt, V. Holmes, D. & Shatkin, J.A. 2021. Food safety considerations and research priorities for the cultured meat and seafood industry. Comprehensive Reviews in Food Science and Food Safety, 20(6): 5421–5448. https://doi.org/10.1111/1541-4337.12853
Ong, S., Choudhury, D. & Naing, M. W. 2020. Cell-based meat: Current ambiguities with nomenclature. Trends in Food Science and Technology, 102: 223–231. doi: 10.1016/j.tifs.2020.02.010
Post, M.J. 2012. Cultured meat from stem cells: challenges and prospects. Meat Sci., 92: 297–301. doi: 10.1016/j.meatsci.2012.04.008
Post, M.J. 2014. Cultured beef: medical technology to produce food. Journal of the Science of Food and Agriculture, 94(6): 1039–1041. doi: 10.1002/jsfa.6474
Post, M., Levenberg, S., Kaplan, D., Genovese, N., Fu, J., Bryant, C., Negowetti, N., Verzijden, K. & Moutsatsou, P. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7): 403–415.
Risner, D., Li, F., Fell, J., Pace, S., Siegel, J., Tagkopoulos, I. & Spang, E. 2020. Preliminary Techno-Economic Assessment of Animal Cell-Based Meat. Foods, 10(1): 3. https://doi.org/10.3390/foods10010003
Rischer, H., Szilvay, G.R., Oksman-Caldentey, K.M. 2020. Cellular agriculture — industrial biotechnology for food and materials. Current Opinion in Biotechnology, 61: 128–134. https://doi.org/10.1016/j.copbio.2019.12.003
Savini, M., Cecchini, C., Verdenelli, M. C., Silvi, S., Orpianesi, C. & Cresci, A. 2010. Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients, 2(3): 330–339. https://doi.org/10.3390/nu2030330
Schaefer, G.O. & Savulescu, J. 2014. The Ethics of Producing In Vitro Meat. Journal of Applied Philosophy, 31(2): 188–202. https://doi.org/10.1111/japp.12056
Shapiro, P. 2018. Clean meat: how growing meat without animals will revolutionize dinner and the world. Science, 359(6374): 399. doi: 10.1126/science.aas8716
Smetana, S., Mathys, A., Knoch, A. & Heinz, V. 2015. Meat alternatives: life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment, 20(9): 1254–1267. https://doi.org/10.1007/s11367-015-0931-6
Specht, E., Welch, D., Rees Clayton, E. & Lagally, C. 2018. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal, 132: 161–168.
Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A. & Sexton, A. 2018. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, (78): 155–166. https://doi.org/10.1016/j.tifs.2018.04.010
Swartz, E. 2021. Anticipatory life cycle assessment and techno-economic assessment of commercial cultivated meat production. Washington, DC, The Good Food Institute. https://gfi.org/wp-content/uploads/2021/03/cultured-meat-LCA-TEA-policy.pdf
Takahashi, K. & Yamanaka, S. 2006. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126(4): 663–676.
Treich, N. 2021. Cultured Meat: Promises and Challenges. Environmental and Resource Economics, 79(1): 33–61.
Ackerman, K., Dahlgren, E. & Xu, X. 2013. Sustainable Urban Agriculture: Confirming Viable Scenarios for Production. Final report. Prepared for the New York State Energy Research and Development Authority. https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/Sustainable-Urban-Agriculture.pdf
Adegoke, A.A., Amoah, I.D., Stenström, T.A., Verbyla, M.E. & Mihelcic, J.R. Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Frontiers in Public Health, 6: 337. doi: 10.3389/fpubh.2018.00337
Agrawal, M., Singh, B., Rajput, M., Marshall, F. & Bell, J.N.B. 2003. Effect of air pollution on peri-urban agriculture: a case study. Environmental Pollution, 126: 323–329. doi: 10.1016/S0269-7491(03)00245-8
Al-Kodmany, K. 2018. The vertical farm: A review of developments and implications for the vertical city. Buildings, 8: 24. doi: 10.3390/buildings8020024
Alarcon, P., Févre, E.M., Muinde, P., Murungi, M.K., Kiambi, S., Akoko, J. & Rushton, J. 2017. Urban livestock keeping in the city of Nairobi: Diversity of production systems, supply chains, and their disease management and risks. Frontiers in Veterinary Science, 4: 171. doi: 10.3389/fvets.2017.00171.
Alexander, J., Hembach, N. & Schwartz, T. 2020. Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Scientific Reports, 10: 8952. https://doi.org/10.1038/s41598-020-65635-4
Andino, V., Forero, O. y Quezada, M.L. 2021. Informe de síntesis dinámica y planificación del sistema agroalimentario en la ciudad-región Quito. Roma, FAO y Fundación RUAF.
Antisari, L.V., Orsini, F., Marchetti, L., Vianello, G. & Gianquinto, G. 2015. Heavy metal accumulation in vegetables grown in urban gardens. Agronomy for Sustainable Development, 35: 1139 – 1147. doi: 10.1007/s13593-015-0308-z.
Antwi-Agyei, P., Peasey, A., Biran, A., Bruce, J. & Ensink, J. 2016. Risk perceptions of wastewater use for urban agriculture in Accra, Ghana. PLoS One, 11(3): e0150603. doi: 10.1371/journal.pone.0150603.
Ashraf, E., Shah, F., Luqman, M., Samiullah, Younis, M., Aziz, I. & Farooq, U. 2013. Use of untreated wastewater for vegetable farming: A threat to food safety. International Journal of Agricultural and Applied Sciences, 5(1): 27–33.
Augustsson, A.L.M., Uddh-Söderberg, T.E., Hogmalm, K.J. & Filipsson, M.E.M. 2015. Metal uptake by homegrown vegetables- The relative importance in human health risk assessments at contaminated sites. Environmental Research, 138: 181–190. http://dx.doi.org/10.1016/j.envres.2015.01.020
Beyer, S. 2019. Modular micro farms: A new approach to urban food production? In: Forbes. Cited 21 September 2021. https://www.forbes.com/sites/scottbeyer/2019/11/25/modular-micro-farms-a-new-approach-to-urban-food-production/?sh=55bb911f2e9e
Brown, S.L., Chaney, R.L. & Hettiarachchi, G.M. 2016. Lead in urban soils: A real or perceived concern for urban agriculture. Journal of Environmental Quality, 45: 26–36. doi: 10.2134/jeq2015.07.0376
CDC. 2021. Salmonella. Investigation details. In: Center for Disease Controls and Prevention. Atlanta, Georgia, USA. Cited 19 November 2021. https://www.cdc.gov/salmonella/backyardpoultry-05-21/details.html
Clancy, K. 2016. DIGGING DEEPER: Bringing a Systems Approach to Food Systems: Issues of scale. Journal of Agriculture, Food Systems, and Community Development, 3(1): 21–23. http://dx.doi.org/10.5304/jafscd.2012.031.017
Corbould, C. 2013. Feeding the cities: Is urban agriculture the future of food security? Strategic Analysis Paper. Dalkeith WA, Australia, Future Directions International Pty Ltd. https://apo.org.au/sites/default/files/resource-files/2013-11/apo-nid36213.pdf
Costello, C., Oveysi, Z., Dundar, B. & McGarvey, R. 2021. Assessment of the effect of urban agriculture on achieving a localized food system centered on Chicago, IL using robust optimization. Environmental Science & Technology, 55: 2684–2694. https://dx.doi.org/10.1021/acs.est.0c04118
Defoe, P.P., Hettiarachchi, G.M., Benedict, C. & Martin, S. 2014. Safety of gardening on lead- and arsenic-contaminated urban brownfields. Journal of Environmental Quality, 43: 2064–2078. doi:10.2134/jeq2014.03.0099
Dekissa, T., Trobman, H., Zendehdel, K. & Azam, H. 2021. Integrating urban agriculture and stormwater management in a circular economy to enhance ecosystem services: Connecting the dots. Sustainability, 13: 8293. https://doi.org/10.3390/su13158293
Despommier, D. 2010. The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal of Consumer Protection and Food Safety, 6: 233–236. doi: 10.1007/s00003-010-0654-3
Domingo, N.G.G., Balasubramanian, S., Thakrar, S.K., Clark, M.A., Adams, P.J., Marshall, J.D., Muller, N.Z. et al. 2021. Air quality–related health damages of food. Proceedings of the National Academy of Sciences, 118(20): e2013637118. https://doi.org/10.1073/pnas.2013637118
EFSA. 2008. Nitrate in vegetables - Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA Journal, 689: 1–79. https://doi.org/10.2903/j.efsa.2008.689
Ellen MacArthur Foundation. 2019. Cities and circular economy for food. In: Ellen MacArthur Foundation. Isle of Wight, UK. Cited 18 September 2021. https://ellenmacarthurfoundation.org/cities-and-circular-economy-for-food
Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S. & Stohl, A. 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1): 3381. https://doi.org/10.1038/s41467-020-17201-9
Fakour, H., Lo, S.-L., Yoashi, N.T., Massao, A.M., Lema, N.N., Mkhontfo, F.B., Jomalema, P.C. et al. 2021. Quantification and Analysis of Microplastics in Farmland Soils: Characterization, Sources, and Pathways. Agriculture, 11(4): 330. https://doi.org/10.3390/agriculture11040330
FAO. 1996. The State of Food and Agriculture. Rome. https://www.fao.org/3/w1358e/w1358e00.htm#TopOfPage
FAO. 2001. Livestock keeping in urban areas. A review of traditional technologies based on literature and field experience. FAO Animal Production and Health Papers No. 151. Rome. https://www.fao.org/3/y0500e/y0500e00.htm#toc
FAO. 2007. Profitability and sustainability of urban and peri-urban agriculture. Agricultural Management, Marketing and Finance Occasional Paper No. 19. Rome. https://ruaf.org/assets/2019/11/Profitability-and-Sustainability.pdf
FAO. 2012. Pro-poor legal and institutional frameworks for urban and peri-urban agriculture. FAO Legislative Study No. 108. Rome. https://www.fao.org/3/i3021e/i3021e.pdf
FAO. 2014. Growing greener cities in Latin America and the Caribbean. An FAO report on urban and peri-urban agriculture in the region. Rome. https://www.fao.org/3/i3696e/i3696e.pdf
FAO. 2019a. FAO framework for Urban Food Agenda. Leveraging sub-nationals and local government action to ensure sustainable food systems and improved nutrition. Rome. https://www.fao.org/publications/card/en/c/CA3151EN/
FAO. 2019b. On-farm practices for the safe use of wastewater in urban and peri-urban horticulture – a training handbook for Farmer Field Schools in sub-Saharan Africa, Second edition. Rome. https://www.fao.org/3/CA1891EN/ca1891en.pdf
FAO. 2020. Cities and local governments at the forefront in building inclusive and resilient food systems. Key results from the FAO survey “Urban Food Systems and COVID-19”. Rome. https://www.fao.org/3/cb0407en/CB0407EN.pdf
FAO & WHO. 2002. Evaluation of certain food additives. Fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, World Health Organization. http://whqlibdoc.who.int/trs/WHO_TRS_913.pdf
FAO & WHO. 2019. Safety and quality of water used in food production and processing - Meeting report. Microbiological Risk Assessment Series No. 33. Rome. https://www.fao.org/3/ca6062en/CA6062EN.pdf
Fewtrell, L. 2004. Drinking-water nitrate, methemoglobininemia, and global burden of disease: A discussion. Environmental Health Perspectives, 112(14): 1371–1374. https://doi.org/10.1289/ehp.7216
Fry, S. 2018. The world’s first floating farm making waves in Rotterdam. BBC News, 17 August 2018. London. Cited 7 September 2021. https://www.bbc.com/news/business-45130010
Galeana-Pizaña, J.M., Couturier, S. & Monsivais-Huertero, A. 2018. Assessing food security and environmental protection in Mexico with a GIS-based Food Environmental Efficiency index. Land Use Policy, 76: 442–454. https://doi.org/10.1016/j.landusepol.2018.02.022
Gallagher, C.L., Oettgen, H.L & Barbander, D.J. 2020. Beyond community gardens: A participatory research study evaluating nutrient and lead profiles of urban harvested fruit. Elementa Science of the Anthropocene, 8: 1: doi: https://doi.org/10.1525/elementa.2020.004
Izquierdo, M., De Miguel, E., Ortega, MF. & Mingot, J. 2015. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere, 135: 312–318. http://dx.doi.org/10.1016/j.chemosphere.2015.04.079
Jay-Russell, M. 2011. Feral in the fields: Food safety risks from wildlife. In: Food Safety News. Cited 15 October 2021. https://www.foodsafetynews.com/2011/09/co-management-of-food-safety-risks-from-wildlife-the-environment/
Jokinen, K., Salovaara, A.-K., Wasonga, D.O., Edelmann, M., Simpura, I. & Mäkelä, P.S.A. 2022. Root-applied glycinebetaine decreases nitrate accumulation and improves quality in hydroponically grown lettuce. Food Chemistry, 366: 130558. https://doi.org/10.1016/j.foodchem.2021.130558
Kaiser, M.L., Williams, M.L., Basta, N., Hand, M. & Huber, S. 2015. When vacant lots become urban gardens: Characterizing the perceived and actual food safety concerns of urban agriculture in Ohio. Journal of Food Protection, 78(11): 2070 – 2080. doi:10.4315/0362-028X.JFP-15-181
Khouryieh, M., Khouryieh, H., Daday, J.K. & Shen, C. 2019. Consumers’ perceptions of the safety of fresh produce sold at farmers’ markets. Food Control, 105: 242–247. https://doi.org/10.1016/j.foodcont.2019.06.003
Knorr, D., Khoo, C.S.H. & Augustin, M.A. 2018. Food for an urban planet: Challenges and research opportunities. Frontiers in Nutrition, 4: 73. doi: 10.3389/fnut.2017.00073
Larsen, T.A., Hoffmann, S., Lüthi, C., Truffer, B. & Maurer, M. 2016. Emerging solutions to the water challenges of an urbanizing world. Science, 352(6288): 928–933. doi: 10.1126/science.aad8641
Li, J., Yu, H. & Luan, Y. 2015. Meta-analysis of the copper, zinc, and cadmium adsorption capacities of aquatic plants in heavy metal-polluted water. International Journal of Environmental Research and Public Health, 12: 14958–14973. doi:10.3390/ijerph121214959
Lim, X. 2021. Microplastics are everywhere – but are they harmful? Nature, 593: 22–25. https://doi.org/10.1038/d41586-021-01143-3
Love, D.C., Uhl, M.S. & Genello, L. 2015. Energy and water use if a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering, 68: 19–27. http://dx.doi.org/10.1016/j.aquaeng.2015.07.003
Malakoff, D., Wigginton, N.S., Fahrenkamp-Uppenbrink, J. & Wible, B. 2016. Use our infographics to explore the rise of the urban planet. Science. doi: 10.1126/science.aaf5729
Marquez-Bravo, L.G., Briggs, D., Shayler, H., McBride, M., Lopp, D., Stone, E., Ferenz, G., Bogdan, K.G., Mitchell, R.G. & Spliethoff, H.M. 2016. Concentrations of polycyclic aromatic hydrocarbons in New York City community garden soils: Potential sources and influential factors. Environmental Toxicology and Chemistry, 35(2): 357–367. doi: 10.1002/etc.3215
Martin, M. & Molin, E. 2019. Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability, 11: 4124. doi:10.3390/su11154124
McBride, M.B., Shayler, H.A., Spliethoff, H.M., Mitchell, R.G., Marquez-Bravo, L.G., Ferenz, G.S., Russell-Anelli, J.M. et al. 2014. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environmental Pollution, 194: 254–261. https://doi.org/10.1016/j.envpol.2014.07.036
Meftaul, I.M., Venkatewarlu, K., Dharmarajan, R., Annamalai, P. & Meghraj, M. 2020. Pesticides in the urban environment: A potential threat that knocks at the door. Science of the Total Environment, 711: 134612. https://doi.org/10.1016/j.scitotenv.2019.134612
Meineke, E.K., Dunn, R.R., Sexton, J.O. & Frank, S.D. 2013. Urban warming drives insect pest abundance on street trees. PLoS One, 8(3): e59687. doi:10.1371/journal.pone.0059687
Merino, M.V., Gajjar, S.P., Subedi, A., Polgar, A. & Van Den Hoof, C. 2021. Resilient governance regimes that support urban agriculture in sub-Saharan cities: Learning from local challenges. Frontiers in Sustainable Food Systems, 5: 692167. doi: 10.3389/fsufs.2021.692167
Miner, R.C. & Raftery, S.R. 2012. Turning brownfields into “green fields” growing food using marginal lands. Environmental Impact, 162: 413–419. doi: 10.2495/EID120361
Mok, H.-F., Williamson, V.G., Grove, J.R., Burry, K, Barker, S.F. & Hamilton, A.J. 2014. Strawberry fields forever? Urban agriculture in developed countries: a review. Agronomy for Sustainable Development, 34: 21–43. doi: 10.1007/s13593-013-0156-7
Muehe, E.M., Wang, T., Kerl, C.F., Planer-Friedrich, B. & Fendorf, S. 2019. Rice production threatened by coupled stresses of climate and soil arsenic. Nature Communications, 10(1): 4985. https://doi.org/10.1038/s41467-019-12946-4
Mukherjee, M., Laird, E., Gentry, T.J., Brooks, J.P. & Karthikeyan, R. 2021. Increased antimicrobial and multidrug resistance downstream of wastewater treatment plants in an urban watershed. Frontiers in Microbiology, 12: 657353. doi: 10.3389/fmicb.2021.657353
Nabulo, G., Black, C.R., Craigon, J. & Young, S.D. 2012. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environmental Pollution, 162: 389–398. doi:10.1016/j.envpol.2011.11.040
News Desk. 2021. Patient count climbs in outbreak traced to backyard chicken. In: Food Safety News. Cited 19 September 2021. https://www.foodsafetynews.com/2021/09/patient-count-climbs-in-outbreak-traced-to-backyard-chickens/?utm_source=Food+Safety+News&utm_campaign=099a3c1ace-RSS_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_f46cc10150-099a3c1ace-40295383
Noh, K., Thi, L.T. & Jeong, B.R. 2019. Particulate matter in the cultivation area may contaminate leafy vegetables with heavy metals above safe levels in Korea. Environmental Science and Pollution Research, 26: 25762–25774. https://doi.org/10.1007/s11356-019-05825-4
Norton, G., Deacon, C., Mestrot, A., Feldmann, J., Jenkins, P., Baskaran, C. & Meharg, A.M. 2013. Arsenic speciation and localization in horticultural produce grown in a historically impacted mining region. Environmental Science & Technology, 47: 6164 – 6172. https://doi.org/10.1021/es400720r
Ortolo, M. 2017. Air pollution risk assessment on urban agriculture. Wageningen, The Netherlands, Wageningen University & Research. Master’s Thesis.
Paltiel, O., Fedorova, G., Tadmor, G., Kleinstern, G., Maor, Y. & Chefetz, B. 2016. Human exposure to wastewater-derived pharmaceuticals in fresh produce: a randomized controlled trial focusing on carbamazepine. Environmental Science & Technology, 50: 4476–4482. doi: 10.1021/acs.est.5b06256
Park, W. 2021. Why we still haven’t solved global food insecurity. In: BBC News Follow The Food. London, BBC News. Cited 21 November 2021. https://www.bbc.com/future/bespoke/follow-the-food/the-race-to-improve-food-security/
Poulsen, M.N., Hulland, K.R.S., Gulas, C.A., Pham, H., Dalglish, S.L., Wilkinson, R.K. & Winch, P.J. 2014. Growing an Urban Oasis: A Qualitative Study of the Perceived Benefits of Community Gardening in Baltimore, Maryland. Culture, Agriculture, Food and Environment, 36(2): 69–82. https://doi.org/10.1111/cuag.12035
Pruden, A., Pei, R., Storteboom, H. & Carlson, K.H. 2006. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environmental Science & Technology, 40(23): 74457450. doi: 10.1021/es060413
Qiu, R., Song, Y., Zhang, X., Xie, B. & He, D. 2020. Microplastics in Urban Environments: Sources, Pathways, and Distribution. In: D. He & Y. Luo, eds. Microplastics in Terrestrial Environments. Emerging Contaminants and Major Challenges. Switzerland, Springer. https://doi.org/10.1007/698_2020_447
Quijano, L., Yusà, V., Font, G., McAllister, C., Torres, C. & Pardo, O. 2017. Risk assessment and monitoring programme of nitrates through vegetables in the Region of Valencia (Spain). Food and Chemical Toxicology, 100: 42–4٩. https://doi.org/10.1016/j.fct.2016.12.010
Ramaswami, A., Russell, A.G., Culligan, P.J., Sharma, K.R. & Kumar, E. 2016. Meta-principles for developing smart, sustainable, and healthy cities. Science, 352: 6288.
Rosenzweig, C., W. Solecki, P. Romero-Lankao, S. Mehrotra, S. Dhakal, T. Bowman & S. Ali Ibrahim. 2015. ARC3.2 Summary for City Leaders — Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. New York, NY, USA, Columbia University.
Santo, R., Palmer, A. & Kim, B. 2016. Vacant lots to vibrant plots. A review of the benefits and limitations of urban agriculture. Baltimore, MD, USA, Johns Hopkins Center for a Liveable Future. https://clf.jhsph.edu/sites/default/files/2019-01/vacant-lots-to-vibrant-plots.pdf
Sarker, A.H. Bornman, J.F. & Marinova, D. 2019. A framework for integrating agriculture in urban sustainability in Australia. Urban Science, 3: 50. doi:10.3390/urbansci3020050
Säumel, I., Kotsyuk, I., Hölscher, M., Lenkereit, C., Weber, F. & Kowarik, I. 2012. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environmental Pollution, 165: 124–132. https://doi.org/10.1016/j.envpol.2012.02.019
Skar, S.L.G., Pineda-Martos, R., Timpe, A., Pölling, B., Bohn, K., Külvik, M., Delgado, C. et al. 2020. Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Systems, 2(1): 1–27. https://doi.org/10.2166/bgs.2019.931
Stark, P.B., Miller, D., Carlson, T.J. & de Vasquez, K.R. 2019. Open-source food: nutrition, toxicology, and availability of wild edible greens in the East Bay. PLoS One, 14(1): e0202450. doi.org/10.1371/journal.pone.0202450
Strawn, L.K., Gröhn, Y.T., Warchocki, S., Worobo, R.W., Bihn, E.A. & Wiedmann, M. 2013. Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields. Applied and Environmental Microbiology, 79(24): 7618–7627. doi:10.1128/AEM.02831-13
Suriyagoda, L.D.B., Dittert, K. & Lambers, H. 2018. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agriculture, Ecosystems and Environment, 253: 23–37. http://dx.doi.org/10.1016/j.agee.2017.10.017
Taguchi, M. & Makkar, H. 2015. Issues and options for crop-livestock integration in peri-urban settings. Agriculture for Development, 26: 7. https://www.feedipedia.org/node/21258
Tatum, M. 2021. An eight-story fish farm will bring locally produced food to Singapore. In: Smithsonian Magazine. Washington, DC. Cited 17 August 2021. https://www.smithsonianmag.com/innovation/eight-story-fish-farm-will-bring-locally-produced-food-to-singapore-180976956/
Tefft, J., Jonasova, M., Zhang, F. & Zhang, Y. Urban food systems governance – current context and future opportunities. Rome, FAO and Washington, DC, The World Bank. https://doi.org/10.4060/cb1821en
The Economist. 2010. Does it really stack up? The Economist, 11 December 2010. London. Cited 25 September 2021. https://www.economist.com/technology-quarterly/2010/12/11/does-it-really-stack-up?story_id=17647627
Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U.B. & Sawicka, M. 2014. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renewable Agriculture and Food Systems, 30(1): 43–54. doi:10.1017/S1742170514000143
Tobin, M.R., Goldshear, J.L., Price, L.B., Graham, J.P. & Leibler, J.H. 2015. A framework to reduce infectious disease risk from urban poultry in the United States. Public Health Reports, 130(4): 380–391. doi: 10.1177/003335491513000417
Wang, X., Biswas, S., Paudyal, N., Pan, H., Li, X., Fang, W. & Yue, M. 2019. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through National Antimicrobial Resistance Monitoring System between 1996 and 2016. Frontiers in Microbiology, 10: 985. doi: 10.3389/fmicb.2019.00985
Wang, Y.-J., Deering, A.J. & Kim, H.-J. 2020. The occurrence of Shiga toxin-producing E.coli in aquaponic and hydroponic systems. Horticulture, 6:1. doi:10.3390/horticulturae6010001
Weber, C.L. & Matthews, H.S. 2008. Food-miles and the relative climate impacts of food choices in the United States. Environmental Science & Technology, 42: 3508–3513. https://doi.org/10.1021/es702969f
Wei, J., Guo, X., Marinova, D. & Fan, J. 2014. Industrial SO2 pollution and agricultural losses in China: evidence from heavy air polluters. Journal of Cleaner Production, 64: 404–413. http://dx.doi.org/10.1016/j.jclepro.2013.10.027
Werkenthin, M., Kluge, B. & Wessolek, G. 2014. Metals in European roadside soils and soil solution – A review. Environmental Pollution, 98–110. http://dx.doi.org/10.1016/j.envpol.2014.02.025
Wielemaker, R., Oenema, O., Zeeman, G. & Weijma, J. 2019. Fertile cities: Nutrient management practices in urban agriculture. Science of the Total Environment, 668: 1277–1288. https://doi.org/10.1016/j.scitotenv.2019.02.424
Wortman, S.E. & Lovell, S.T. 2013. Environmental challenges threatening the growth of urban agriculture in the United States. Journal of Environmental Quality, 42(5): 1283–1294. doi:10.2134/jeq2013.01.0031
Yan, Z.-Z., Chen, Q.-L., Zhang, Y.-J., He, J.-Z. & Hu, H.-W. 2019. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 132: 105106. https://doi.org/10.1016/j.envint.2019.105106
Zammit, I., Marano, R.B.M., Vaiano, V., Cytryn, E. & Rizzo, L. 2020. Changes in antibiotic resistance gene levels in soil after irrigation with treated wastewater: A comparison between heterogenous photocatalysis and chlorination. Environmental Science & Technology, 54: 7677–7686. https://dx.doi.org/10.1021/acs.est.0c01565
Zhao, Y., Cocerva, T., Cox, S., Tardif, S., Su, J.-Q., Zhu, Y.-G. & Brandt, K.K. 2019. Evidence for co-selection of antibiotic genes and mobile genetic elements in metal polluted urban soils. Science of the Total Environment, 656: 512–520. https://doi.org/10.1016/j.scitotenv.2018.11.372
Zhao, F.-J. & Wang, P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil, 446: 1–21. https://doi.org/10.1007/s11104-019-04374-6
Amaral-Zettler, L.A., Zettler, E.R. & Mincer, T.J. 2020. Ecology of the plastisphere. Nature Reviews Microbiology, 18: 139–151. https://doi.org/10.1038/s41579-019-0308-0
Bandyopadhyay, J. & Sinha Ray, S. 2018. Are nanoclay-containing polymer composites safe for food packaging applications? – An overview. Journal of Applied Polymer Science, 136(12): 47214. https://doi.org/10.1002/app.47214
Bilo, F., Pandini, S., Sartore, L., Depero, L.E., Gargiulo, G., Bonassi, A., Federici, S. et al. 2018. A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200: 357–368. https://doi.org/10.1016/j.jclepro.2018.07.252
Borrelle, S.B., Rochman, C.M., Liboiron, M., Bond, A.L., Lusher, A., Bradshaw, H. & Provencher, J.F. 2017. Opinion: Why we need an international agreement on marine plastic pollution. Proceedings of the National Academy of Sciences, 114(38): 9994–9997. https://doi.org/10.1073/pnas.1714450114
Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H. & Prather, K.A. 2021. Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Science, 118(6): e2020719118. https://doi.org/10.1073/pnas.2020719118
Bumbudsanpharoke, N. & Ko, S. 2015. Nano-food packaging: An overview of market, migration research, and safety regulations. Journal of Food Science, 80: R910 – R923. https://doi.org/10.1111/1750-3841.12861
Campanale, C., Massarelli, C., Savino, I., Locaputo, V. & Uricchio, V.F. 2020. A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17: 1212. doi:10.3390/ijerph17041212
CIEL. 2019. Plastic & Climate. The Hidden Costs of a Plastic Planet. In: Center for International Environmental Law. Washington, DC and Geneva. www.ciel.org/plasticandclimate
Chen, Q., Allgeier, A., Yin, D. & Hollert, H. 2019. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International, 130: 104938. https://doi.org/10.1016/j.envint.2019.104938
Davis, G. & Song, J.H. 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23: 147–161. doi: 10.1016/j.indcrop.2005.05.004
Diepens, N.J. & Koelmans, A.A. 2018. Accumulation of plastic debris and associated contaminants in aquatic food webs. Environmental Science and Technology, 52: 8510–8520. doi: 10.1021/acs.est.8b02515
Dris, R., Agarwal, A. & Laforsch, C. 2020. Plastics: From a success story to an environmental problem and a global challenge. Global Challenges, 4: 2000026. doi: 10.1002/gch2.202000026
Drummond, J.D., Schneidewind, U., Li, A., Hoellein, T.J., Krause, S. & Packman, A.I. 2022. Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstreams. Science Advances, 8(2): eabi9305. doi: 10.1126/sciadv.abi9305
Edwards, L., McCray, N.L., VanNoy, B.N., Yau, A., Geller, R.J., Adamkiewicz, G. & Zota, A.R. 2021. Phthalate and novel plasticizer concentrations in food items from U.S. fast food chains: a preliminary analysis. Journal of Exposure Science & Environmental Epidemiology. https://doi.org/10.1038/s41370-021-00392-8
EFSA. 2015. Scientific Opinion on the risks to public health related to the presence of bisphenol A(BPA) in food stuffs. EFSA Journal, 13(1): 3978. https://doi.org/10.2903/j.efsa.2015.3978
Ellen MacArthur Foundation. 2016. The New Plastics Economy: Rethinking the future of plastics & catalysing actions. In: Ellen MacArthur Foundation. Isle of Wight, UK. Cited 12 August 2021. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing
Espinosa, M.J.C., Blanco, A.C., Scmidgall, T., Atanasoff-Karjalieff, A.K., Kappelmeyer, U., Tischler, D., Pieper, D.H. et al. 2020. Towards biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Frontiers in Microbiology, 11: 404. https://doi.org/10.3389/fmicb.2020.00404
Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S. & Stohl, A. 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11: 3381. https://doi.org/10.1038/s41467-020-17201-9
Evans, M.C. & Ruf, C.S. 2021. Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar. IEEE Transactions on Geoscience and Remote Sensing: 1–9. https://doi.org/10.1109/TGRS.2021.3081691
FAO. 2017. Microplastics in fisheries and aquaculture. Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615. Rome. https://www.fao.org/3/I7677E/I7677E.pdf
FAO. 2019. Microplastics in Fisheries and Aquaculture. What so we know? Should we be worried? Rome. https://www.fao.org/3/ca3540en/ca3540en.pdf
FAO. 2021a. Assessment of agricultural plastics and their sustainability - A call for action. Rome. https://doi.org/10.4060/cb7856en
FAO. 2021b. Reduce, reuse, recycle: a mantra for food packaging. How a circular approach to packaging can reduce food loss and waste and respect the environment. In: FAO. Rome. Cited 14 August 2021. https://www.fao.org/fao-stories/article/en/c/1441299/
FAO & WHO. 2010. Toxicological and Health Aspects of Bisphenol A. Geneva, WHO. https://apps.who.int/iris/handle/10665/44624
FAO & WHO. 2019. FAO/WHO expert consultation on dietary risk assessment of chemical mixtures (risk assessment of combined exposure to multiple chemicals). Geneva, WHO. https://www.who.int/foodsafety/areas_work/chemical-risks/Euromix_Report.pdf
Fang, X. & Vitrac, O. 2017. Predicting diffusion coefficients of chemicals in and through packaging materials. Critical Reviews in Food Science and Nutrition, 57(2): 275–312. https://doi.org/10.1080/10408398.2013.849654
FERA. 2019. Bio-based materials for use in food contact applications. Fera project number FR/001658. Report to the Food Standards Agency. York, UK, Fera Science Ltd. https://www.food.gov.uk/sites/default/files/media/document/bio-based-materials-for-use-in-food-contact-applications_0.pdf
Ferreira-Filipe, D.A., Paço, A., Duarte, A.C., Rocha-Santos, T. & Silva, A.L.P. 2021. Are Biobased Plastics Green Alternatives?–A Critical Review. International Journal of Environmental Research and Public Health, 18(15): 7729. doi: 10.3390/ijerph18157729
Fournier, S.B., D’Errico, J.N., Adler, D.S., Kollontzi, S., Goedken, M.J., Fabris, L., Yurkow, E.J. & Stapleton, P.A. 2020. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Technology, 17: 55. https://doi.org/10.1186/s12989-020-00385-9
Froggett, S.T., Clancy, S.F., Boverhof, D.R. & Canady, R.A. 2014. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Particle and Fibre Toxicology, 11: 17. https://doi.org/10.1186/1743-8977-11-17
Garcia, C.V., Shin, G.H. & Kim, J.T. 2018. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science & Technology, 82: 21–31. https://doi.org/10.1016/j.tifs.2018.09.021
Garrido Gamarro, E., Ryder, J., Elvevoll, E.O. & Olsen, R.L. 2020. Microplastics in fish and shellfish – A threat to seafood safety? Journal of Aquatic Food Product Technology, 29(4): 417–425. https://doi.org/10.1080/10498850.2020.1739793
Geyer, R., Jambeck, J.R. & Law, K.L. 2017. Production, use and fate of all plastics ever made. Science Advances, 3: e1700782. doi: 10.1126/sciadv.1700782
Ghisellini, P., Cialani, C. & Ulgiati, S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Clean Production, 114: 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007
Gkoutselis, G., Rohrbach, S., Harjes, J., Obst, M., Brachmann, A., Horn, M.A. & Rambold, G. 2021. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Scientific Reports, 11(1): 13214. https://doi.org/10.1038/s41598-021-92405-7
Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., Leslie, H.A. et al. 2019. Overview of known plastic packaging-associated chemicals and their hazards. Science of The Total Environment, 651: 3253–3268. https://doi.org/10.1016/j.scitotenv.2018.10.015
Groh, K.J., Geueke, B., Martin, O., Maffini, M. & Muncke, J. 2021. Overview of intentionally used food contact chemicals and their hazards. Environment International, 150: 106225. https://doi.org/10.1016/j.envint.2020.106225
Geueke, B., Groh, K. & Muncke, J. 2018. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193: 491–505. https://doi.org/10.1016/j.jclepro.2018.05.005
Han, J.-W, Ruiz-Garcia, L., Qian, J.-P. & Yang, X.-T. 2018. Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4): 860–877. https://doi.org/10.1111/1541-4337.12343
Haram, L.E., Carlton, J.T., Ruiz, G.M. & Maximenko, N.A. 2020. A Plasticene Lexicon. Marine Pollution Bulletin, 150: 110714. https://doi.org/10.1016/j.marpolbul.2019.110714
Hopewell, J., Dvorak, R. & Kosior, E. 2009. Plastic recycling: challenges and opportunities. Philosophical Transactions of the Royal Society, 364: 2115–2126. doi: 10.1098/rstb.2008.0311
Hou, L., McMahan, C.D., McNeish, R.E., Munno, K., Rochman, C.M. & Hoellein, T.J. 2021. A fish tale: a century of museum specimens reveal increasing microplastic concentrations in freshwater fish. Ecological Applications, 31(5). https://doi.org/10.1002/eap.2320
Katan, L.L. 1996. Migration from food contact materials. Boston, MA, Springer. https://doi.org/10.1007/978-1-4613-1225-3
Kitamura, S., Ohmegi, M., Sanoh, S., Sugihara, K., Yoshihara, S., Fujimoto, N. & Ohta, S. 2003. Estrogenic activity of styrene oligomers after metabolic activation by ray liver microsomes. Environmental Health Perspectives, 111(3): 329–334. doi: 10.1289/ehp.5723
Kovačič, A., Gys, C., Gulin, M.R., Kosjek, T., Heath, D., Covaci, A. & Heath, E. 2020. The migration of bisphenols from beverage cans and reusable sports bottles. Food Chemistry, 331: 127326. https://doi.org/10.1016/j.foodchem.2020.127326
Lambert, S. & Wagner, M. 2017. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46: 6855. doi: 10.1039/c7cs00149e
Lantham, K. 2021. The world’s first ‘infinite’ plastic. BBC Future Planet, 12 May 2021. London. Cited November 3 2021. https://www.bbc.com/future/article/20210510-how-to-recycle-any-plastic
Lee, H., Kunz, A., Shim, W.J. & Walther, B.A. 2019. Microplastic contamination of table salts from Taiwan, including a global review. Scientific Reports, 9: 10145. https://doi.org/10.1038/s41598-019-46417-z
Li, D., Shi, Y., Yang, L., Xiao, L., Kehoe, D.K., Gun’ko, Y.K., Boland, J.J. et al. 2020. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food, 1(11): 746–754. https://doi.org/10.1038/s43016-020-00171-y
Lim, X. 2021. Microplastics are everywhere – but are they harmful? Nature, 593: 22–25. https://doi.org/10.1038/d41586-021-01143-3
Lyche, J.L., Gutleb, A.C., Bergman, Å., Eriksen, G.S., Murk, A.J., Ropstad, E., Saunders, M. et al. 2009. Reproductive and Developmental Toxicity of Phthalates. Journal of Toxicology and Environmental Health, Part B, 12(4): 225–249. https://doi.org/10.1080/10937400903094091
Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., Wang, R. et al. 2019. The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 176: 108575. https://doi.org/10.1016/j.envres.2019.108575
McClements, D.J. & Xiao, H. 2017. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Science of Food, 1: 6. https://doi.org/10.1038/s41538-017-0005-1
Meys, R., Frick, F., Westhaus, S., Sternberg, A., Klankermayer, J. & Bardow, A. 2020. Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resources, Conservation & Recycling, 162: 105010. https://doi.org/10.1016/j.resconrec.2020.105010
Muncke, J., Backhaus, T., Geueke, B., Maffini, M.V., Martin, O.V., Myers, J.P., Soto, A.M. et al. 2017. Scientific Challenges in the Risk Assessment of Food Contact Materials. Environmental Health Perspectives, 125(9): 095001. https://doi.org/10.1289/EHP644
Muncke, J., Andersson, A.-M., Backhaus, T., Boucher, J.M., Carney Almroth, B., Castillo Castillo, A., Chevrier, J. et al. 2020. Impacts of food contact chemicals on human health: a consensus statement. Environmental Health, 19(1): 25, s12940-020-0572–5. https://doi.org/10.1186/s12940-020-0572-5
Napper, I.E. & Thompson, R.C. 2019. Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over a 3-Year Period. Environmental Science & Technology, 53(9): 4775–4783. https://doi.org/10.1021/acs.est.8b06984
National Academies of Sciences, Engineering, and Medicine. 2021. Reckoning with the U.S. Role in Global Plastic Waste. Washington, D.C., The National Academies Press. https://doi.org/10.17226/26132
Nazareth, M., Marques, M.R.C., Leite, M.C.A. & Castra, I.B. 2019. Commercial plastics claiming biodegradable status: Is this also accurate for marine environments? Journal of Hazardous Materials, 366: 714–722. https://doi.org/10.1016/j.jhazmat.2018.12.052
Pham, D.N., Clark, L. & Li, M. 2021. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. Journal of Hazardous Materials Letters, 2: 100014. https://doi.org/10.1016/j.hazl.2021.100014
Rahman, A., Sarkar, A., Yadav, O.P., Achari, G. & Slobodnik, J. 2021. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Science of the Total Environment, 757: 143872. https://doi.org/10.1016/j.scitotenv.2020.143872
Rochester, J. & Bolden, A.L. 2015. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environmental Health Perspectives, 123: 643–650. http://dx.doi.org/10.1289/ehp.1408989
Rollinson, A.N. & Oladejo, J. 2020. Chemical recycling: Status, Sustainability, and Environmental Impacts. Global Alliance for Incinerator Alternatives. https://doi.org/10.46556/ONLS4535
Rubin, B.S. 2011. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. The Journal of Steroid Biochemistry and Molecular Biology, 127(1–2): 27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002
Samsonek, J. & Puype, F. 2012. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market. Food Additives & Contaminants: Part A, 30(11): 1976–1986. https://doi.org/10.1080/19440049.2013.829246
SAPEA. 2019. Science Advice for Policy by European Academies. A Scientific Perspective on Microplastics in Nature and Society. Berlin, SAPEA. https://doi.org/10.26356/microplastics
Schweitzer, J.-P., Gionfra, S., Pantzar, M., Mottershead, D., Watkins, E., Petsinaris, F. & ten Brink, P. et al. 2018. Unwrapped: How throwaway plastics is failing to solve Europe’s food waste problem (and what we need to do instead). A study by Zero Waste Europe and Friends of the Earth Europe for the Rethink Plastic Alliance. Brussels, Institute for Europe Environmental Policy (IEEP). https://zerowasteeurope.eu/wp-content/uploads/2018/04/Unwrapped_How-throwaway-plastic-is-failing-to-solve-Europes-food-waste-problem_and-what-we-need-to-do-instead_FoEE-ZWE-April-2018_final.pdf
Silva, A.L.P. 2021. Future-proofing plastic waste management for a circular bioeconomy. Current Opinion in Environmental Science & Health, 22: 100263. https://doi.org/10.1016/j.coesh.2021.100263
Stahel, W.R. 2016. The circular economy. Nature, 531: 435–438. https://doi.org/10.1038/531435a
Schnys, Z.OG. & Shaver, M.P. 2020. Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, 42(3): 2000415. https://doi.org/10.1002/marc.202000415
Störmer, A., Bott, J. & Franz, K.R. 2017. Critical review of the migration potential of nanoparticles in food contact plastics. Trends in Food Science & Technology, 63: 39–50. https://doi.org/10.1016/j.tifs.2017.01.011
Szakal, C., Roberts, S.M., Westerhoff, P., Bartholomaeus, A., Buck, N., Illuminato, I., Canady, R. & Rogers, M. 2014. Measurement of nanomaterials in foods: Integrative consideration of challenges and future prospects. ACS Nano, 8(4): 3128–3135. https://doi.org/10.1021/nn501108g
Thiele, C.J., Hudson, M.D., Russell, A.E., Saluveer, M. & Sidaoui-Haddad, G. 2021. Microplastics in fish and fishmeal: an emerging environmental challenge? Scientific Reports, 11: 2045. https://doi.org/10.1038/s41598-021-81499-8
Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D. et al. 2004. Lost at Sea: Where Is All the Plastic? Science, 304(5672): 838–838. https://doi.org/10.1126/science.1094559
UNEP. 2014. Valuing Plastic. The Business Case for Measuring, Managing and Disclosing Plastic Use in the Consumer Goods Industry. In: UNEP Document Repository. https://wedocs.unep.org/handle/20.500.11822/25302
van der A, J.G. & Sijm, D.T.H.M. 2021. Risk governance in the transition towards sustainability, the case of bio-based plastic food packaging materials. Journal of Risk Research, 24(12): 1639–1651. https://doi.org/10.1080/13669877.2021.1894473
van der Oever, M., Molenveld, K., van der Zee, M. & Bos, H. 2017. Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. Wageningen, Wageningen Food & Biobased Research. https://doi.org/10.18174/408350
Verghese, K., Lewis, H., Lockrey, S. & Williams, H. 2015. Packaging’s role in minimizing food loss and waste across the supply chain. Packaging Technology and Science, 28: 603–620. doi: 10.1002/pts.2127
Vilarinho, F., Sendón, R., van der Kellen, A., Vaz, M.F. & Silva, S. 2019. Bisphenol A in food as a result of its migration from food packaging. Trends in Food Science & Technology, 91: 33–65. https://doi.org/10.1016/j.tifs.2019.06.012
Weinstein, J. E., Dekle, J. L., Leads, R. R. & Hunter, R. A. 2020. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Marine Pollution Bulletin, 160: 111518. https://doi.org/10.1016/j.marpolbul.2020.111518
Weithmann, N., Möller, J.N., Löder, M.G., Piehl, S., Laforsch, C. & Freitag, R. 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4: eaap8060. doi: 10.1126/sciadv.aap8060
Wiesinger, H., Wang, Z. & Hellweg, S. 2021. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environmental Science & Technology, 55(13): 9339–9351. https://doi.org/10.1021/acs.est.1c00976
Yang, Y., Yang, J., Wu, W.M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20): 12080–12086. https://doi.org/10.1021/acs.est.5b02661
Yates, J., Deeney, M., Rolker, H.B., White, H., Kalamatianou & Kadiyah, S. 2021. A systematic scoping review of environmental, food security and health impacts of food system plastics. Nature Food, 2: 80–87. https://doi.org/10.1038/s43016-021-00221-z
Yu, H.-Y., Yang, X.-Y., Lu, F.-F., Chen, G.-Y. & Yao, J.-M. 2016. Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method. Carbohydrate Polymers, 140: 209–219. doi: 10.1016/j.carbpol.2015.12.030
Yuan, H., Xu, X., Sima, Y. & Xu, S. 2013. Reproductive toxicity effects of 4-nonylphenol with known endocrine disrupting effects and induction of vitellogenin gene expression in silkworm, Bombyx mori. Chemosphere, 93: 263–268. http://dx.doi.org/10.1016/j.chemosphere.2013.04.075
Zimmerman, L., Dombrowski, A., Völker, C. & Wagner, M. 2020. Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environmental International, 145: 106066. https://doi.org/10.1016/j.envint.2020.106066
Zhao, X. & You, F. 2021. Consequential life cycle assessment and optimization of high-density polyethylene plastic waste chemical recycling. ACS Sustainable Chemistry & Engineering, 9(36): 12167. doi: 10.1021/acssuschemeng.1c03587
Abdelsalam, N. A., Ramadan, A. T., Elrakaiby, M. T. & Aziz, R. K. 2020. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Frontiers in Pharmacology, 11(390). https://doi.org/10.3389/fphar.2020.00390
Beck, K. L., Haiminen, N., Chambliss, D., Edlund, S., Kunitomi, M., Huang, B. C., Kong, N. et al. 2021. Monitoring the microbiome for food safety and quality using deep shotgun sequencing. npj Science of Food, 5(1): 3. https://doi.org/10.1038/s41538-020-00083-y
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C.C., Charles, T., Chen, X. et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1): 103. https://doi.org/10.1186/s40168-020-00875-0
Cahill, S. M., Desmarchelier, P., Fattori, V., Bruno, A. & Cannavan, A. 2017. Global Perspectives on Antimicrobial Resistance in the Food Chain. Food Protection Trends, 37(5): 353–360.
Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B. & Xia, X. 2020. Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science & Technology, 99: 295–310. https://doi.org/10.1016/j.tifs.2020.03.006
Chiu, K., Warner, G., Nowak, R. A., Flaws, J. A. & Mei, W. 2020. The Impact of Environmental Chemicals on the Gut Microbiome. Toxicological Sciences, 176(2): 253-284. https://doi.org/10.1093/toxsci/kfaa065
Claus, S. P., Guillou, H. & Ellero-Simatos, S. 2016. The gut microbiota: a major player in the toxicity of environmental pollutants? npj Biofilms and Microbiomes, 2(1): 16003. https://doi.org/10.1038/npjbiofilms.2016.3
Das, B. & Nair, G. B. 2019. Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 44(5).
De Filippis, F., Valentino, V., Alvarez-Ordóñez, A., Cotter, P. D. & Ercolini, D. 2021. Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Current Opinion in Food Science, 38: 168–176. https://doi.org/10.1016/j.cofs.2020.11.012
Economou, V. & Gousia, P. 2015. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and drug resistance, 8: 49–61. https://doi.org/10.2147/IDR.S55778
FAO & WHO. 2009. Principles and methods for the risk assessment of chemicals in food. Geneva, WHO. https://www.who.int/publications/i/item/9789241572408
Feng, J., Li, B., Jiang, X., Yang, Y., Wells, G. F., Zhang, T. & Li, X. 2018. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses. Environmental Microbiology, 20(1): 355–368. https://doi.org/10.1111/1462-2920.14009
Flandroy, L., Poutahidis, T., Berg, G., Clarke, G., Dao, M.-C., Decaestecker, E., Furman, E. et al. 2018. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of The Total Environment, 627: 1018-1038. https://doi.org/10.1016/j.scitotenv.2018.01.288
Galloway-Peña, J. & Hanson, B. 2020. Tools for Analysis of the Microbiome. Digestive Diseases and Sciences, 65(3): 674–685. https://doi.org/10.1007/s10620-020-06091-y
Hendriksen, R. S., Bortolaia, V., Tate, H., Tyson, G. H., Aarestrup, F. M. & Mcdermott, P. F. 2019. Using Genomics to Track Global Antimicrobial Resistance. Frontiers in Public Health, 7(242). https://doi.org/10.3389/fpubh.2019.00242
Hu, Y. & Zhu, B. 2016. The human gut antibiotic resistome in the metagenomic era: progress and perspectives. Infectious Diseases and Translational Medicine (IDTM), 2(1): 41–47.
Kim, D.-W. & Cha, C.-J. 2021. Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53(3): 301–309. https://doi.org/10.1038/s12276-021-00569-z
Lynch, S. V. & Pedersen, O. 2016. The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375(24): 2369–2379. https://doi.org/10.1056/NEJMra1600266
Merten, C., Schoonjans, R., Di Gioia, D., Peláez, C., Sanz, Y., Maurici, D. & Robinson, T. 2020. Editorial: Exploring the need to include microbiomes into EFSA’s scientific assessments. EFSA Journal, 18(6): e18061. https://doi.org/10.2903/j.efsa.2020.e18061
National Academies of Sciences, E. & Medicine 2018. Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy. Washington, DC, The National Academies Press. https://www.nap.edu/catalog/24960/environmental-chemicals-the-human-microbiome-and-health-risk-a-research2018
Penders, J., Stobberingh, E., Savelkoul, P. & Wolffs, P. 2013. The human microbiome as a reservoir of antimicrobial resistance. Frontiers in Microbiology, 4(87). https://doi.org/10.3389/fmicb.2013.00087
Pilmis, B., Le Monnier, A. & Zahar, J.-R. 2020. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020269
Piñeiro, S. A. & Cerniglia, C. E. 2021. Antimicrobial drug residues in animal-derived foods: Potential impact on the human intestinal microbiome. Journal of Veterinary Pharmacology and Therapeutics, 44(2): 215–222. https://doi.org/10.1111/jvp.12892
Roca-Saavedra, P., Mendez-Vilabrille, V., Miranda, J. M., Nebot, C., Cardelle-Cobas, A., Franco, C. M. & Cepeda, A. 2018. Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of Physiology and Biochemistry, 74(1): 69–83. https://doi.org/10.1007/s13105-017-0564-2
Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & De Vos, W. M. 2017. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 41(2): 182–199. https://doi.org/10.1093/femsre/fuw045
Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A. & Alm, E. J. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376): 241–244. https://doi.org/10.1038/nature10571
Sutherland, V. L., Mcqueen, C. A., Mendrick, D., Gulezian, D., Cerniglia, C., Foley, S., Forry, S. et al. 2020. The Gut Microbiome and Xenobiotics: Identifying Knowledge Gaps. Toxicological Sciences, 176(1): 1–10. https://doi.org/10.1093/toxsci/kfaa060
VICH. 2019. VICH GL36 Studies to evaluate the safety of residues of veterinary drugs in human food: General approach to establish a microbiological ADI - Revision 2. Amsterdam, European Medicines Agency, and Brussels, VICH. https://www.ema.europa.eu/documents/scientific-guideline/vich-gl36r2-studies-evaluate-safety-residues-veterinary-drugs-human-food-general-approach-establish_en.pdf
Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. 2020. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell, 180(2): 221–232. https://doi.org/10.1016/j.cell.2019.12.025
Weimer, B. C., Storey, D. B., Elkins, C. A., Baker, R. C., Markwell, P., Chambliss, D. D., Edlund, S. B. & Kaufman, J. H. 2016. Defining the food microbiome for authentication, safety, and process management. IBM Journal of Research and Development, 60(5/6): 1:1–1:13. https://doi.org/10.1147/JRD.2016.2582598
WHO. 2015. Global action plan on antimicrobial resistance. Geneva. https://www.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf
Wilson, A.S., Koller, K.R., Ramaboli, M.C., Nesengani, L.T., Ocvirk, S., Chen, C., Flanagan, C.A. et al. 2020. Diet and the Human Gut Microbiome: An International Review. Digestive Diseases and Sciences, 65(3): 723–740. https://doi.org/10.1007/s10620-020-06112-w
Albrecht, C. 2019. Sensor to detect many different types of food allergens. In: The Spoon. Cited 17 September 2021. https://thespoon.tech/sensogenic-is-making-a-handheld-sensor-to-detect-many-different-types-of-food-allergens/
Aung, M.M. & Chang, Y.S. 2014. Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39: 172–184. https://doi.org/10.1016/j.foodcont.2013.11.007
Atzori, M. 2017. Blockchain technology and decentralized governance: Is the state still necessary? Journal of Governance and Regulation, 6(1): 45–62. https://doi.org/10.22495/jgr_v6_i1_p5
Azimi, P., Zhao, D., Pouzet, C., Crain, N.E. & Stephens, B. 2016. Emissions of ultrafine particles and volatile oganic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental Science & Technology, 50(3): 1260–1268. https://doi.org/10.1021/acs.est.5b04983
Bandoim, L. 2021. World’s First 3D Bioprinted And Cultivated Ribeye Steak Is Revealed. In: Forbes. Cited 6 June 2021. https://www.forbes.com/sites/lanabandoim/2021/02/12/worlds-first-3d-bioprinted-and-cultivated-ribeye-steak-is-revealed/?sh=3f435f244781
Banis, D. 2018. These Two Dutch Students Create 3D-Printed Snacks From Food Waste. In: Forbes. Cited 18 October 2021. https://www.forbes.com/sites/davidebanis/2018/12/24/these-two-dutch-students-create-3d-printed-snacks-from-food-waste/?sh=7d98ab0b4130
BBC News. 2021. How fresh is your food? Sensors could show you [video]. Cited 21 November 2021. https://www.bbc.com/news/av/world-australia-58976338
Bhoge, A. 2018. Smart labels: the next big thing in IoT and packaging. In: Packaging Strategies. Cited 7 November 2021. https://www.packagingstrategies.com/articles/90618-smart-labels-the-next-big-thing-in-iot-and-packaging
Blutinger, J.D., Tsai, A., Storvick, E., Seymour, G., Liu, E., Samarelli, N., Karthik, S. et al. 2021. Precision cooking for printed foods via multiwavelength lasers. npj Science of Food, 5(1): 24. https://doi.org/10.1038/s41538-021-00107-1
Bouzembrak, Y., Klüche, M., Gavai, A. & Marvin, H.J.P. 2019. Internet of Things in food safety: Literature review and a bibliographic analysis. Trends in Food Science and Technology, 94: 54–64. https://doi.org/10.1016/j.tifs.2019.11.002
Cai, Y. & Zhu, D. 2016. Fraud detections for online businesses: a perspective from blockchain technology. Financial Innovation, 2: 20. doi: 10.1186/s40854-016-0039-4
Cece, S. 2019. Is IoT the future of food safety? In: Food Engineering. Cited 12 August 2021. https://www.foodengineeringmag.com/articles/98212-is-iot-the-future-of-food-safety
Chai, Y., Wikle, H.C., Wang, Z., Horikawa, S., Best, S., Cheng, Z., Dyer, D.F. & Chin, B.A. 2013. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor. Journal of Applied Physics, 114: 10. doi: 10.1063/1.4821025
Delgado, J.A., Short Jr. N.M., Roberts, D.P. & Vandenberg, B. 2019. Big data analysis for sustainable agriculture on a geospatial cloud platform. Frontiers in Sustainable Food Systems, 3: 54. doi: 10.3389/fsufs.2019.00054
Deshpande, A., Stewart, K., Lepetit, L. & Gunashekar, S. 2017. Distributed Ledger Technologies/ Blockchain. Challenges, opportunities and the prospects for standards. Overview report. Cambridge, RAND Europe and London, BSI. https://www.bsigroup.com/LocalFiles/zh-tw/InfoSec-newsletter/No201706/download/BSI_Blockchain_DLT_Web.pdf
Donaghy, J.A., Danyluk, M.D., Ross, T., Krishna, B. & Farber, J. 2021 Big data impacting dynamic food safety risk management in the food chain. Frontiers in Microbiology, 12: 668196. https://doi.org/10.3389/fmicb.2021.668196
Drakvik, E., Altenburger, R., Aoki, Y., Backhaus, T., Bahadori, T., Barouki, R., Brack, W. et al. 2020. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 134: 105267. https://doi.org/10.1016/j.envint.2019.105267
EC. 2019. Smart device detects food contaminants in real time. In: Cordis Europa. Cited 10 October 2021. https://cordis.europa.eu/article/id/125205-smart-device-detects-food-contaminants-in-real-time
EFSA Panel on Food Additives and Flavourings (FAF), Younes, M., Aquilina, G., Castle, L., Engel, K., Fowler, P., Frutos Fernandez, M.J. et al. 2021. Safety assessment of titanium dioxide (E171) as a food additive. EFSA Journal, 19(5). https://doi.org/10.2903/j.efsa.2021.6585
EFSA Scientific Committee, Hardy, A., Benford, D., Halldorsson, T., Jeger, M.J., Knutsen, H.K., More, S. et al. 2018. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16(7). https://doi.org/10.2903/j.efsa.2018.5327
EFSA Scientific Committee, More, S.J., Bampidis, V., Benford, D., Bennekou, S.H., Bragard, C., Halldorsson, T.I. et al. 2019. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal, 17(3). https://doi.org/10.2903/j.efsa.2019.5634
FAO. 2019. Digital technologies in Agriculture and Rural Areas. Briefing paper. Rome. https://www.fao.org/3/ca4887en/ca4887en.pdf
FAO & WHO. 2010. FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications: meeting report. Geneva, WHO. https://www.who.int/publications/i/item/9789241563932
FAO & WHO. 2012. Nanotechnologies in food and agriculture. Joint FAO/WHO meeting report. Rome, FAO. https://www.fao.org/publications/card/en/c/fce9f48e-64a4-49a0-a32b-6ba52478cbfd/
FAO & WHO. 2013. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. FAO/WHO technical paper. Rome, FAO. https://apps.who.int/iris/handle/10665/87458
FAO & WHO. 2018a. Science, Innovation and Digital Transformation at the Service of Food Safety. Rome, FAO. http://www.fao.org/3/CA2790EN/ca2790en.pdf
FAO & WHO. 2018b. FAO/WHO Framework for the Provision of Scientific Advice on Food Safety and Nutrition (to Codex and member countries). Rome, FAO. https://www.fao.org/3/i7494en/I7494EN.pdf
FAO & WHO. 2019. FAO/WHO Expert Consultation on Dietary risk assessment of chemical mixtures. (Risk assessment of combined exposure to multiple chemicals). WHO, Geneva, 16–18 April 2019. https://www.who.int/foodsafety/areas_work/chemical-risks/Euromix_Report.pdf
Friedlander, A. & Zoellner, C. Artificial Intelligence opportunities to improve food safety at retail. Food Protection Trends, 40(4): 272–278.
Garber, M. 2014. What 3D-Printed Cake Tastes Like. The Atlantic, 8 January 2014. Cited 21 October 2021. Washington, DC, USA. https://www.theatlantic.com/technology/archive/2014/01/what-3d-printed-cake-tastes-like/282904/
Ghazal, A.F., Zhang, M., Bhandari, B. & Chen, H. 2021. Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Research International, 142: 110215. https://doi.org/10.1016/j.foodres.2021.110215
Gibbs, A. 2015. Tech turns tasty with printed pancakes. In: CNBC. Cited 24 October 2021. https://www.cnbc.com/2015/03/27/tech-turns-tasty-with-3d-printed-pancakes.html
Godoi, F.C., Prakash, S. & Bhandari, B.R. 2016. #d printing technologies applied to food design: Status and prospects. Journal of Food Engineering, 179: 44–54. https://doi.org/10.1016/j.jfoodeng.2016.01.025
Jacobs, N., Brewer, S., Craigon, P.J., Frey, J., Gutierrez, A., Kanza, S., Manning, L. et al. 2021. Considering the ethical implications of digital collaboration in the Food Sector. Patterns, 2(11): 100335. https://doi.org/10.1016/j.patter.2021.100335
Jarrett, C. 2020. Could robots lead the fight against contamination in food production lines? In: Food Industry Executive. Cited 8 October 2021. https://foodindustryexecutive.com/2020/07/putting-food-safety-first-with-robots/
Jones, T.J., Jambon-Puillet, E., Marthelot, J. & Brun, P.-T. 2021. Bubble casting soft robotics. Nature, 599: 229–233. https://doi.org/10.1038/s41586-021-04029-6
Kamath, R. 2018. Food traceability on blockchain: Walmart’s pork and mango pilots with IBM. The Journal of British Blockchain Association, 1(1): 1–2. doi: 10.31585/jbba-1-1-(10)2018
Kaplan, E. 2021. Crytocurrency goes green: could ‘proof of stake’ offer a solution to energy concerns? In: NBC News. Cited 11 November 2021. https://www.nbcnews.com/tech/tech-news/cryptocurrency-goes-green-proof-stake-offer-solution-energy-concerns-rcna1030
Karthika, V. & Jaganathan, S. 2019. A quick synopsis of blockchain technology. International Journal of Blockchains and Cryptocurrencies, 1(1): 54. https://doi.org/10.1504/IJBC.2019.101852
Köhler, S. & Pizzol, M. 2019. Life cycle assessment of Bitcoin mining. Environmental Science & Technology, 53: 13598–13606. doi: 10.1021/acs.est.9b05687
Landman, F. 2018. How will IoT reshape our kitchens? In: Readwrite. Cited 10 November 2021. https://readwrite.com/2018/07/05/how-will-iot-reshape-our-kitchens/
Li, Y., Li, X., Zeng, X., Cao, J. & Jiang, W. 2020. Application of blockchain technology in food safety control: current trends and future prospects. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2020.1858752
Lovell, R. 2021. The farms being run from space. In: BBC News Follow The Food. London, BBC News. Cited 9 September 2021. https://www.bbc.com/future/bespoke/follow-the-food/the-farms-being-run-from-space/
Malone, E. & Lipson, H. 2007. Fab@Home: the personal desktop fabricator kit. Rapid Prototype Journal, 13(4): 245–155. doi:10.1108/13552540710776197
Marvin, H.J.P., Janssen, E.M., Bouzembrak, Y., Hendriksen, P.J.M. & Staats, M. 2017. Big data in food safety: An overview. Critical reviews in Food Science and Nutrition, 57(11): 2286–2295. http://dx.doi.org/10.1080/10408398.2016.1257481
Mateus, M., Fernandes, J., Revilla, M., Ferrer, L., Villarreal, M.R., Miller, P., Schmidt, W. et al. 2019. Early Warning Systems for Shellfish Safety: The Pivotal Role of Computational Science. In J.M.F. Rodrigues, P.J.S. Cardoso, J. Monteiro, R. Lam, V.V. Krzhizhanovskaya, M.H. Lees, J.J. Dongarra, et al., eds. Computational Science – ICCS 2019, pp. 361–375. Lecture Notes in Computer Science. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-030-22747-0_28
Mistry, I., Tanwar, S., Tyagi, S. & Kumar, N. 2020. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135: 106382. https://doi.org/10.1016/j.ymssp.2019.106382
Mohan, A.M. 2020. Robotics special report: Food-safe solutions emerge. In: Packaging World. Cited 10 October 2021. https://www.packworld.com/machinery/robotics/article/21141584/robotics-special-report-foodsafe-solutions-emerge
Moon, L. 2020. Would you eat a steak from a 3D printer? In: SBS. Cited 12 September 2021. https://www.sbs.com.au/food/article/2020/08/21/would-you-eat-steak-3d-printer
Nakamoto, S. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf
Neethirajan, S., Weng, X., Tah, A., Cordero, J.O. & Ragavan, K.V. 2018. Nano-biosensor platforms for detecting food allergens - New trends. Sensing and Bio-sensing Research, 18: 13–30. https://doi.org/10.1016/j.sbsr.2018.02.005
Newton, E. 2021. How food processors can use robots to improve food safety. In: Food Safety Tech. Cited 21 August 2021. https://foodsafetytech.com/column/how-food-processors-can-use-robots-to-improve-food-quality/
OECD. 2018. Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals. Series on Testing and Assessment No. 296. Paris, France, Environment, Health and Safety Division, OECD Environment Directorate. https://www.oecd.org/chemicalsafety/risk-assessment/considerations-for-assessing-the-risks-of-combined-exposure-to-multiple-chemicals.pdf
Pearson, S., May, D., Leontidis, G., Swainson, M., Brewer, S., Bidaut, L., Frey, J.G. et al. 2019. Are Distributed Ledger Technologies the panacea for food traceability? Global Food Security, 20: 145–149. https://doi.org/10.1016/j.gfs.2019.02.002
Rateni, G., Dario, P. & Cavallo, F. 2017. Smartphone-Based Food Diagnostic Technologies: A Review. Sensors, 17(6): 1453. https://doi.org/10.3390/s17061453
Raza, M.M., Harding, C., Liebman, M. & Leandro, L.F. 2020. Exploring the Potential of High-Resolution Satellite Imagery for the Detection of Soybean Sudden Death Syndrome. Remote Sensing, 12(7): 1213. https://doi.org/10.3390/rs12071213
Severini, C., Derossi, A., Ricci, I., Caporizzi, R. & Fiore, A. 2018. Printing a blend of fruits and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering, 220: 89–100. https://doi.org/10.1016/j.jfoodeng.2017.08.025
Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V.K. & Rather, I.A. 2017. Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8: 1501. doi: 10.3389/fmicb.2017.01501
So, K. 2019. Cobots: Transforming the food and beverage industry. In: Asia Pacific Food Industry. Cited 28 August 2021. https://apfoodonline.com/industry/cobots-transforming-the-food-and-beverage-industry/
Underwood, S. 2016. Blockchain beyond bitcoin. Communications of the ACM, 59(11): 15–17. https://doi.org/10.1145/2994581
Unuvar, M. 2017. The food industry gets an upgrade with blockchain. In: IBM Supply Chain and Blockchain Blog. Cited on 11 August 2021. https://www.ibm.com/blogs/blockchain/2017/06/the-food-industry-gets-an-upgrade-with-blockchain/
US EPA. 2000. Supplementary guidance for conducting health risk assessment of chemical mixtures. Washington, DC, USA. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
US EPA. 2003. Framework for cumulative risk assessment. Washington, DC, USA. https://www.epa.gov/sites/default/files/2014-11/documents/frmwrk_cum_risk_assmnt.pdf
US EPA. 2008. Concepts, methods, and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: A resource document. Washington, DC, USA. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=190187
US EPA. 2016. Pesticide cumulative risk assessment framework. Washington, DC, USA. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/pesticide-cumulative-risk-assessment-framework
van Pelt, R., Jansen, S., Baars D. & Overbeek, S. 2021. Defining Blockchain Governance: A Framework for Analysis and Comparison. Information Systems Management, 38:(1) 21–41. doi: 10.1080/10580530.2020.1720046
World Bank. 2019. Future of Food. Harnessing Digital Technologies to Improve Food System Outcomes. In: World Bank. Washington, DC, USA. Cited 14 July 2021. https://openknowledge.worldbank.org/bitstream/handle/10986/31565/Future-of-Food-Harnessing-Digital-Technologies-to-Improve-Food-System-Outcomes.pdf?sequence=1&isAllowed=y
Yannis, F. 2018. A new era of food transparency powered by blockchain. Innovations: Technology, Governance, Globalization, 12(1–2): 46–56. https://doi.org/10.1162/inov_a_00266
Bachmann, R. 2001. Trust, Power and Control in Trans-Organizational Relations. Organization Studies, 22(2): 337–365. https://doi.org/10.1177/0170840601222007
Bindt, V. 2016. Costs and benefits of the Food Fraud Vulnerability Assessment in the Dutch food supply chain. Wageningen, The Netherlands, Wageningen University.
Elliott, C. 2014. Elliott Review into the Integrity and Assurance of Food Supply Networks - Final Report. London, UK, HM Government. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/350726/elliot-review-final-report-july2014.pdf
European Commission a. (n.d.). Food fraud: What does it mean? In: European Commission. Brussels, Belgium. Cited 8 November 2021. https://ec.europa.eu/food/safety/food-fraud/what-does-it-mean_en#:~:text=Food%20fraud%20is%20about%20%E2%80%9Cany,%2Dfood%20chain%20legislation)%E2%80%9D
European Commission b. (n.d.). The EU Food Fraud Network. In: European Commission. Brussels, Belgium. Cited 8 November 2021 https://ec.europa.eu/food/index_en: https://ec.europa.eu/food/safety/agri-food-fraud/eu-food-fraud-network_en
European Parliament. 2013. Report on the food crisis, fraud in the food chain and the control thereof (2013/2091(INI)). Brussels, Belgium, European Parliament. https://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A7-2013-0434&format=PDF&language=EN
European Union. 2020. The EU Food Fraud Network. In: European Commission. Brussels, Belgium. Cited 6 November 2021 https://ec.europa.eu/food/safety/food-fraud/ffn_en
FAO. 2016. Handbook on Food Labelling to Protect Consumers. Rome. https://www.fao.org/3/i6575e/i6575e.pdf
FAO. 2020. Legal mechanisms to contribute to safe and secured food supply chains in time of COVID-19. Rome. https://www.fao.org/documents/card/en/c/ca9121en
FAO. 2021. Food fraud – Intention, detection and management. Food safety technical toolkit for Asia and the Pacific No. 5. Bangkok. https://www.fao.org/3/cb2863en/cb2863en.pdf
FAO & WHO. 2019. Food control system assessment tool: Introduction and glossary. Food safety and quality series No. 7/1. Rome. http://www.fao.org/3/ca5334en/CA5334EN.pdf
Levi, M. 2008. Organized fraud and organizing frauds: Unpacking research on networks and organization. Criminology & Criminal Justice, 8(4): 389–419. https://doi.org/10.1177/1748895808096470
Reilly, A. 2018. Overview of food fraud in the fisheries sector. FAO Fisheries and Aquaculture Circular(C1165). Rome, FAO. https://www.fao.org/documents/card/en/c/I8791EN/
Roberts, M., Viinikainen, T. & Bullon, C. Forthcoming. International and national regulatory strategies to counter food fraud. FAO. Rome
Shears, P. 2010. Food fraud – a current issue but an old problem. British Food Journal, 198–213. doi: https://doi.org/10.1108/00070701011018879
UK Government, Department for Environment, Food and Rural Affairs. 2014. Government response to the Elliott review of the integrity and assurance of food supply networks. OGL. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/350735/elliott-review-gov-response-sept-2014.pdf
Yale Law School. 2008. The Code of Hammurabi. In: The Avalon Project. New Haven, Connecticut, USA. Cited 1 November 2021. https://avalon.law.yale.edu/ancient/hamframe.asp
Zucker, L. G. 1986. Production of trust: Institutional sources of economic structure, 1840–1920. Research in Organizational Behavior, 8: 53–111. https://psycnet.apa.org/record/1988-10420-001
FAO. 2020. Climate change: Unpacking the burden on food safety. Food Safety and Quality Series No. 8. 176 pp. https://doi.org/10.4060/ca8185en
FAO. 2021a. FAO Strategic Framework 2022 – 31. https://www.fao.org/3/ne577en/ne577en.pdf
FAO. 2021b. The outline and roadmap of the “FAO Science and Innovation Strategy”. FAO Council. Hundred and Sixty-eighth Session. 29 November – 3 December 2021. https://www.fao.org/3/ng734en/ng734en.pdf
Joint Tripartite (FAO, OIE, WHO) & UNEP. 2021. Tripartite and UNEP support OHHLEP’s definition of “One Health”. Rome, FAO. https://www.fao.org/3/cb7869en/cb7869en.pdf