References

Executive summary

FAO. 2021. Strategic Framework 2022-31. Rome. https://www.fao.org/3/cb7099en/cb7099en.pdf

UN Food Systems Summit. 2021. Secretary-General’s Chair Summary and Statement of Action on the UN Food Systems Summit. 23 September 2021. https://www.un.org/en/food-systems-summit/news/making-food-systems-work-people-planet-and-prosperity

World Food Summit. 1996. Rome Declaration on World Food Summit. 13–17 November 1996. Rome. https://www.fao.org/3/w3613e/w3613e00.htm#Note1

1. Introduction

Bell, W. 2003. Foundations of Futures Studies: History, Purposes, and Knowledge, Human Science for a New Era, Vol. 1. London, Routledge, Taylor & Francis Group.

DEFRA. 2002. Horizon Scanning & Futures Home. In: The National Archives. London, UK. Cited 14 November, 2021. https://webarchive.nationalarchives.gov.uk/ukgwa/20070506093923/http:/horizonscanning.defra.gov.uk/

FAO. 1969. Provisional indicative world plan for agricultural development: A synthesis and analysis of factors relevant to world, regional and national agricultural development. 2 Vol. Rome.

FAO. 2014. Horizon Scanning and Foresight. An overview of approaches and possible applications in Food Safety. Background paper 2. Food Safety and Quality Programme. Rome. https://www.fao.org/3/I4061E/i4061e.pdf

FAO. 2017. The future of food and agriculture – Trends and challenges. Rome. https://www.fao.org/3/i6583e/i6583e.pdf

FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Rome. https://www.fao.org/3/I8429EN/i8429en.pdf

FAO. 2021. Strategic Framework 2022-31. Rome. https://www.fao.org/3/cb7099en/cb7099en.pdf

FAO & WHO. 2021. A Guide to World Food Safety Day 2021. Safe food now for a healthy tomorrow. Rome. https://www.fao.org/3/cb3404en/cb3404en.pdf

Kuosa, T. 2012. The Evolution of Strategic Foresight: Navigating Public Policy Making. Farmham, Ashgate Publishing Ltd.

Miles, I., Keenan, M. & Kaivo-oja, J. 2002. Handbook of knowledge society foresight. Dublin, European Foundation for the Improvement of Living and Working Conditions.

Popper, R. 2009. Foresight Methodology. In: L. Georghiou, J. Cassingena Harper, M. Keenan, I. Miles & R. Popper, eds. The Handbook of Technology Foresight: Concepts and Practice, pp. 44–88. Edward Elgar Publishing Ltd.

Rockström, J., Edenhofer, O., Gaertner, J. & DeClerck, F. 2020. Planet-proofing the global food system. Nature Food, 1: 3–5. https://doi.org/10.1038/s43016-019-0010-4

UN. 2015. Transforming our world: the 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015. Seventieth session. https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E

UN. Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights. New York, USA, UN. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

2. Climate change and food safety impacts

Callaghan, M., Schleussner, C., Nath, S., Lejeune, Q., Knutson, T.R., Reichstein, M., Hansen, G. et al. 2021. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nature Climate Change, 11(11): 966–972. https://doi.org/10.1038/s41558-021-01168-6

Chersich, M.F., Scorgie, F., Rees, H. & Wright, C.Y. 2018. How climate change can fuel listeriosis outbreaks in South Africa. South African Medical Journal, 108(6): 453–454.

Chhaya, R.S., O’Brien, J. & Cummins, E. 2021. Feed to fork risk assessment of mycotoxins under climate change influences - recent developments. Trends in Food Science & Technology: S0924224421004842. https://doi.org/10.1016/j.tifs.2021.07.040

Dengo-Baloi, L.C., Sema-Baltazar, C.A., Manhique, L.V., Chitio, J.E., Inguane, D.L. & Langa, J.P. 2017. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One, 12(8): e0181496. Cited 15 November 2019. https://doi.org/10.1371/journal.pone.0181496

Elmali, M. & Can, H.Y. 2017. Occurrence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Science and Technology, 37(2): 280–285. https://doi.org/10.1590/1678-457X.19516

FAO. 2008. Climate change: Implications for food safety. Rome. http://www.fao.org/3/i0195e/i0195e00.pdf

FAO. 2019. The State of Food and Agriculture. Moving forward on food loss and waste reduction. Rome. https://www.fao.org/3/ca6030en/ca6030en.pdf

FAO. 2020. Climate change: Unpacking the burden on food safety. Food safety and quality series No. 8. Rome. https://www.fao.org/3/ca8185en/CA8185EN.pdf

FAO & WHO. 2020. Report of the Expert Meeting on Ciguatera Poisoning. Rome, 19-23 November 2018. Food Safety and Quality series No. 9. Rome. https://doi.org/10.4060/ca8817en

FAO, IFAD, UNICEF, WFP & WHO. 2021. The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome. https://www.fao.org/3/cb4474en/cb4474en.pdf

He, X. & Sheffield, J. 2020. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophysical Research Letters, 47(14): e2020GL087924. https://doi.org/10.1029/2020GL087924

Henderson, J.C., Herrera, C.M. & Trent, M.S. 2017. AlmG, responsible for polymyxin resistance in pandemic Vibrio cholerae, is a glycyltransferase distantly related to lipid A late acyltransferases. Journal of Biological Chemistry, 292(51): 21205–21215.

IPCC. 2021. Summary for Policymakers. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu & B. Zhou, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 1–41. Cambridge, UK, Cambridge University Press, In Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf

Kuhn, K.G., Nygård, K.M., Guzman-Herrador, B., Sunde, L.S., Rimhanen-Finne, R., Trönnberg, L., Jepsen, M.R. et al. 2020. Campylobacter infections expected to increase due to climate change in Northern Europe. Scientific Reports, 10(1): 13874. https://doi.org/10.1038/s41598-020-70593-y

Lake, I.R. 2017. Food-borne disease and climate change in the United Kingdom. Environmental Health, 16(S1): 117. https://doi.org/10.1186/s12940-017-0327-0

MacFadden, D.R., McGough, S.F., Fisman, D., Santillana, M. & Brownstein, J.S. 2018. Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6): 510–514.

McGough, S.F., MacFadden, D.R., Hattab, M.W., Mølbak, K. & Santillana, M. 2020. Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000–2016. Eurosurveillance, 25(45): pii=1900414. https://doi.org/10.2807/1560-7917.ES.2020.25.45.1900414

Nature. 2021. Controlling methane to slow global warming - fast. In: Nature. Cited 6 November 2021. https://www.nature.com/articles/d41586-021-02287-y

Olaimat, A.N., Al-Holy, M.A., Shahbaz, H.M., Al-Nabulsi, A.A., Abu Ghoush, M.H., Osaili, T.M., Ayyash, M.M. & Holley, R.A. 2018. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 17(5): 1277–1292.

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D. et al. 2021. Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11(3): 226–233. https://doi.org/10.1038/s41558-020-00972-w

Poirel, L., Madec, J.Y., Lupo, A., Schink, A.K., Kieffer, N., Nordmann, P. & Schwarz, S. 2018. Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4). doi: 10.1128/ microbiolspec.ARBA-0026-2017

UN Climate Change. 2021a. World leaders kick start accelerated climate action at COP26. Press release. In: United Nations Climate Change. Bonn, Germany. Cited 6 November 2021. https://unfccc.int/news/world-leaders-kick-start-accelerated-climate-action-at-cop26

UN Climate Change. 2021b. Water at the Heat of Climate Action. In: United Nations Climate Change. Cited 6 November 2021. Bonn, Germany. https://unfccc.int/news/water-at-the-heart-of-climate-action

UNEP. 2021. Emissions Gap Report 2021: The Heat is On – A world of Climate Promises Not Yet Delivered. In: United Nations Environment Programme. Nairobi. https://www.unep.org/resources/emissions-gap-report-2021

UNFCCC. 2021. Nationally determined contributions under the Paris Agreement. Synthesis report. Conference of the Parties serving as the meeting of the Parties to the Paris Agreement. Third session. 31 October to 12 November 2021. Glasgow. https://unfccc.int/sites/default/files/resource/cma2021_08_adv_1.pdf

Van Puyvelde, S., Pickard, D., Vandelannoote, K., Heinz, E., Barbe, B., de Block, T., Clare. et al. 2019. An African Salmonella typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nature Communications, 10(1): 4280.

Wang, Z., Zhang, M., Deng, F., Shen, Z., Wu, C., Zhang, J., Zhang, Q. & Shen, J. 2014. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrobial Agents and Chemotherapy, 58(9): 5405–5412.

Wang, X., Biswas, S., Paudyal, N., Pan, H., Li, X., Fang, W. & Yue, M. 2019. Antibiotic resistance in Salmonella typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Frontiers in Microbiology, 10: 985.

3. Changing consumer preferences and food consumption patterns

Aggett, P.J. 2012. Dose-response relationships in multi-functional food design: Assembling the evidence. International journal of Food Science, 63: 37–42. https://doi.org/10.3109/09637486.2011.636344

Bakowska-Barczak, A., de Larminat, M. and Kolodziejczyk, P.P. 2020. The application of flax and hempseed in food, nutraceutical and personal care products. In: The textile Institute Book Series, Handbook of Natural Fibres (Second edition), pp. 557–590, Woodhead Publishing.

Baptista, J.P. & Gradim, A. 2020. Understanding fake news consumption: A review. Social Sciences, 9(10): 185. https://doi.org/10.3390/socsci9100185

Berhaupt-Glickstein, A. & Hallman, W.K. 2015. Communicating scientific evidence in qualified health claims. Critical Reviews in Food Science and Nutrition, 57(13): 2811–2824. https://doi.org/10.1080/10408398.2015.1069730

Borsellino, V., Kaliji, S.A. & Schimmenti, E. 2020. COVID-19 Drives consumer behavior and agro-food markets towards healthier and more sustainable patterns. Sustainability, 12: 8366. https://doi.org/10.3390/su12208366

Camp, K.M. and Trujillo, E. 2014. Position of the Academy of Nutrition and Dietetics: Nutritional Genomics. Journal of the Academy of Nutrition and Dietetics, 114(2): 299–312. https://doi.org/10.1016/j.jand.2013.12.001

Carnés, J., de Larramdeni, C.H., Ferrer, A., Huertas, A.J., López-Matas, M.A., Pagán, J.A., Navarro, L.A., García-Abujeta, J.L., Vicario, S. and Peña, M. 2013. Recently introduced foods as new allergenic sources: Sensitization to Goji berries (Lycium barbarum). Food Chemistry, 137: 130–135. http://dx.doi.org/10.1016/j.foodchem.2012.10.005

Cerullo, G., Negro, M., Parimbelli, M., Pecoraro, M., Perna, S., Liguori, G., Rondanelli, M., Cena, H. and D’Antona, G. 2020. The long history of vitamin C: From prevention of the common cold to potential aid in the treatment of COVID-19. Frontiers in Immunology, 11: 574029. doi: 10.3389/fimmu.2020.574029

Clayton, J., Sims, T. & Webster, A. 2021. COVID-19 and Views on Food Safety. Food Safety Magazine. Cited 12 September 2021. https://www.food-safety.com/articles/6991-covid-19-and-views-on-food-safety

Clydesdale, F. 2004. Functional foods: opportunities and challenges. Food Technology, 58(12): 35–40.

Dendup, T., Feng, X., Clingan, S. & Astell-Burt, T. 2018. Environmental risk factors for developing type-2 diabetes mellitus: A systematic review. International Journal of Environmental Research and Public Health, 15: 78. doi:10.3390/ijerph15010078

Donelli, D., Antonelli, M. & Firenzuoli, F. 2020. Considerations about turmeric-associated hepatotoxicity following a series of cases occurred in Italy: is turmeric really a new hepatotoxic substance? Internal and Emergency Medicine, 15: 725–726. https://doi.org/10.1007/s11739-019-02145-w

Edelman Trust Barometer. 2021. 21st Annual Edelman Trust Barometer. Global Report. https://www.edelman.com/sites/g/files/aatuss191/files/2021-03/2021%20Edelman%20Trust%20Barometer.pdf

EIT Food. 2020. The EIT Food Trust Report. Budapest, EIT Food. https://www.eitfood.eu/media/news-pdf/EIT_Food_Trust_Report_2020.pdf

Ferraro, P.M., Curhan, G.C., Gambaro, G. & Taylor, E.N. 2016. Total, Dietary, and Supplemental Vitamin C Intake and Risk of Incident Kidney Stones. American Journal of Kidney Diseases, 67(3): 400–407. https://doi.org/10.1053/j.ajkd.2015.09.005

Forsyth, J.E., Nurunnahar, S., Islam, S.S., Baker, M., Yeasmin, D., Islam, M.S., Rahman, M. et al. 2019. Turmeric means “yellow” in Bengali: Lead chromate pigments added to turmeric threaten public health across Bangladesh. Environmental Research, 179: 108722. https://doi.org/10.1016/j.envres.2019.108722

Forsyth, J.E., Weaver, K.L., Maher, K., Islam, M.S., Raqib, R., Rahman, M., Fendorf, S. et al. 2019. Sources of Blood Lead Exposure in Rural Bangladesh. Environmental Science & Technology, 53(19): 11429–11436. https://doi.org/10.1021/acs.est.9b00744

Gardner, C.D., Trepanowski, J.F., Del Gobbo, L.C., Hauser, M.E., Rigdon, J., Ioannidis, J.P.A., Desai, M. et al. 2018. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA, 319(7): 667. https://doi.org/10.1001/jama.2018.0245

Grebow, J. 2021. Will vitamin C’s drastic growth in 2020 continue this year? 2021 ingredient trends to watch for food, drinks, and dietary supplements. In: Nutritional Outlook. Cited 7 October 2021. https://www.nutritionaloutlook.com/view/will-vitamin-c-s-drastic-growth-in-2020-continue-this-year-2021-ingredient-trends-to-watch-for-food-drinks-and-dietary-supplements

Griffen, M. 2020. Study reveals new consumer attitudes. In: Pro Food World. Cited 15 September 2021. https://www.profoodworld.com/food-safety/article/21204875/study-reveals-new-consumer-attitudes

Hallman, W.K., Senger-Mersich, A. & Godwin, S.L. 2015. Online purveyors of raw meat, poultry, and seafood products: Delivery policies and available consumer food safety information (Review). Food Protection Trends, 35(2): 80–88.

Hasler, C.M. 2002. Functional foods: Benefits, concerns and challenges – A position paper from the American Council on Science and Health. American Society for Nutritional Sciences, 132(12): 3772–3781. doi: 10.1093/jn/132.12.3772

Labelinsight. 2016. How consumer demand for transparency is shaping the food industry. The 2016 label insight food revolution study. Chicago, Illinois and St. Louis, Missouri, USA, Labelinsight. https://www.labelinsight.com/hubfs/Label_Insight-Food-Revolution-Study.pdf

Larramendi, C.H., García-Abujeta, J.L., Vicario, S., García-Endrino, A., López-Matas, M.A., García-Sedeño, M.D. & Carnés, J. 2012. Goji berries (Lycium barbarum): Risk of allergic reactions in individuals with food allergy. Journal of Investigational Allergology and Clinical Immunology, 22(5): 345–350.

Lindsey, H. 2005. Environmental factors & cancer: Research roundup. Oncology Times, 27(4): 8, 11, 12. doi: 10.1097/01.COT.0000287822.71358.43

Liu P. & Ma L. 2016. Food scandals, media exposure, and citizens’ safety concerns: A multilevel analysis across Chinese cities. Food Policy, 63: 102–111. doi: 10.1016/j.foodpol.2016.07.005.

Locas, A., Brassard, J., Rose-Martel, M., Lambert, D., Green, A., Deckert, A. & Illing, M. 2022. Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. Journal of Food Protection, 85(1): 85–97. https://doi.org/10.4315/JFP-21-218

Lombardi, N., Crescioli, G., Maggini, V., Ippoliti, I., Menniti-Ippolito, F., Gallo, E., Brilli, V. et al. 2021. Acute liver injury following turmeric use in Tuscany: An analysis of the Italian Phytovigilance database and systematic review of case reports. British Journal of Clinical Pharmacology, 87(3): 741–753. https://doi.org/10.1111/bcp.14460

Luber, R.P., Rentsch, C., Lontos, S., Pope, J.D., Aung, A.K., Schneider, H.G., Kemp, W. et al. 2019. Turmeric Induced Liver Injury: A Report of Two Cases. Case Reports in Hepatology, 2019: 1–4. https://doi.org/10.1155/2019/6741213

Ma, Z.F., Zhang, H., Teh, S.S., Wang, C.W., Zhang, Y., Hayford, F., Wang, L. et al. 2019. Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action. Oxidative Medicine and Cellular Longevity, 2019: 1–9. https://doi.org/10.1155/2019/2437397

Macready, A.L., Hieke, S., Klimczuk-Kochańska, M., Szumiał, S., Vranken, L. & Grunert, K.G. 2020. Consumer trust in the food value chain and its impact on consumer confidence: A model for assessing consumer trust and evidence from a 5-country study in Europe. Food Policy, 92: 101880. https://doi.org/10.1016/j.foodpol.2020.101880

Marcum, J.A. 2020. Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare. Current Nutrition Reports, 9(4): 338–345. https://doi.org/10.1007/s13668-020-00327-z

Magkos, F., Tetens, I., Bügel, S.G., Felby, C., Schacht, S.R., Hill, J.O., Ravussin, E. et al. 2020. The Environmental Foodprint of Obesity. Obesity, 28(1): 73–79. https://doi.org/10.1002/oby.22657

Mohanty, S. & Singhal, K. 2018. Functional foods as personalised nutrition: Definitions and genomic insights. In: V. Rani & U. Yadav U. eds. Functional Food and Human Health. Singapore, Springer. https://doi.org/10.1007/978-981-13-1123-9_22

Montoya, Z., Conroy, M., Vanden Heuvel, B.D., Pauli, C.S. & Park, S.-H. 2020. Cannabis contaminants limit pharmacological use of cannabidiol. Frontiers in Pharmacology, 11: 571832. doi: 10.3389/fphar.2020.571832

Nunes, J.C., Ordanini, A. & Giambastiani, G. 2021. The Concept of Authenticity: What It Means to Consumers. Journal of Marketing, 85(4): 1–20. doi:10.1177/0022242921997081

Pennycook, G. & Rand, D.G. 2020. Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. Journal of Personality, 88(2): 185–200. https://doi.org/10.1111/jopy.12476

Potterat, O. 2010. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1): 7–19. doi: 10.1055/s-0029-1186218

Rodrigues, J.F., dos Santos Filho, M.T.C., de Oliveira, L.E.A., Siman, I.B., de Fátima Barcelos, A., de Paiva Anciens Ramos, G.L., Esmerino, E.A. et al. 2021. Effect of the COVID-10 pandemic on food habits and perceptions: A study with Brazilians. Trends in Food Science & Technology, 116: 992 – 1001. doi: 10.1016/j.tifs.2021.09.005

Rutsaert P., Regan Á., Pieniak Z., McConnon Á., Moss A., Wall P. & Verbeke W. 2013. The use of social media in food risk and benefit communication. Trends in Food Science & Technology, 30: 84–91. doi: 10.1016/j.tifs.2012.10.006

Salcedo, G., Sanchez-Monge, R., Diaz-Perales, A., Garcia-Casado, G. & Barber, D. 2004. Plant non-specific lipid transfer proteins as food and pollen allergens. Current Opinion in Allergy and Clinical Immunology, 34: 1336–1341. doi:10.1111/j.1365-2222.2004.02018.x

Scrinis, G. 2008. Functionals foods or functionally marketed foods? A critique of, and alternatives to, the category of functional foods. Public Health Nutrition, 11(5): 541–545. doi: 10.1017/S1368980008001869

Shelke, K. 2020. Clearing up clean label confusion. In: Food Technology Magazine. Cited 14 July 2021. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2020/february/features/clearing-up-clean-label-confusion

Shome, S., Das Talukdar, A., Dutta Choudhury, M., Bhattacharya, M.K. & Upadhyaya, H. 2016. Curcumin as potentnial therapeutic natural product: a nanobiotechnological perspective. Journal of Pharmacy and Pharmacology, 68: 1481 – 1500. doi: 10.1111/jphp.12611

Siegner, C. 2019. 1 in 4 consumers discuss responsible food sourcing online. In: Food Dive. Washington, DC, USA. Cited 24 September 2021. https://www.fooddive.com/news/1-in-4-us-consumers-discuss-responsible-food-sourcing-online/559096/

Taylor, S.L., Marsh, J.T., Koppelman, S.J., Kabourek, J.L., Johnson, P.E. & Baumert, J.L. 2021. A perspective on pea allergy and pea allergens. Trends in Food Science & Technology, 116: 186–198. https://doi.org/10.1016/j.tifs.2021.07.017

Thakkar, S., Anklam, E., Xu, A., Ulberth, F., Li, J., Li, B., Hugas, M. et al. 2020. Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regulatory Toxicology and Pharmacology, 114: 104647. https://doi.org/10.1016/j.yrtph.2020.104647

Thomas, L.D.K., Elinder, C., Tiselius, H., Wolk, A. & Åkesson, A. 2013. Ascorbic acid supplements and kidney stone incidence among men: A prospective study. JAMA Intenal Medicine, 173(5): 386–388. doi:10.1001/jamainternmed.2013.2296

Uasuf, C.G., De Angelis, E., Guagnano, R., Pilolli, R., D’Anna, C., Villalta, D., Brusca, I. & Monaci, L. 2020. Emerging allergens in Goji berry superfruit: The identification of new IgE binding proteins towards allergic patients’ sera. Biomolecules, 10: 689. doi:10.3390/biom10050689

Uthpala, T.G.G., Fernando, H.N., Thibbotuwawa, A. & Jayasinghe, M. 2020. Importance of nutrigenomics and nutrigenetics in food Science. MOJ Food Processing & Technology, 8(3): 114–119. doi: 10.15406/mojfpt.2020.08.00250

Wensing, M., Knulst, A.C., Piersma, S., O’Kane, F., Knol, E.F. & Koppelman, S.J. 2003. Patients with anaphylaxis to pea can have peanut allergy caused by cross-reactive IgE to vicilin (Ara h 1). The Journal of Allergy and Clinical Immunology, 111(2): 420–424. doi:10.1067/mai.2003.61

Ye, X. & Jiang, Y., eds. 2020. Phytochemicals in Goji Berries: Applications in Functional Foods. First edition. CRC Press. https://doi.org/10.1201/9780429021749

Zhang, J., Cai, Z., Cheng, M., Zhang, H., Zhang, H. & Zhu, Z. 2019. Association of Internet Use with Attitudes Toward Food Safety in China: A Cross-Sectional Study. International journal of environmental research and public health, 16(21): 4162. https://doi.org/10.3390/ijerph16214162

4. New food sources and food production systems

Agnolucci, P., Rapti, C., Alexander, P., De Lipsis, V., Holland, R.A., Eigenbrod, F. & Ekins, P. 2020. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food, 1: 562–571. https://doi.org/10.1038/s43016-020-00148-x

Beach, R.H., Sulser, T.B., Crimmins, A., Cenacchi, N., Cole, J., Fukagawa, N.K., Mason-D’Croz, D. et al. 2019. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. The Lancet Planetary Health, 3(7): e307–e317. https://doi.org/10.1016/S2542-5196(19)30094-4

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F.N. & Leip, A. 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2: 198–209. https://doi.org/10.1038/s43016-021-00225-9

FAO. 2009. How to feed the world in 2050. High-level Expert Forum. Global agriculture towards 2050. 12–13 October 2009. Rome. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

FAO. 2017. Water for sustainable food and agriculture. A report produced for the G20 Presidency of Germany. Rome. https://www.fao.org/3/i7959e/i7959e.pdf

FAO. 2020. The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome. https://doi.org/10.4060/cb1447en

McDiarmid, J.I. & Whybrow, S. Conference on “Getting energy balance right” Symposium 5: Sustainability of food production and dietary recommendations. Proceedings of the Nutrition Society, 78: 380 – 387. doi: 10.1017/S0029665118002896

Poore, J. & Nemecek, T. 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360: 987–992.

Ritchie, H. 2019. Half of world’s habitable land is used for agriculture. In: Our World in Data. Cited 8 August 2021. https://ourworldindata.org/global-land-for-agriculture

Ritchie, H. & Roser, M. 2020. Environmental impacts of food production. In: Our World in Data. Cited 8 August 2021. https://ourworldindata.org/land-use

Sultan, B., Defrance, D. & Lizumi, T. 2019. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Scientific Reports, 9: 12834. https://doi.org/10.1038/s41598-019-49167-0

UN. Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights. New York, United Nations. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M. et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35): 9326–9331. https://doi.org/10.1073/pnas.1701762114

4.1. Edible insects

Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C.C., Paoletti, M.G. & Ricci, A. 2013. Edible Insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12: 296–313.

Broekman, H.C.H.P., Knulst, A.C., Den Hartog Jager, C.F., van Bilsen, J.H.M., Raymakers, F.M.L., Kruizinga, A.G., Gaspari, M., Gabriele, C., Bruijnzeel-Koomen, C.A.F.M., Houben, G.F. & Verhoeckx, K.C.M. 2017a. Primary respiratory and food allergy to mealworm. Journal of Allergy and Clinical Immunology, 140: 600–603.e7

Broekman, H.C.H.P., Knulst, A.C., De Jong, G., Gaspari, M., Den Hartog Jager, C.F., Houben, G.F. & Verhoeckx, K.C.M. 2017b. Is mealworm or shrimp allergy indicative for food allergy to insects? Molecular Nutrition & Food Research, 61: 1601061.

Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R., Zhu, F., Kone, N., Grant, M., Devic, E., Bruggeman, G., Prior, R. & Smith, R. 2015. Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insects as Food and Feed, 1: 7–16.

Dobermann, D., Swift, J.A. & Field, L.M. 2017. Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42: 293–308.

EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck, D., Castenmiller, J., De Henauw, S., Hirsch-Ernst, K.I., Kearney, J., Maciuk, A. et al. 2021. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1). https://doi.org/10.2903/j.efsa.2021.6343

EFSA Scientific Committee. 2015. Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13: 4257. doi: 10.2903/j.efsa.2015.4257

FAO. 2013. Edible insects. Future prospects for food and feed security. FAO Forestry Paper 171. Rome. http://www.fao.org/3/i3253e/i3253e.pdf

FAO. 2021. Looking at edible insects from a food safety perspective. Challenges and opportunities for the sector. Rome. https://www.fao.org/3/cb4094en/cb4094en.pdf

Garofalo, C., Milanović, V., Cardinali, F., Aquilanti, L., Clementi, F. & Osimani, A. 2019. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Research International, 125: 108527.

Grabowski, N.T. & Klein, G. 2017. Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends in Food Science & Technology, 63: 80–90.

Greenfield, R., Akala, N. & van Der Bank, F.H. 2014. Heavy metal concentrations in two populations of mopane worms (Imbrasia belina) in the Kruger National Park pose a potential human health risk, Contamination and Toxicology, 93: 316–321.

Houbraken, M., Spranghers, T., De Clercq, P., Cooreman-Algoed, M., Couchement, T., De Clercq, G., Verbeke, S. & Spanoghe, P. 2016. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chemistry, 201: 264–269.

Imathiu, S. 2020. Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, 18: 1–11.

Jongema, Y. 2017. List of Edible Insect Species of the World. Laboratory of Entomology, Wageningen University, The Netherlands. https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm

Leni, G., Tedeschi, T., Faccini, A., Pratesi, F., Folli, C., Puxeddu, I., Migliorini, P., Gianotten, N., Jacobs, J., Depraetere, S., Caligiani, A. & Sforza, S. 2020. Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates. Scientific Reports, 10.

Meyer-Rochow, V. 1975. Can insects help to ease the problem of world food shortage. Search, 6: 261–262.

Miglietta, P., De Leo, F., Ruberti, M. & Massari, S. 2015. Mealworms for food: A water footprint perspective. Water, 7: 6190–6203.

Oibiopka, F.I., Akanya, H.O., Jigam, A.A., Saidu, A.N. & Egwim, E.C. 2018. Protein quality of four indigenous edible insect species in Nigeria. Food Science and Human Wellness, 7: 175–183.

Oonincx, D.G.A.B. & De Boer, I.J.M. 2012. Environmental impact of the production of mealworms as a Protein Source for Humans – A Life Cycle Assessment. PLOS ONE, 7: e51145. doi.org/10.1371/journal.pone.0051145

Oonincx, D.G.A.B., van Itterbeeck, J., Heetkamp, M.J.W., van Den Brand, H., van Loon, J.J.A. & van Huis, A. 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS ONE, 5: e14445. doi.org/10.1371/journal.pone.0014445

Osimani, A., Garofalo, C., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Pasquini, M., Mozzon, M., Raffaelli, N., Ruschioni, S., Rioli, P., Isidoro, N. & Clementi, F. 2017. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research and Technology, 243: 1157–1171.

Phiriyangkul, P., Srinroch, C., Srisomsap, C., Chokchaichamnankit, D. & Punyarit, P. 2015. Effect of food thermal processing on allergenicity proteins in Bombay locust (Patanga Succincta). ETP International Journal of Food Engineering, 1.

Reese, G., Ayuso, R. & Lehrer, S.B. 1999. Tropomyosin: an invertebrate pan–allergen. International Archives of Allergy and Immunology, 119: 247–258.

Rumpold, B.A. & Schlüter, O.K. 2013. Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57: 802–823.

Ribeiro, J.C., Cunha, L.M., Sousa-Pinto, B. & Fonseca, J. 2018. Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62: 1700030.

Srinroch, C., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P. & Phiriyangkul, P. 2015. Identification of novel allergen in edible insect, Gryllus bimaculatus and its crossreactivity with Macrobrachium spp. allergens. Food Chemistry, 184: 160–166.

Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B. & van Campenhout, L. 2016. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, pp. 122–127.

van der Fels-Klerx, H.J., Camenzuli, L., van Der Lee, M.K. & Oonincx, D.G.A.B. 2016. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLOS ONE, 11: e0166186. doi.org/10.1371/journal.pone.0166186

van Huis, A. & Oonincx, D.G.A.B. 2017. The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37.

Vandeweyer, D., Lievens, B. & van Campenhout, L. 2020. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nature Food, 1: 511–516.

Vijver, M., Jager, T., Posthuma, L. & Peijnenburg, W. 2003. Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 54: 277–289.

Wales, A.D., Carrique-Mas, J.J., Rankin, M., Bell, B., Thind, B.B. & Davies, R.H. 2010. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses and Public Health, 57: 299–314.

Westerhout, J., Krone, T., Snippe, A., Babé, L., McClain, S., Ladics, G.S., Houben, G.F. & Verhoeckx, K.C.M. 2019. Allergenicity prediction of novel and modified proteins: Not a mission impossible! Development of a random Forest allergenicity prediction model. Regulatory Toxicology and Pharmacology, 107: 104422.

Zhang, Z.-S., Lu, X.-G., Wang, Q.-C. & Zheng, D.-M. 2009. Mercury, cadmium and lead biogeochemistry in the soil–plant–insect system in Huludao City. Bulletin of Environmental Contamination and Toxicology, 83: 255–259.

4.2. Jellyfish

Amaral, L., Raposo, A., Morais, Z. and Colmbra, A. Jellyfish ingestion was safe for patients with crustaceans, cephalopods and fish allergy. Asia Pacific Allergy, 8(1): e3. doi: 10.5415/apallergy.2018.8.e3

Bonaccorsi, G., Garamella, G., Cavallo, G. & Lorini, C. 2020. A systematic review of risk assessment associated with jellyfish consumption as a potential novel food. Foods, 9: 935. doi:10.3390/foods9070935

Basso, L., Rizzo, L., Marzano, M., Intranuovo, M., Fosso, B., Pesole, G., Piraino, S. & Stabili, L. 2019. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and human health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Science of the Total Environment, 692: 305–318. https://doi.org/10.1016/j.scitotenv.2019.07.155

Bleve, G., Ramires, F.A., Gallo, A. & Leone, A. 2019. Identification of safety and quality parameters for preparation of jellyfish based novel food products. Foods, 8: 263. doi:10.3390/foods8070263

Boero, F. 2013. Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and Reviews. General Fisheries Commission for the Mediterranean. No. 92. Rome, FAO, 53 pp. https://www.fao.org/3/i3169e/i3169e.pdf

Bosch-Belmar, M., Milisenda, G., Basso, L., Doyle, T.K., Leone, A. & Piraino, S. 2021. Jellyfish impacts on marine aquaculture and fisheries. Reviews in Fisheries Science & Aquaculture, 29(2): 242–259. doi: 10.1080/23308249.2020.1806201

Brotz, L. 2016. Jellyfish fisheries of the world. Vancouver, Canada, Department of Zoology, University of British Columbia. PhD Dissertation.

Brotz, L., Cheung, W.W.L., Kleisner, K., Pakhomov, E. & Pauly, D. 2012. Increasing jellyfish populations: Trends in Large Marine Ecoystems. Hydrobiologica, 690: 3–20. DOI 10.1007/s10750-012-1039-7

Brotz, L., Schiariti, A., López-Martínez, J., Álvarez-Tello, J., Peggy Hsieh, Y.-H., Jones, R.P., Quiñones, J. et al. 2017. Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds. Reviews in Fish Biology and Fisheries, 27(1): 1–29. https://doi.org/10.1007/s11160-016-9445-y

Condon, R.H., Duarte, C.M., Pitt, K.A., Robinson, K.L., Lucas, C.H., Sutherland, K.R., Mianzan, H.W. et al. 2013. Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences, 110(3): 1000–1005. https://doi.org/10.1073/pnas.1210920110

Costa, E., Gambardella, C., Piazza, V., Vassalli, M., Sbrana, F., Lavorano, S., Garaventa, F. et al. 2020. Microplastics ingestion in the ephyra stage of Aurelia sp. triggers acute and behavioral responses. Ecotoxicology and Environmental Safety, 189: 109983. https://doi.org/10.1016/j.ecoenv.2019.109983

Cuypers, E., Yanagihara, A., Karlsson, E. & Tytgat, J. 2006. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Letters, 580(24): 5728–5732. https://doi.org/10.1016/j.febslet.2006.09.030

Cuypers, E., Yanagihara, A., Rainier, J.D. & Tytgat, J. 2007. TRPV1 as a key determinant in ciguatera and neurotoxic shellfish poisoning. Biochemical and Biophysical Research Communications, 361(1): 214–217. https://doi.org/10.1016/j.bbrc.2007.07.009

Pineton de Chambrun, G., Body-Malapel, M., Frey-Wagner, I., Djouina, M., Deknuydt, F., Atrott, K., Esquerre, N. et al. 2014. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunology, 7(3): 589–601. https://doi.org/10.1038/mi.2013.78

De Domenico, S., De Rinaldis, G., Paulmery, M., Piraino, S. & Leone, A. 2019. Barrel jellyfish (Rhizostoma pulmo) as source of antioxidant peptides. Marine Drugs, 17: 134. doi:10.3390/md17020134

Dickie, G. 2018. Jellyfish threaten Norway’s salmon farming industry. In: Hakai Magazine. Victoria, Canada. Cited 21 July 2021. https://www.hakaimagazine.com/news/jellyfish-threaten-norways-salmon-farming-industry/

Dong, J., Jiang, L., Tan, K., Liu, H., Purcell, J.E., Li, P. & Ye, C. 2009. Stock enhancement of the edible jellyfish (Rhopilema esculentum Kishinouye) in Liaodong Bay, China: a review. Hydrobiologia, 616(1): 113–118. https://doi.org/10.1007/s10750-008-9592-9

Dong, Z., Liu, D. & Keesing, J.K. 2010. Jellyfish blooms in China: Dominant species, causes and consequences. Marine Pollution Bulletin, 60: 954–963. doi: 10.1016/j.marpolbul.2010.04.022

Dong, Z., Liu, D. & Keesing, J.K. 2014. Contrasting trends in populations of Rhopilema esculentum and Aurelia aurita in Chinese Waters. In: K. Pitt, & C. Lucas, eds. Jellyfish Blooms. Dordrecht, Springer. https://doi.org/10.1007/978-94-007-7015-7_9

EC. 2019. Jellyfish: out of the ocean and on to the menu. In: European Commission. Cited 21 August 2021. https://ec.europa.eu/research-and-innovation/en/projects/success-stories/all/jellyfish-out-ocean-and-menu

Epstein, H.E., Templeman, M.A. & Kingsford, M.J. 2016. Fine-scale detection of pollutants by a benthic marine jellyfish. Marine Pollution Bulletin, 107: 340–346. https://doi.org/10.1016/j.marpolbul.2016.03.027

FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainably in action. Rome. https://www.fao.org/publications/sofia/2020/en/

FAO & WHO. 2006. Evaluation of certain food additives and contaminants. Sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 940. Rome, FAO. https://apps.who.int/iris/handle/10665/43592

FAO & WHO. 2011. Evaluation of certain food additives and contaminants. Seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 966. Rome, FAO. https://apps.who.int/iris/handle/10665/44788

FAO & WHO. 2012. Safety evaluation of certain food additives and contaminants. WHO Food Additives Series: 65. Geneva, World Health Organization. https://apps.who.int/iris/handle/10665/44813

Gibbons, M.J. & Richardson, A.J. 2013. Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. Journal of Plankton Research, 35(5): 929–938. doi:10.1093/plankt/fbt063

Griffin, D.C., Harrod, C., Houghton, J.D.R. & Capellini, I. 2019. Unravelling the macro-evolutionary ecology of fish–jellyfish associations: life in the ‘gingerbread house’. Proceedings of the Royal Society B: Biological Sciences, 286(1899): 20182325. https://doi.org/10.1098/rspb.2018.2325

Hays, G.C., Doyle, T.K. & Houghton, J.D.R. 2018. A paradigm shift in the trophic importance of jellyfish? Trends in Ecology & Evolution, 33(11): 874–884. https://doi.org/10.1016/j.tree.2018.09.001

Hsieh, P. Y.-H., Leong, F.-M. & Rudloe, J. 2001. Jellyfish as food. Hydrobiologica, 451: 11–17. https://doi.org/10.1023/A:1011875720415

Iliff, S.M., Wilczek, E.R., Harris, R.J., Bouldin, R. & Stoner, E.W. 2020. Evidence of microplastics from benthic jellyfish (Cassiopea xamachana) in Florida estuaries. Marine Pollution Bulletin, 159: 111521. https://doi.org/10.1016/j.marpolbul.2020.111521

Imamura, K., Tsuruta, D., Tsuchisaka, A., Mori, T., Ohata, C., Furumura, M. & Hashimoto, T. 2013. Anaphylaxis caused by ingestion of jellyfish. European Journal of Dermatology, 23(3): 392–395. https://doi.org/10.1684/ejd.2013.2030

Khong, N.M.H., Yusoff, F.Md., Jamilah, B., Basri, M., Maznah, I., Chan, K.W. & Nishikawa, J. 2016. Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chemistry, 196: 953–960. https://doi.org/10.1016/j.foodchem.2015.09.094

Kiger, P.J. 2013. Jellyfish invasion shuts down nuclear reactor. In: National Geographic. Washington, DC, USA. Cited 21 August 2021. https://www.nationalgeographic.com/environment/article/jellyfish-invasion-shuts-down-nuclear-plant

Kramar, M.K., Tinta, T., Lučić, D., Malej, A. & Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS One, 14(1): e0198056. https://doi.org/10.1371/journal.pone.0198056

Leone, A., Lecci, R.M., Durante, M., Meli, F. & Piraino, S. 2015. The bright side of gelatinous blooms: nutraceutical value and antioxidant properties of three Mediterranean jellyfish (Scyphozoa). Marine Drugs, 13: 4654–4681. doi:10.3390/md13084654

Leone, A., Lecci, R.M., Milisenda, G. & Piraino, S. 2019. Mediterranean jellyfish as novel food: effect of thermal processing on antioxidant, phenolic, and protein contents. European Food Research and Technology, 245: 1611–1627. https://doi.org/10.1007/s00217-019-03248-6

Li, Z., Tan, X., Yu, B. & Zhao, R. 2017. Allergic shock caused by ingestion of cooked jellyfish: A case report. Medicine, 96(38): e7962. https://doi.org/10.1097/MD.0000000000007962

Lin, S.L., Hu, J.M., Guo, R., Lin, Y., Liu, L.L., Tan, B.K. & Zeng, S.X. 2016. Potential dietary assessment of alum-processed jellyfish. Bulgarian Chemical Communications, Special Issue H, 70–77.

Macali, A. & Bergami, E. 2020. Jellyfish as innovative bioindicator for plastic pollution. Ecological Indicators, 115: 106375. https://doi.org/10.1016/j.ecolind.2020.106375

Macali, A., Semenov, A., Venuti, V., Crupi, V., D’Amico, F., Rossi, B., Corsi, I. & Bergami, E. 2018. Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter. Scientific Reports, 8: 6105. https://doi.org/10.1038/s41598-018-24427-7

Mills, C.E. 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologica, 451: 55–68. https://doi.org/10.1023/A:1011888006302

Muñoz-Vera, A., Castejón, J.M.P. & García, G. 2016. Patterns of trace element bioaccumulation in jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) in a Mediterranean coastal lagoon from SE Spain. Marine Pollution Bulletin, 110(1): 143–154. doi: 10.1016/j.marpolbul.2016.06.069

Okubo, Y., Yoshida, K., Furukawa, M., Sasaki, M., Sakakibara, H., Terakawa, T. & Akasawa, A. 2015. Anaphylactic shock after the ingestion of jellyfish without a history of jellyfish contact or sting. European Journal of Dermatology, 25(5): 491–492. https://doi.org/10.1684/ejd.2015.2596

Peng, S., Hao, W., Li, Y., Wang, L., Sun, T., Zhao, J. & Dong, Z. 2021. Bacterial Communities Associated with Four Blooming Scyphozoan Jellyfish: Potential Species-Specific Consequences for Marine Organisms and Humans Health. Frontiers in Microbiology, 12: 647089. https://doi.org/10.3389/fmicb.2021.647089

Petter, O. 2017. We need to start eating jellyfish to reduce their growing numbers, advise scientists. In: Independent. Cited 13 August 2013. https://www.independent.co.uk/life-style/food-and-drink/jellyfish-numbers-need-eat-them-population-mediterranean-silvio-grecio-british-people-sting-a7891996.html

Purcell, J.E., Uye, S.-I. & Lo, W.-T. 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series, 350: 153–174. https://doi.org/10.3354/meps07093

Raposo, A., Coimbra, A., Amaral, L., Gonçalves, A. & Morais, Z. 2018. Eating jellyfish: safety, chemical and sensory properties. Journal of the Science of Food and Agriculture, 98(10): 3973–3981. https://doi.org/10.1002/jsfa.8921

Rinat, Z. 2019. Swarms of jellyfish invade power plant in southern Israel. In: Israel News. Tel Aviv, Israel. Cited 31 August 2021. https://www.haaretz.com/israel-news/swarms-of-jellyfish-invade-power-plant-in-southern-israel-1.7449716

Sanz-Martín, M., Pitt, K.A., Condon, R.H., Lucas, C.H., de Santana, N. & Duarte, C.M. 2016. Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Global ecology and Biogeography, 25: 1039–1049. doi: 10.1111/geb.12474

Siggins, L. 2013. Jellyfish ‘bloom’ kills thousands of farmed salmon off Co Mayo. In: The Irish Times. Dublin, Ireland. Cited 12 August 2021. https://www.irishtimes.com/news/ireland/irish-news/jellyfish-bloom-kills-thousands-of-farmed-salmon-off-co-mayo-1.1567468

Sun, X., Li, Q., Zhu, M., Liang, J., Zheng, S. & Zhao, Y. 2017. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine Pollution Bulletin, 115: 217–224. http://dx.doi.org/10.1016/j.marpolbul.2016.12.004

Tomljenovic, L. 2011. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? Journal of Alzheimer’s Disease, 23(4): 567–598. doi: 10.3233/JAD-2010-101494

Tucker, A. 2010. Jellyfish: The next king of the sea. In: Smithsonian Magazine. Washington, DC. Cited 3 July 2021. https://www.smithsonianmag.com/science-nature/jellyfish-the-next-king-of-the-sea-679915/

UN Nutrition. 2021. The role of aquatic food in sustainable healthy diets. Rome. FAO. https://www.unnutrition.org/news/launch-aquatic-foods

Vaidya, S. 2003. Jellyfish choke Oman desalination plants. In: Gulf News. Cited 5 August 2021. https://gulfnews.com/uae/jellyfish-choke-oman-desalination-plants-1.355525

Vodopivec, M., Peliz, A.J. & Malej, A. 2017. Offshore marine constructions as propagators of moon jellyfish dispersal. Environmental Research Letters, 12: 084003. doi: 10.1088/1748-9326/aa75d9

Wong, W.W.K., Chung, S.W.C., Kwong, K.P., Ho, Y.Y. & Xiao, Y. 2010. Dietary exposure to aluminium of the Hong Kong population. Food Additives and Contaminants, 27(4): 457–463. https://doi.org/10.1080/19440040903490112

Yokel, R.A. 2020. Aluminum reproductive toxicity: a summary and interpretation of scientific reports. Critical Reviews in Toxicology, 50(7): 551–593. doi: 10.1080/10408444.2020.1801575

Youssef, J., Keller, S. & Spence, C. 2019. Making sustainable foods (such as jellyfish) delicious. International Journal of Gastronomy and Food Science, 16: 100141. https://doi.org/10.1016/j.ijgfs.2019.100141

Zlotnick, B.A., Hintz, S., Park, D.L. & Auerbach, P.S. 1995. Ciguatera poisoning after ingestion of imported jellyfish: diagnostic application of serum immunoassay. Wilderness & Environmental Medicine, 6(3): 288–294.

4.3. Plant-based alternatives

Abrams, E.M. & Gerstner, T.V. 2015. Allergy to cooked, but not raw, peas: a case series and review. Allergy, Asthma & Clinical Immunology, 11(1): 10. https://doi.org/10.1186/s13223-015-0077-x

Antoine, T., Icard-Vernière, C., Scorrano, G., Salhi, A., Halimi, C., Georgé, S., Carrière, F. et al. 2021. Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion. Food Chemistry, 347: 128621. https://doi.org/10.1016/j.foodchem.2020.128621

Arroyo-Manzanares, N., Hamed, A.M., García-Campaña, A.M. & Gámiz-Gracia, L. 2019. Plant-based milks: unexplored source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC-MS/MS. Food Additives & Contaminants: Part B, 12(4): 296–302. https://doi.org/10.1080/19393210.2019.1663276

Bao, W., Rong, Y., Rong, S. & Liu, L. 2012. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Medicine, 119. https://doi.org/10.1186/1741-7015-10-119

Beach, C. 2021. New law puts sesame on fast track for allergen labelling requirements. In: Food Safety News. Cited 7 September 2021. https://www.foodsafetynews.com/2021/04/new-law-puts-sesame-on-fast-track-for-allergen-labeling-requirements/

Bennett, J.W. & Kilch, M. 2003. Mycotoxins. Clinical Microbiology Reviews, 16(3): 497–516. doi: 10.1128/CMR.16.3.497-516.2003

Cabanillas, B., Jappe, U. & Novak, N. 2018. Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Molecular Nutrition & Food Research, 62: 1700446. doi: 10.1002/mnfr.201700446

Cramer, H., Kessler, C.S., Sundberg, T., Leach, M.J., Schumann, D., Adams, J. & Lauche, R. 2017. Characteristics of Americans Choosing Vegetarian and Vegan Diets for Health Reasons. Journal of Nutrition Education and Behavior, 49(7): 561-567.e1. https://doi.org/10.1016/j.jneb.2017.04.011

Curtain, F. & Grafenauer, S. 2019. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients, 11: 2603. doi:10.3390/nu11112603

Divi, R.L., Chang, H.C. & Doerge, D.R. 1997. Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochemical Pharmacology, 54: 1087–1096. doi: 10.1016/s0006-2952(97)00301-8

Drewnowski, A. 2021. Plant-based milk beverages in the USDA Branded Food Products Database would benefit from nutrient density standards. Nature Food, 2: 567–569. https://doi.org/10.1038/s43016-021-00334-5

Elkin, E. 2021. Plant-based food sales to increase fivefold by 2030, BI says. In: Bloomberg. Cited 15 November 2021. https://www.bloomberg.com/news/articles/2021-08-11/plant-based-food-sales-to-increase-fivefold-by-2030-bi-says

Eshel, G., Shepon, A., Makov, T. & Milo, R. 2014. Land, irrigation, water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(23): 11996–12001. https://doi.org/10.1073/pnas.1402183111

Eshel, G., Stainier, P., Shepon, A. & Swaminathan, A. 2019. Environmentally optimal, nutritionally sound, protein and energy conserving plant-based alternatives to U.S. meat. Scientific Reports, 9: 10345. https://doi.org/10.1038/s41598-019-46590-1

FAO, IFAD, UNICEF, WFP & WHO. 2020. The State of Food Security and Nutrition in the World. Transforming food systems for affordable healthy diets. Rome, FAO. https://doi.org/10.4060/ca9692en

FAO & WHO. 2017. Evaluation of certain contaminants in food. Eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 1002. Geneva, WHO. https://apps.who.int/iris/bitstream/10665/254893/1/9789241210027-eng.pdf?ua=1#page=104%22%3E

FAO & WHO. 2018. General Standard for the Labelling of Prepackaged Foods. Rome, FAO. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B1-1985%252FCXS_001e.pdf

FAO & WHO. 2021. Ad hoc Joint FAO/WHO Expert Consultation on Risk Assessment of Food Allergens. Part 1: Review and validation of Codex priority allergen list through risk assessment. Summary and Conclusions. Rome, FAO. https://www.fao.org/3/cb4653en/cb4653en.pdf

Fearn, H. 2021. Pea protein is causing a mighty problem for people with allergies. In: HuffPost. Cited 16 November 2021. https://www.huffingtonpost.co.uk/entry/pea-protein-allergy_uk_618ad212e4b055e47d80f1da

Ferrer, B. 2021. Equinom & Dipasa harness AI for new high-protein sesame tipped to replace conventional plant-based bases. In: Food Ingredients. Cited 15 September, 2021. https://www.foodingredientsfirst.com/news/equinom-dipasa-harness-ai-to-develop-new-high-protein-sesame-variety-tipped-to-replace-conventional-plant-based-bases.html

Floris, R. 2021. Industry insights from NIZO: Safety challenges for plant-based foods. In: Food Navigator. Cited 18 October 2021. https://www.foodnavigator.com/Article/2021/04/21/Industry-insights-from-NIZO-Safety-challenges-for-plant-based-foods

Galai, T.M., Hassan, L.M., Ahmed, D.A., Alamri, S.A., Alrummam, S.A. & Eid, E.M. 2021. Heavy metals uptake by the global economic crop (Pisum sativum L.) in contaminated soils and its associated health risks. PLoS One, 16(6): e025229. https://doi.org/10.1371/journal.pone.0252229

Gao, B., Li, Y., Huang, G. & Yu, L. 2019. Fatty acid esters of 3-monochloropropanediol: a review. Annual Review of Food Science and Technology, 10: 259–284.

Geeraerts, W., De Vuyst, L. & Leroy, F. 2020. Ready-to-eat meat alternatives, a study of their associated bacterial communities. Food Bioscience, 37: 100681. https://doi.org/10.1016/j.fbio.2020.100681

Gibson, R.S., Heath, A. M. & Szymlek-Gay, E.A. Is iron and zinc nutrition a concern for vegetarian infants and young children in industrialized countries? The American Journal of Clinical Nutrition, 100(suppl.): 459S–468S. doi: 10.3945/ajcn.113.071241

Hamed, A.M., Arroyo-Manzanares, N., Garcia-Campaña, A.M. & Gámiz-Gracia, L. 2017. Determination of Fusarium toxins in functional vegetable milks applying salting-out-assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry. Food Additives & Contaminants: Part A, 34(11): 2033–2041. doi: 10.1080/19440049.2017.1368722

Hashempour-Baltork, F., Khosravi-Darani, K., Hosseini, H., Farshi, P. & Reihani, F. 2020. Mycoproteins as safe meat substitutes. Journal of Cleaner Production, 253: 119958. https://doi.org/10.1016/j.jclepro.2020.119958

He, J., Evans, N.M., Liu, H. & Shao, S. 2020. A review of research on plant-based meat alternatives: driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19(5): 2639–2656. https://doi.org/10.1111/1541-4337.12610

Heffler, E., Pizzimenti, S., Badiu, I., Guida, G. & Rolla, G. 2014. Buckwheat allergy: An emerging clinical problem in Europe. Journal of Allergy & Therapy, 5: 2. doi: 10.4172/2155-6121.1000168

Hoff, M., Trueb, R.M., Ballmer-Weber, B.K., Vieths, S. & Wuethrich, B. 2003. Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Quorn) in a patient allergic to moulds caused by acidic ribosomal protein P2. Journal of Allergy and Clinical Immunology, 111(5): 1106–1110. doi: 10.1067/mai.2003.1339

Holcomb, R. & Bellmer, D. 2021. ‘Upcycling’ promises to turn food waste into your next meal. In: The Conversation. In: Cited 28 October 2021. https://theconversation.com/upcycling-promises-to-turn-food-waste-into-your-next-meal-157500

Jacobson, M.F. & DePorter, J. 2018. Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Annals of Allergy, Asthma & Immunology, 120(6): 626–630. doi: 10.1016/j.anai.2018.03.020

Joshi, V. & Kumar, S. 2015. Meat Analogues: Plant based alternatives to meat products- A review. International Journal of Food and Fermentation Technology, 5(2): 107. https://doi.org/10.5958/2277-9396.2016.00001.5

Kakleas, K., Luyt, D., Foley, G. & Noimark, L. 2020. Is it necessary to avoid all legumes in legume allergy? Pediatric Allergy and Immunology, 31(7): 848–851. https://doi.org/10.1111/pai.13275

Kateman, B. 2021. Will upcycling be as popular as plant-based food? In: Forbes. Cited 17 November 2021. https://www.forbes.com/sites/briankateman/2021/03/30/will-upcycling-become-as-popular-as-plant-based-food/?sh=6ede3034237

Key, T.J., Appleby, P.N., Crowe, F.L., Bradbury, K.E., Schmidt, J.A. & Travis, R.C. 2014. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. The American Journal of Clinical Nutrition, 100(suppl_1): 378S–385S. https://doi.org/10.3945/ajcn.113.071266

Kim, H., Caulfield, L.E., Garcia-Larsen, V., Steffen, L.M., Coresh, J. & Rebholz, C.M. 2019. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. Journal of American Heart Association, 8: e012865. https://doi.org/10.1161/JAHA.119.012865

Lopez, S.H., Dias, J., Mol, H. & de Kok, A. 2020. Selective mutiresidue determination of highly polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry. Journal of Chromatography A, 1625: 461226. https://doi.org/10.1016/j.chroma.2020.461226

McClements, D.J. & Grossmann, L. 2021. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 20(4): 4049–4100. doi: 10.1111/1541-4337.12771

McDermott, A. 2021 Science and culture: Looking to ‘junk’ food to design healthier options. Proceedings of the National Academy of Sciences of the United States of America, 118(41): e2116665118. https://doi.org/10.1073/pnas.2116665118

McHugh, T. 2019. How plant-based meat and seafood are processed. In: IFT. Cited 24 October 2021. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2019/october/columns/processing-how-plant-based-meat-and-seafood-are-processed

Miró-Abella, E., Herrero, P., Canela, N., Arola, L., Borrull, F., Ras, R. & Fontanals, N. 2017. Determination of mycotoxins in plant-based beverages using QuEChERS and liquid chromatography-tandem mass spectrometry. Food Chemistry, 229: 366–372. http://dx.doi.org/10.1016/j.foodchem.2017.02.078

Morrison, O. 2020. Pea protein trend sparks allergy warning. In: Food Navigator. Cited 21 October 2021. https://www.foodnavigator.com/Article/2020/03/16/Pea-protein-trend-sparks-allergy-warning

Nasrabadi, M.N., Doost, A.S. & Mezzenga, R. 2021. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118: 106789. https://doi.org/10.1016/j.foodhyd.2021.106789

National Food Institute- Technical University of Denmark, Doulgeridou, A., Amlund, H., Sloth, J.J. & Hansen, M. 2020. Review of potentially toxic rare earth elements, thallium and tellurium in plant-based foods. EFSA Journal, 18(EU-FOR A Series 3). Cited 15 December 2021. https://data.europa.eu/doi/10.2903/j.efsa.2020.e181101

Patisaul, H.B. 2017. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proceedings of the Nutrition Society, 76(2): 130–144. doi: 10.1017/S0029665116000677

Petroski, W. & Minich, D.M. 2020. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients, 12: 2929. doi:10.3390/nu12102929

Poore, J. & Nemecek, T. 2019. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392): 987–992. doi: 10.1126/science.aaq0216

Ranga, S.K. & Raghavan, V. 2018. How well do plant-based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology, 55(1): 10–20. doi: 10.1007/s13197-017-2915-y

Ritala, A., Häkkinen, S.T., Toivari, M. & Wiebe, M.G. 2017. Single cell protein – state-of-the-art industrial landscape and patents 2001 – 2016. Frontiers in Microbiology, 8: 2009. doi: 10.3389/fmicb.2017.02009

Rizzo, G., Laganà, A., Rapisarda, A., La Ferrera, G., Buscema, M., Rossetti, P., Nigro, A. et al. 2016. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients, 8(12): 767. https://doi.org/10.3390/nu8120767

Rousseau, S., Kyomugasho, C., Celus, M., Hendrickx, M.E.G. & Grauwet, T. 2020. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition, 60(5): 826–843. doi: 10.1080/10408398.2018.1552243

Rozenfeld, P., Docena, G.H. Añón, M.C. & Fossati, C.A. 2002. Detection and identification of a soy protein component that cross-reacts with caseins from cow’s milk. Clinical & Experimental Immunology, 130: 49–58. doi: 10.1046/j.1365-2249.2002.t01-1-01935.x

Rubio, N.R., Xiang, N. & Kaplan, D.L. 2020. Plant-based and cell-based approaches to meat production. Nature Communications, 11: 6276. https://doi.org/10.1038/s41467-020-20061-y

Sabaté, J. & Soret, S. 2014. Sustainability of plant-based diets: back to the future. The American Journal of Clinical Nutrition, 100(suppl.1): 476S–482S. doi: 10.3945/ajcn.113.071522

Samtiya, M., Aluko, R.E. & Dhewa, T. 2020. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2: 6. https://doi.org/10.1186/s43014-020-0020-5

Satija, A., Bhupathiraju, S.N., Rimm, E.B., Spiegelman, D., Chiuve, S.E., Borgi, L., Willett, W.C. et al. 2016. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLOS Medicine, 13(6): e1002039. https://doi.org/10.1371/journal.pmed.1002039

Sethi, S., Tyagi, S.K. & Anurag, R.K. 2016. Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53(9): 3408 – 3423. doi: 10.1007/s13197-016-2328-3

Sha, L. & Xiong, Y.L. 2020. Plant-protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102: 51–61. https://doi.org/10.1016/j.tifs.2020.05.022

Sicherer, S.H. 2005. Food protein-induced enterocolitis syndrome: Case presentations and management lessons. Journal of Allergy and Clinical Immunology, 115(1): 149–156. doi: 10.1016/j.jaci.2004.09.033

Specht, L. 2019. Why plant-based meat will ultimately be less expensive than conventional meat. In: Good Food Institute. Cited 17 November 2021. https://gfi.org/blog/plant-based-meat-will-be-less-expensive

Thompson, L.U., Boucher, B.A., Liu, Z., Cotterchio, M. & Kreiger, N. 2006. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutrition and Cancer, 54(2): 184–201. doi: 10.1207/s15327914nc5402_5

Tuso, P.J., Ismail, M.H., Ha, B.P. & Bartolotto, C. 2013. Nutritional update for physicians: Plant based diets. The Permanente Journal, 17(2): 61–66. doi: 10.7812/TPP/12-085

UNEP. 2021. Food Waste Index Report 2021. Nairobi. https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/FoodWaste.pdf

van Vliet, S., Bain, J.R., Muehlbauer, M.J., Provenza, F.D., Kronberg, S.L., Pieper, C.F. & Huffman, K.M. 2021. A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Fact panels. Scientific Reports, 11: 13828. https://doi.org/10.1038/s41598-021-93100-3

van Vliet, S., Kronberg, S.L. & Provenza, F.D. 2020. Plant-based meats, human health, and climate change. Frontiers in Sustainable Food Systems, 4: 128. https://doi.org/10.3389/fsufs.2020.00128

Verma, A.K., Kumar, S., Das, M. & Dwivedi, P.D. 2013. A comprehensive review of legume allergy. Clinical Reviews in Allergy & Immunology, 45: 30 – 46. doi: 10.1007/s12016-012-8310-6

Villa, C., Costa, J. & Mafra, I. 2020. Lupine allergens: clinical relevance, molecular characterization, cross-reactivity, and detection strategies. Comprehensive Reviews in Food Science and Food Safety, 19: 3886–3915. doi: 10.1111/1541-4337.12646

WHO. 2020a. Salt reduction. In: World Health Organization. Geneva. Cited 17 November 2021. https://www.who.int/news-room/fact-sheets/detail/salt-reduction

WHO. 2020b. More than 3 billion people protected from harmful trans-fat in their food. In: World Health Organization. Geneva. Cited 29 November 2021. https://www.who.int/news/item/09-09-2020-more-than-3-billion-people-protected-from-harmful-trans-fat-in-their-food

Wensing, M., Knulst, A.C., Piersma, S., O’Kane, F., Knol, E.F. & Koppelman, S.J. 2003. Patients with anaphylaxis to pea can have peanut allergy caused by cross-reactive IgE to vicilin (Ara h 1). The Journal of Allergy and Clinical Immunology, 111(2): 420 – 424. doi:10.1067/mai.2003.61

Wild, F., Czerny, M., Janssen, A.M., Kole, A.P.W., Zunabovic, M. & Domig, K.J. 2014. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives. Agro Food Industry Hi-Tech, 25(1): 45–49.

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T. et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170): 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Zaraska, M. 2021. Upcycling food waste onto our plates is a new effort. But will consumers find it appetizing? In: The Washington Post. Cited 17 November 2021. https://www.washingtonpost.com/science/upcycling-food-waste/2021/09/17/90fd81b2-0045-11ec-85f2-b871803f65e4_story.html

Zhao, F.-J. & Wang, P. 2019. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 446: 1–21. https://doi.org/10.1007/s11104-019-04374-6

4.4. Seaweeds

Almela, C., Jesus Clemente, M., Velez, D. & Montoro, R. 2006, Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed in Spain. Food and Chemical Toxicology, 44: 901–923.

Álvarez-Muñoz, D., Rodríguez-Mozaz, S., Maulvault, A. L., Tediosi, A., Fernández-Tejedor, M., Van den Heuvel, F., Kotterman, M., Marques, A. & Barceló, D. 2015. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environmental Research, 143: 56–64. https://doi.org/10.1016/j.envres.2015.09.018

Anderson, D.M., Gilbert, P.M. & Burkholder, J.M. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25(4): 704–726.

ANSES Opinion. 2017. Risks associated with the consumption of food supplements containing spirulina. Maisons-Alfort Cedex, France. French Agency for Food, Environmental and Occupational Health & Safety. https://www.anses.fr/en/system/files/NUT2014SA0096EN.pdf

Banach, J.L., Hoek-van den Hil., E.F. & van der Fels-Klerx, H.J. 2020. Food safety hazards in the European seaweed chain. Comprehensive Reviews in Food Science and Food Safety, 19: 332–364. doi: 10.1111/1541-4337.12523

Bito, T., Teng, F. & Watanabe, F. 2017. Bioactive compounds of edible purple laver Porphyra sp. (Nori). Journal of Agricultural and Food Chemistry, 65: 10685–10692. doi: 10.1021/acs.jafc.7b04688

Bizzaro, G., Vatland, A.K. & Pampanin, D.M. 2022. The One-Health approach in seaweed food production. Environmental International, 158: 106948. https://doi.org/10.1016/j.envint.2021.106948

Buck, B.H., Nevejan, N., Wille, M., Chambers, M.D. & Chopin, T. 2017. Offshore and multi-use aquaculture with extractive species: seaweeds and bivalves. In: B. Back & R. Langan, R. eds. Aquaculture perspective of multi-use sites in the open ocean. Springer, Cham. https://doi.org/10.1007/978-3-319-51159-7_2

Castlehouse, H., Smith, C., Raab, A., Deacon, C., Meharg, A. & Feldman, J. 2003. Biotransformation and accumulation of arsenic in soil amended with seaweed. Environmental Science and Technology 37, 951– 957.

Chen, Q., Pan, Q., Huang, B. & Han, J. 2018. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Scientific Reports, 8: 3578.

Cheney, D., Rajic, L., Sly, E., Meric, D. & Sheahan, T. 2014. Uptake of PCBs contained in marine sediments by the green macroalgae Ulva rigida. Marine Pollution Bulletin, 88(1-2): 207–214. doi: 10.1016/j.marpolbul.2014.09.004

Cherry, P., O’Hara, C., Magee, P.J., McSorley, E.M. & Allsopp, P.J. 2019. Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5): 307–329. https://doi.org/10.1093/nutrit/nuy066

Chojnacka, K. 2012, Using the biomass of seaweeds in the production of components of feed and fertilizers. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology, 478–490.

Circuncisão, A.R., Catarino, M.D., Cardoso, S.M. & Silva, A.M.S. 2018. Minerals from macroalgae origin: health benefits and risks for consumers. Marine Drugs, 16(11): 400. doi: 10.3390/md16110400

Concepcion, A., DeRosia-Banick, K. & Balcom, N. 2020. Seaweed production and processing in Connecticut: A guide to understanding and controlling potential food safety hazards. Connecticut Sea Grant and Connecticut Department of Agriculture Bureau of Aquaculture. https://seagrant.uconn.edu/wp-content/uploads/sites/1985/2020/01/Seaweed-Hazards-Guide_Jan2020_accessible.pdf

Costa, M., Cardoso, A., Afonso, C., Bandarra, N.M. & Prates, J.A.M. 2021. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. Animal Physiology and Animal Nutrition, 00: 1–28. https://doi.org/10.1111/jpn.13509

Cox, P.A., Banack, S.A., Murch, S.J., Rasmussen, U., Tien, G., Bidigare, R.R., Metcalf, J.S., Morrison, L.F., Codd, G.A. & Bergman, B. 2005. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences USA, 102: 5074–5078. https://doi.org/10.1073/pnas.0501526102

Cruz-Rivera, E. & Villareal, T. A. 2006. Macroalgal palatability and the flux of ciguatera toxins through marine food webs. Harmful Algae, 5(5): 497–525.

Domínguez-González, M. R., Chiocchetti, G. M., Herbello-Hermelo, P., Vélez, D., Devesa, V. & Bermejo-Barrera, P. 2017. Evaluation of iodine bioavailability in seaweed using in vitro methods. Journal of Agricultural and Food Chemistry, 65(38), 8435–8442. https://doi.org/10.1021/acs.jafc.7b02151

Duarte, C., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. 2017. Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4: doi.org/10.3389/fmars.2017.00100

Duinker, A., Roiha, I.S., Amlund, H., Dahl, L., Kögel, T., Maage, A. & Bjørn-Tore Lunestad. 2016. Potential risks posed by macroalgae for application as feed and food - a Norwegian perspective. Bergen, Norway. National Institute of Nutrition and Seafood Research. https://doi.org/10.13140/RG.2.2.27781.55524

Duncan, E., Maher, W. & Foster, S. 2014, Contribution of arsenic species in uni-cellular algae to the cycling of arsenic in marine ecosystems. Environmental Science and Technology, 49: 33–50.

EC SCF. 2002. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Iodine. (SCF/CS/NUT/UPPLEV/26 Final). Brussels, European Commission.

EFSA. 2017. Technical report of EFSA’s Activities on Emerging Risks in 2016. EFSA Supporting Publications, 14(11). https://doi.org/10.2903/sp.efsa.2017.EN-1336

FAO. 2003. A guide to the seaweed industry. FAO Fisheries Technical Paper No. 441. Rome. https://www.fao.org/3/y4765e/y4765e.pdf

FAO. 2004. Marine biotoxins. FAO Food and Nutrition Paper No. 80, Rome. https://www.fao.org/3/y5486e/y5486e00.htm

FAO. 2018. The global status of seaweed production, trade and utilization. Globefish Research Programme, No. 124. Rome. https://www.fao.org/3/CA1121EN/ca1121en.pdf

FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en

FAO. 2021. Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular No. 1229. Rome. https://www.fao.org/3/cb5670en/cb5670en.pdf

FAO & WHO. forthcoming. FAO/WHO Report of the Expert Meeting on Food Safety for Seaweed. Current Status and Future Perspectives. Rome.

FAO & WHO. 2002. Evaluation of certain food additives. Fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, World Health Organization. http://whqlibdoc.who.int/trs/WHO_TRS_913.pdf

FAO & WHO. 2011. Codex Guideline Levels for Radionuclides in Foods Contaminated Following a Nuclear or Radiological Emergency. Fact Sheet. https://www.fao.org/3/au209e/au209e.pdf

Fereshteh, G., Yassaman, B., Reza, A.M.M., Zavar, A. & Hossein, M. 2007. Phytoremediation of Arsenic by Macroalga: Implication in Natural Contaminated Water, Northeast Iran. Journal of Applied Sciences, 7(12): 1614–1619. https://doi.org/10.3923/jas.2007.1614.1619

Fernández, P.A., Leal, P.P. & Henríquez, L.A. 2019. Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario. Phycologia, 58(5): 542–551. https://doi.org/10.1080/00318884.2019.1628576

Francesconi, K. & Kuehnelt, D. 2004, Determination of arsenic species: a critical review of methods and applications. Analyst, 129: 373–395.

FSAI. 2020. Safety consideration of seaweed and seaweed-derived foods available on the Irish market. Report of the Scientific Committee of the Food Safety Authority of Ireland. Dublin, Food Safety Authority of Ireland. https://www.fsai.ie/SafetyConsiderations_SeaweedAndSeaweedDerivedFoods_IrishMarket/

Ganesan, A.R., Tiwari, U. & Rajauri, G. 2019. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Science and Human Wellness, 8(3): 252–263. https://doi.org/10.1016/j.fshw.2019.08.001

Goddard, C.C. & Jupp, B.P. 2001. The radionuclide content of seaweeds and seagrasses around the coast of Oman and the United Arab Emirates. Marine Pollution Bulletin, 42(12): 1411–1416. doi: 10.1016/s0025-326x(01)00218-1

Greenhalgh, E. 2016. Climate and lobsters. In: Climate.gov. Cited 6 February 2021. https://www.climate.gov/news-features/climate-and/climate-lobsters

Grosse, Y., Baan, R., Straif, K., Secretan, B., El Ghissassi, F. & Cogliano, V. 2006. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. The Lancet Oncology, 7(8): 628–629.

Gunther, M. 2018. Can deepwater aquaculture avoid the pitfalls of coastal fish farms? In: Yale Environment 360. Cited 8 October 2021. New Haven, Connecticut. https://e360.yale.edu/features/can-deepwater-aquaculture-avoid-the-pitfalls-of-coastal-fish-farms

Gupta, S. & Abu-Ghannam, N. 2011. Recent developments in the applications of seaweeds or seaweed extracts as a means for the safety and quality attributes of foods. Innovative Food Science and Emerging Technologies, 12: 600–609.

Gutow, L., Eckerlebe, A., Giménez, L. & Saborowski, R. 2016. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environmental Science & Technology, 50: 915–923. doi: 10.1021/acs.est.5b02431

Heisler, J., Glibert, P., Burkholder, J., Anderson, D., Cochlan, W., Dennison, W., Gobler,C., Dortch, Q., Heil, C., Humphries, E., Lewitus, A., Magnien, R., Marshall, H., Sellner, K., Stockwell, D., Stoecker, D. & Suddleson, M. 2008. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1): 3–13.

Hord, N.G., Tang, Y. & Bryan, N.S. 2009. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. The American Journal of Clinical Nutrition, 90(1): 1–10. https://doi.org/10.3945/ajcn.2008.27131

Joung, E., Gwon, W., Shin, T., Jung, B., Choi, J. & Kim, H. 2017. Anti-inflammatory action of the ethanolic extract from Sargassum serratifolium on lipopolysaccharide-stimulated mouse peritoneal macrophages and identification of active components. Journal of Applied Phycology, 29: 563–573.

Kamunde, C., Sappal, R. & Melegy, T.M. 2019. Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar. PLoS One, 14(7): e0219792. doi: 10.1371/journal.pone.0219792

Karthick, P., Sankar, R., Kaviarasan, T. & Mohanraju, R. 2012. Ecological implications of trace metals in seaweeds: Bio-indication potential for metal contamination in Wandoor, South Andaman Island. The Egyptian Journal of Aquatic Research, 38: 227–231.

Kinley, R.D., Martinez-Fernandez, G., Matthews, M.K., de Nys, R., Marnusson, M. & Tomkins, N.W. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259: 120836. https://doi.org/10.1016/j.jclepro.2020.120836

Klumpp, D. 1990. Characteristics of arsenic accumulation by the seaweeds Fucus spiralis and Ascophyllum nodosum. Marine Biology, 58: 257 – 264.

Kusumi, E., Tanimoto, T., Hosoda, K., Tsubokura, M., Hamaki, T., Takahashi, K. & Kami, M. 2017. Multiple norovirus outbreaks due to shredded, dried, laver seaweed in Japan. Infection Control & Hospital Epidemiology, 38(7): 88 –886. https://doi.org/10.1017/ice.2017.70

Krause-Jensen, D. & Duarte, C.M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9: 737–742. https://doi.org/10.1038/ngeo2790

Larrea-Marin, M., Pomares-Alfonso, Gomez-Jusristi, M., Sanchez-Munoz, F., Rodenas & de la Rocha, S. 2010. Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. Journal of Food Composition and Analysis, 23: 814–820.

Leston, S., Nunes, M., Viegas, I., Lemos, M. F. L., Freitas, A., Barbosa, J., Ramos, F. & Pardal, M. A. 2011. The effects of the nitrofuran furaltadone on Ulva lactuca. Chemosphere, 82(7): 1010–1016. https://doi.org/10.1016/j.chemosphere.2010.10.067

Leston, S., Nunes, M., Viegas, I., Ramos, F. & Pardal, M. Â. 2013. The effects of chloramphenicol on Ulva lactuca. Chemosphere, 91(4): 552– 557. https://doi.org/10.1016/j.chemosphere.2012.12.061

Leston, S., Nunes, M., Viegas, I., Nebot, C., Cepeda, A., Pardal, M. T. & Ramos, F. 2014. The influence of sulfathiazole on the macroalgae Ulva lactuca. Chemosphere, 100: 105–110. https://doi.org/10.1016/j.chemosphere.2013.12.038

Li, Q., Feng, Z., Zhang, T., Ma, C. & Shi, H. 2020. Microplastics in the commercial seaweed nori. Journal of Hazardous Materials, 388: 122060. https://doi.org/10.1016/j.jhazmat.2020.122060

Liu, L., Heinrich, M., Myers, S. & Dworjanyn, S.A. 2012. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. Journal of Ethnopharmacology, 142(3): 591–619. https://doi.org/10.1016/j.jep.2012.05.046

Ma, Z., Lin, L., Wu, M., Yu, H., Shang, T., Zhang, T. & Zhao, M. 2018. Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture, 497: 49–55.

Mahmud, Z.H., Kassu, A., Mohammad, A., Yamato, M., Bhuiyan, N.A., Balakrish Nair, G. & Ota, F. 2006. Isolation and molecular characterization of toxigenic Vibrio parahaemolyticus from the Kii Channel, Japan. Microbiological Research, 161(1): 25–37. https://doi.org/10.1016/j.micres.2005.04.005

Mahmud, Z.H., Neogi, S.B., Kassu, A., Wada, T., Islam, A.S., Balakrish Nair, G. & Ota, F. 2007. Seaweeds as a reservoir for diverse Vibrio parahaemolyticus populations in Japan. International Journal of Food Microbiology, 118(1): 92–96. https://doi.org/10.1016/j.ijfoodmicro.2007.05.009

Mahmud, Z.H., Neogi, S.B., Kassu, A., Huong, B.T.M., Jahid, I.K., Islam, M.S. & Ota, F. 2008. Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology, 64(2): 209–218. https://doi.org/10.1111/j.1574-6941.2008.00460.x

Makkar, H.P.S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F. & Ankers, P. 2016. Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212: 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018

Martin-León, V., Paz, S., D’Eufemia, P.A., Plasencia, J.J., Sagratini, G., Marcantoni, G., Navarro-Romero, M., Gutiérrez, Á., Hardisson, A. & Rubio-Armendáriz, C. 2021. Human exposure to toxic metals (Cd, Pb, Hg) and nitrates (NO3-) from seaweed consumption. Applied Sciences, 11: 6934. https://doi.org/10.3390/app11156934

McSheehy, S., Szpunar, J., Morabito, R. & Quevauviller, P. 2003. The speciation of arsenic in biological tissues and the certification of reference materials for quality control. TrAC Trends in Analytical Chemistry, 22(4): 191–209.

Meng, K.C., Oremus, K.L. & Gaines, S.D. 2016. New England cod collapse and the climate. PLoS One, 11(7): e0158487. https://doi.org/10.1371/journal.pone.0158487

Molazadeh, M., Ahmadzadeh, H., Pourianfar, H.R., Lyon, S. & Rampelotto, P.H. 2019. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7: 42. doi: 10.3389/fbioe.2019.00042

Monti, M., Minocci, M., Beran, A. & Iveša, L. 2007. First record of Ostreopsis cfr. ovata on macroalgae in the northern Adriatic Sea. Marine Pollution Bulletin, 54(5), 598– 601.

Moo-Puc, R., Robledo, D. & Freile-Pelegrin, Y. 2008. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. Journal of Ethnopharmacology, 120(1): 92–97. doi: 10.1016/j.jep.2008.07.035

Morais, T., Inácia, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L. & Bahcevandziev, K. 2020. Seaweed potential in the animal feed: a review. Journal of Marine Science and Engineering, 8: 559: doi: 10.3390/jmse8080559

Morrison, L., Baumann, H.A. & Stengel, D.B. 2008. An assessment of metal contamination along the Irish coast using the seaweed Ascophyllum nodosum (Fucales, Phaeophyceae). Environmental Pollution, 152: 293–303. doi:10.1016/j.envpol.2007.06.052

Nichols, C., Ching-Lee, M., Daquip, C.-L., Elm, J., Kamagai, W., Low, E., Murakawa, S., O’Brien, P., O’Connor, N., Ornellas, D., Oshiro, P., Voung, A., Whelen, A.C. & Park, S. Y. 201٧. Outbreak of salmonellosis associated with seaweed from a local aquaculture farm—Oahu, 2016. Paper presented at the CSTE. Boise, ID. https://cste.confex.com/cste/2017/webprogram/Paper8115.html

Nitschke, U. & Stengel, D. B. 2015. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chemistry, 172: 326 – 334. https://doi.org/10.1016/j.foodchem.2014.09.030

Nitschke, U. & Stengel, D. B. 201٦. Quantification of iodine loss in edible Irish seaweeds during processing. Journal of Applied Phycology, 28(6): 352٧– 3533. https://doi.org/10.1007/s10811-016-0868-6

Ott, H. 2018. Climate change eroding women’s status in Zanzibar. In: Pulitzer Center. Washington, DC, Pulitzer Center. Cited 10 November 2021. https://pulitzercenter.org/stories/climate-change-eroding-womens-status-zanzibar

Park, J.H., Jeong, H.S., Lee, J.S., Lee, S.W., Choi, Y.H., Choi, S.J., Joo, I.S. et al. 2015. First norovirus outbreaks associated with consumption of green seaweed (Enteromorpha spp.) in South Korea. Epidemiology and Infection, 143(3): 515–521. https://doi.org/10.1017/S0950268814001332

Pinsky, M.L., Fenichel, E., Fogarty, M., Levin, S., McCay, B., St. Martin, K., Selden, R.L. et al. 2021. Fish and fisheries in hot water: What is happening and how do we adapt? Population Ecology, 63(1): 17–26. https://doi.org/10.1002/1438-390X.12050

Polikovsky, M., Fernand, F., Sack, M., Frey, W., Müller, G. & Golberg, A. 2019. In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric field. Food Chemistry, 276: 735–744. https://doi.org/10.1016/j.foodchem.2018.09.134

Roleda, M. Y., Skjermo, J., Marfaing, H., Jónsdóttir, R., Rebours, C., Gietl, A., Stengel, D.B. & Nitschke, U. 2018. Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: Inherent variations determine species-specific daily allowable consumption. Food Chemistry, 254: 333– 339. https://doi.org/10.1016/j.foodchem.2018.02.024

Roque, B.M., Brooke, C.G., Ladau, J., Polley, T., Marsh, L., Najafi, N., Pandey, P. et al. 2019. Effect of the macroalgae Asparagopsis taxiformis on methane production and the rumen microbiome assemblage. Animal Microbiome, 1(3). https://doi.org/10.1186/s42523-019-0004-4

Roque, B.M., Venegas, M., Kinley, R.D., de Nys, R., Duarte, T.L., Yang, X. & Kebreab, E. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef teers. PLoS One, 16(3): e0247820. https://doi.org/10.1371/journal.pone.0247820

Rose, M., Lewis, J., Langford, N., Baxter, M., Origgi, S., Barber, M., MacBain, H. & Thomas, K. 2007, Arsenic in seaweed – forms, concentrations and dietary exposure. Food and Chemical Toxicology, 45: 1263–1267.

Roy-Lachapelle, A., Solliec, M., Bouchard, M.F. & Sauvé, S. 2017. Detection of cyanotoxins in algae dietary supplements. Toxins, 9: 76. doi:10.3390/toxins9030076

Sartal, C., Alonso, M. & Barrera, P. 2014. Arsenic in seaweed: presence, bioavailability and speciation. In: Seafood Science: Advances in Chemistry Technology and Applications, pp. 276–351. Boca Raton, FL, USA, CRC Press, Taylor and Francis Group.

Seghetta, M., Tørring, D., Bruhn, A. & Thomsen, M. 2016. Bioextraction potential of seaweed in Denmark — An instrument for circular nutrient management. Science of the Total Environment, 563: 513–529.

Squadrone, S., Brizio, P., Battuello, M., Nurra, N., Sartor, R.M., Riva, A., Staiti, M. et al. 2018. Trace metal occurrence in Mediterranean seaweeds. Environmental Science and Pollution Research, 25(10): 9708–9721. https://doi.org/10.1007/s11356-018-1280-3

Testai, E., Buratti, F.M., Funari, E., Manganelli, M., Vichi, S., Arnich, N., Biré, R. et al. 2016. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications, 13(2). https://doi.org/10.2903/sp.efsa.2016.EN-998

Thomas, I., Siew, L.Q.C., Watts, T.J. & Haque, R. 2018. Seaweed allergy. The Journal of Allergy and Clinical Immunology, 7(2): 714–715. doi: 10.1016/j.jaip.2018.11.009

Vijayaraghavan, K. & Joshi, U. 2015. Application of seaweed as substrate additive in green roofs: enhancement of water retention and sorption capacity. Landscape and Urban Planning, 143: 25 – 32.

Wan, A.H.L., Davies, S.J., Soler-Vila, A., Fitzgerald, R. & Johnson, M.P. 2019. Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture, 11: 458–492. doi: 10.1111/raq.12241

Whitworth, J. 2019. Norway norovirus outbreaks linked to seaweed salad from China. In: Food Safety News. Cited 28 October 2021. https://www.foodsafetynews.com/2019/09/norway-norovirus-outbreaks-linked-to-seaweed-salad-from-china/

Winckelmann, D., Bleeke, F., Thomas, B., Elle, C. & Klöck, G. 2015. Open pond cultures of indigenous algae grown on non-arable land in an arid desert using wastewater. International Aquatic Research, 7: 221–233. https://doi.org/10.1007/s40071-015-0107-9

Wells, M., Potin, P., Craigie, J., Raven, J., Merchant, S., Helliwell, K., Smith, A., Camire, M. & Brawley, S. 2017. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949–982.

Xu, D., Brennan, G., Xu, L., Zhang, X.W., Fan, X., Han, W.T., Mock, T., McMinn, A., Hutchins, D.A. & Ye, N. 2019. Ocean acidification increases iodine accumulation in kelp-based coastal food webs. Global Change Biology, 25: 629–639. doi: 10.1111/gcb.14467

Yun, E.J., Yu, S., Kim, Y.-A., Liu, J.-J., Kang, N.J., Jin, Y.-S. & Kim, K.H. 2021. In vitro prebiotic and anti-colon cancer activities of agar-derived sugars from red seaweeds. Marine Drugs, 19: 213. https://doi.org/10.3390/md19040213

4.5. Cell-based food

Agmas, B. & Adugna, M. 2018. Antimicrobial residue occurrence and its public health risk of beef meat in Debre Tabor and Bahir Dar, Northwest Ethiopia. Veterinary World, 11(7): 902–908. https://dx.doi.org/10.14202%2Fvetworld.2018.902-908

Allan, S.J., Ellis, M.J. & De Bank, P.A. 2021. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. Journal of Biomedical Materials Research, 109(12): 2471–2482. doi: 10.1002/jbm.a.37241.

Alvaro, C. 2019. Lab-Grown Meat and Veganism: A Virtue-Oriented Perspective. Journal of Agricultural and Environmental Ethics, 32(1): 127–141. https://doi.org/10.1007/s10806-019-09759-2

Andreassen, R., Pedersen, M., Kristoffersen, K. & Beate Rønning, S. 2020. Screening of by-products from the food industry as growth promoting agents in serum-free media for skeletal muscle cell culture. Food & Function, 11(3): 2477–2488.

Bhat, Z.F., Kumar, S. & Fayaz, H. 2015. In vitro meat production: Challenges and benefits over conventional meat production. Journal of Integrative Agriculture, 14(2): 241–248. https://doi.org/10.1016/S2095-3119(14)60887-X

Bryant, C.J. & Barnett, J.C. 2019. What’s in a name? Consumer perceptions of in vitro meat under different names. Appetite. 137: 104–113. doi:10.1016/j.appet.2019.02.021

Bryant, C.J., Anderson, J.E., Asher, K.E., Green, C. & Gasteratos, K. 2019. Strategies for overcoming aversion to unnaturalness: The case of clean meat. Meat Science, 154: 37–45. https://doi.org/10.1016/j.meatsci.2019.04.004

Byrne, B. 2021. State of the industry report: Cultured Meat. In: The Good Food Institute. Washington, DC. Cited 10 November 2021. https://gfi.org/resource/cultivated-meat-eggs-and-dairy-state-of-the-industry-report/

Campuzano, S., Mogilever, N.B. & Pelling, A.E. 2020. Decellularized Plant-Based Scaffolds for Guided Alignment of Myoblast Cells. bioRXiv (pre-print). https://doi.org/10.1101/2020.02.23.958686

Choudhury, D., Tseng, T. & Swartz, E. 2020. The Business of Cultured Meat. Trends in Biotechnology, 38(6):573-577. https://doi.org/10.1016/j.tibtech.2020.02.012

Chriki, S. & Hocquette, J.-F. 2020. The Myth of Cultured Meat: A Review. Frontiers in Nutrition, 7: 7. https://doi.org/10.3389/fnut.2020.00007

Churchill, W. 1932. Fifty Years Hence. Popular Mechanics Magazine 57(3). Chicago, Illinois. Popular Mechanics Company.

Corbyn, Z. 2020. The Observer: Out of the lab and into your frying pan: the advance of cultured meat. The Guardian. Cited 12 November 2021. https://www.theguardian.com/food/2020/jan/19/cultured-meat-on-its-way-to-a-table-near-you-cultivated-cells-farming-society-ethics

Elliott, G., Wang, S. & Fuller, B. 2017. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76: 74–91. https://doi.org/10.1016/j.cryobiol.2017.04.004

FAO. 2018. World Livestock: Transforming the livestock sector through the Sustainable Development Goals. Rome. https://www.fao.org/3/ca1201en/ca1201en.pdf

FAO. 2020. Five practical actions towards resilient, low-carbon livestock systems. Rome. https://www.fao.org/3/cb2007en/CB2007EN.pdf

FAO. 2021a. Food safety and quality: Chemical risks and JECFA. In: FAO. Rome. Cited 15 November 2021. https://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/en/

FAO. 2021b. Food safety and quality: Microbiological risks and JEMRA. In: FAO. Rome. Cited 15 November 2021. https://www.fao.org/food/food-safety-quality/scientific-advice/jemra/en/

FAO & WHO. 2008. Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Animals. Rome, FAO. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B68-2008%252FCXG_068e.pdf

FAO & WHO. 2009. Foods derived from modern biotechnology. Rome, FAO. https://www.fao.org/3/a1554e/a1554e00.pdf

FAO & WHO. 2011. Principles for the Risk Analysis of Foods Derived from Modern Biotechnology. Rome, FAO. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B44-2003%252FCXG_044e.pdf

FAO & WHO. 2016. Risk communication applied to food safety handbook. Rome, FAO. https://www.fao.org/3/i5863e/i5863e.pdf

Hadi, J. & Brightwell, G. 2021. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods, 10(6): 1226. https://doi.org/10.3390/foods10061226

Hallman, W. K. & Hallman, W. K., II. 2020. An empirical assessment of common or usual names to label cell-based seafood products. Journal of Food Science, 85(8): 2267–2277. dx.doi.org/10.1111/1750-3841.15351

Hamdan, M.N., Post, M.J., Ramli, M.A. & Mustafa, A.R. 2018. Cultured Meat in Islamic Perspective. Journal of Religion and Health, 57(6): 2193–2206. https://doi.org/10.1007/s10943-017-0403-3

Henchion, M., Moloney, A.P., Hyland, J., Zimmermann, J. & McCarthy, S. 2021. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal, 15: 100287. https://doi.org/10.1016/j.animal.2021.100287

Jha, A. 2013. First lab-grown hamburger gets full marks for ‘mouth feel’. The Guardian. Cited 12 November 2021. https://www.theguardian.com/science/2013/aug/05/world-first-synthetic-hamburger-mouth-feel

Kadim, I.T., Mahgoub, O., Baqir, S., Faye, B. & Purchas, R. 2015. Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture, 14(2): 222–233. https://doi.org/10.1016/S2095-3119(14)60881-9

Krautwirth, R. 2018. Will Lab-Grown Meat Find Its Way to Your Table? The Yeshiva University Observer, 10 May 2018. New York, NY, USA. Citation 12 November 2021. https://yuobserver.org/2018/05/will-lab-grown-meat-find-way-table/

Kupferschmidt, K. 2013. Lab Burger Adds Sizzle to Bid for Research Funds. Science, 341(6146): 602–603. doi: 10.1126/science.341.6146.602

Lynch, J. & Pierrehumbert, R. 2019. Climate Impacts of Cultured Meat and Beef Cattle. Frontiers in Sustainable Food Systems, 3: 5. https://doi.org/10.3389/fsufs.2019.00005

MacDonald, G. A. & Lanier, T. C. 1997. Cryoprotectants for improving frozen-food quality. In M. C. Erickson & Y.-C. Hung, eds. Quality in Frozen Food, pp. 197–232. Boston, MA, Springer US. https://doi.org/10.1007/978-1-4615-5975-7_11

MacQueen, L.A., Alver, C.G., Chantre, C.O., Ahn, S., Cera, L., Gonzalez, G.M., O’Connor, B.B. et al. 2019. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. npj Science of Food, 3(1): 20. https://doi.org/10.1038/s41538-019-0054-8

Masters, J. & Stacey, G. 2007. Changing medium and passaging cell lines. Nature Protocols, 2(9): 2276–2284. https://doi.org/10.1038/nprot.2007.319

Mattick, C.S. 2018. Cellular agriculture: The coming revolution in food production. Bulletin of the Atomic Scientists, 74(1): 32–35. https://doi.org/10.1080/00963402.2017.1413059

Mattick, C.S., Landis, A.E. & Allenby, B.R. 2015. A case for systemic environmental analysis of cultured meat. Journal of Integrative Agriculture, 14(2): 249–254. doi: 10.1016/S2095-3119(14)60885-6

Nucci, M.L. & Hallman, W.K. 2015. The role of public (mis)perceptions in the acceptance of new food technologies: Implications for food nanotechnology applications. In: D. Wright, eds. Communication Practices in Engineering, Manufacturing, and Research for Food, Drug, and Water Safety, pp. 89-118. Hoboken, NJ, Wiley-IEEE Press. ISBN: 978-1-118-27427-9.

OECD & FAO. 2021. OECD-FAO Agricultural Outlook 2021-2030. OECD Publishing. Paris. https://doi.org/10.1787/19428846-en

OIE. 2021. Terrestrial Animal Health Code – Glossary. In: OIE. Cited 12 November 2021. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/2018/en_glossaire.htm

Ong, K.J., Johnston, J. Datar, I., Sewalt, V. Holmes, D. & Shatkin, J.A. 2021. Food safety considerations and research priorities for the cultured meat and seafood industry. Comprehensive Reviews in Food Science and Food Safety, 20(6): 5421–5448. https://doi.org/10.1111/1541-4337.12853

Ong, S., Choudhury, D. & Naing, M. W. 2020. Cell-based meat: Current ambiguities with nomenclature. Trends in Food Science and Technology, 102: 223–231. doi: 10.1016/j.tifs.2020.02.010

Post, M.J. 2012. Cultured meat from stem cells: challenges and prospects. Meat Sci., 92: 297–301. doi: 10.1016/j.meatsci.2012.04.008

Post, M.J. 2014. Cultured beef: medical technology to produce food. Journal of the Science of Food and Agriculture, 94(6): 1039–1041. doi: 10.1002/jsfa.6474

Post, M., Levenberg, S., Kaplan, D., Genovese, N., Fu, J., Bryant, C., Negowetti, N., Verzijden, K. & Moutsatsou, P. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7): 403–415.

Risner, D., Li, F., Fell, J., Pace, S., Siegel, J., Tagkopoulos, I. & Spang, E. 2020. Preliminary Techno-Economic Assessment of Animal Cell-Based Meat. Foods, 10(1): 3. https://doi.org/10.3390/foods10010003

Rischer, H., Szilvay, G.R., Oksman-Caldentey, K.M. 2020. Cellular agriculture — industrial biotechnology for food and materials. Current Opinion in Biotechnology, 61: 128–134. https://doi.org/10.1016/j.copbio.2019.12.003

Savini, M., Cecchini, C., Verdenelli, M. C., Silvi, S., Orpianesi, C. & Cresci, A. 2010. Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients, 2(3): 330–339. https://doi.org/10.3390/nu2030330

Schaefer, G.O. & Savulescu, J. 2014. The Ethics of Producing In Vitro Meat. Journal of Applied Philosophy, 31(2): 188–202. https://doi.org/10.1111/japp.12056

Shapiro, P. 2018. Clean meat: how growing meat without animals will revolutionize dinner and the world. Science, 359(6374): 399. doi: 10.1126/science.aas8716

Smetana, S., Mathys, A., Knoch, A. & Heinz, V. 2015. Meat alternatives: life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment, 20(9): 1254–1267. https://doi.org/10.1007/s11367-015-0931-6

Specht, E., Welch, D., Rees Clayton, E. & Lagally, C. 2018. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal, 132: 161–168.

Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A. & Sexton, A. 2018. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, (78): 155–166. https://doi.org/10.1016/j.tifs.2018.04.010

Swartz, E. 2021. Anticipatory life cycle assessment and techno-economic assessment of commercial cultivated meat production. Washington, DC, The Good Food Institute. https://gfi.org/wp-content/uploads/2021/03/cultured-meat-LCA-TEA-policy.pdf

Takahashi, K. & Yamanaka, S. 2006. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126(4): 663–676.

Treich, N. 2021. Cultured Meat: Promises and Challenges. Environmental and Resource Economics, 79(1): 33–61.

5. Food safety considerations for agriculture within urban spaces

Ackerman, K., Dahlgren, E. & Xu, X. 2013. Sustainable Urban Agriculture: Confirming Viable Scenarios for Production. Final report. Prepared for the New York State Energy Research and Development Authority. https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/Sustainable-Urban-Agriculture.pdf

Adegoke, A.A., Amoah, I.D., Stenström, T.A., Verbyla, M.E. & Mihelcic, J.R. Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Frontiers in Public Health, 6: 337. doi: 10.3389/fpubh.2018.00337

Agrawal, M., Singh, B., Rajput, M., Marshall, F. & Bell, J.N.B. 2003. Effect of air pollution on peri-urban agriculture: a case study. Environmental Pollution, 126: 323–329. doi: 10.1016/S0269-7491(03)00245-8

Al-Kodmany, K. 2018. The vertical farm: A review of developments and implications for the vertical city. Buildings, 8: 24. doi: 10.3390/buildings8020024

Alarcon, P., Févre, E.M., Muinde, P., Murungi, M.K., Kiambi, S., Akoko, J. & Rushton, J. 2017. Urban livestock keeping in the city of Nairobi: Diversity of production systems, supply chains, and their disease management and risks. Frontiers in Veterinary Science, 4: 171. doi: 10.3389/fvets.2017.00171.

Alexander, J., Hembach, N. & Schwartz, T. 2020. Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Scientific Reports, 10: 8952. https://doi.org/10.1038/s41598-020-65635-4

Andino, V., Forero, O. y Quezada, M.L. 2021. Informe de síntesis dinámica y planificación del sistema agroalimentario en la ciudad-región Quito. Roma, FAO y Fundación RUAF.

Antisari, L.V., Orsini, F., Marchetti, L., Vianello, G. & Gianquinto, G. 2015. Heavy metal accumulation in vegetables grown in urban gardens. Agronomy for Sustainable Development, 35: 1139 – 1147. doi: 10.1007/s13593-015-0308-z.

Antwi-Agyei, P., Peasey, A., Biran, A., Bruce, J. & Ensink, J. 2016. Risk perceptions of wastewater use for urban agriculture in Accra, Ghana. PLoS One, 11(3): e0150603. doi: 10.1371/journal.pone.0150603.

Ashraf, E., Shah, F., Luqman, M., Samiullah, Younis, M., Aziz, I. & Farooq, U. 2013. Use of untreated wastewater for vegetable farming: A threat to food safety. International Journal of Agricultural and Applied Sciences, 5(1): 27–33.

Augustsson, A.L.M., Uddh-Söderberg, T.E., Hogmalm, K.J. & Filipsson, M.E.M. 2015. Metal uptake by homegrown vegetables- The relative importance in human health risk assessments at contaminated sites. Environmental Research, 138: 181–190. http://dx.doi.org/10.1016/j.envres.2015.01.020

Beyer, S. 2019. Modular micro farms: A new approach to urban food production? In: Forbes. Cited 21 September 2021. https://www.forbes.com/sites/scottbeyer/2019/11/25/modular-micro-farms-a-new-approach-to-urban-food-production/?sh=55bb911f2e9e

Brown, S.L., Chaney, R.L. & Hettiarachchi, G.M. 2016. Lead in urban soils: A real or perceived concern for urban agriculture. Journal of Environmental Quality, 45: 26–36. doi: 10.2134/jeq2015.07.0376

CDC. 2021. Salmonella. Investigation details. In: Center for Disease Controls and Prevention. Atlanta, Georgia, USA. Cited 19 November 2021. https://www.cdc.gov/salmonella/backyardpoultry-05-21/details.html

Clancy, K. 2016. DIGGING DEEPER: Bringing a Systems Approach to Food Systems: Issues of scale. Journal of Agriculture, Food Systems, and Community Development, 3(1): 21–23. http://dx.doi.org/10.5304/jafscd.2012.031.017

Corbould, C. 2013. Feeding the cities: Is urban agriculture the future of food security? Strategic Analysis Paper. Dalkeith WA, Australia, Future Directions International Pty Ltd. https://apo.org.au/sites/default/files/resource-files/2013-11/apo-nid36213.pdf

Costello, C., Oveysi, Z., Dundar, B. & McGarvey, R. 2021. Assessment of the effect of urban agriculture on achieving a localized food system centered on Chicago, IL using robust optimization. Environmental Science & Technology, 55: 2684–2694. https://dx.doi.org/10.1021/acs.est.0c04118

Defoe, P.P., Hettiarachchi, G.M., Benedict, C. & Martin, S. 2014. Safety of gardening on lead- and arsenic-contaminated urban brownfields. Journal of Environmental Quality, 43: 2064–2078. doi:10.2134/jeq2014.03.0099

Dekissa, T., Trobman, H., Zendehdel, K. & Azam, H. 2021. Integrating urban agriculture and stormwater management in a circular economy to enhance ecosystem services: Connecting the dots. Sustainability, 13: 8293. https://doi.org/10.3390/su13158293

Despommier, D. 2010. The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal of Consumer Protection and Food Safety, 6: 233–236. doi: 10.1007/s00003-010-0654-3

Domingo, N.G.G., Balasubramanian, S., Thakrar, S.K., Clark, M.A., Adams, P.J., Marshall, J.D., Muller, N.Z. et al. 2021. Air quality–related health damages of food. Proceedings of the National Academy of Sciences, 118(20): e2013637118. https://doi.org/10.1073/pnas.2013637118

EFSA. 2008. Nitrate in vegetables - Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA Journal, 689: 1–79. https://doi.org/10.2903/j.efsa.2008.689

Ellen MacArthur Foundation. 2019. Cities and circular economy for food. In: Ellen MacArthur Foundation. Isle of Wight, UK. Cited 18 September 2021. https://ellenmacarthurfoundation.org/cities-and-circular-economy-for-food

Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S. & Stohl, A. 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11(1): 3381. https://doi.org/10.1038/s41467-020-17201-9

Fakour, H., Lo, S.-L., Yoashi, N.T., Massao, A.M., Lema, N.N., Mkhontfo, F.B., Jomalema, P.C. et al. 2021. Quantification and Analysis of Microplastics in Farmland Soils: Characterization, Sources, and Pathways. Agriculture, 11(4): 330. https://doi.org/10.3390/agriculture11040330

FAO. 1996. The State of Food and Agriculture. Rome. https://www.fao.org/3/w1358e/w1358e00.htm#TopOfPage

FAO. 2001. Livestock keeping in urban areas. A review of traditional technologies based on literature and field experience. FAO Animal Production and Health Papers No. 151. Rome. https://www.fao.org/3/y0500e/y0500e00.htm#toc

FAO. 2007. Profitability and sustainability of urban and peri-urban agriculture. Agricultural Management, Marketing and Finance Occasional Paper No. 19. Rome. https://ruaf.org/assets/2019/11/Profitability-and-Sustainability.pdf

FAO. 2012. Pro-poor legal and institutional frameworks for urban and peri-urban agriculture. FAO Legislative Study No. 108. Rome. https://www.fao.org/3/i3021e/i3021e.pdf

FAO. 2014. Growing greener cities in Latin America and the Caribbean. An FAO report on urban and peri-urban agriculture in the region. Rome. https://www.fao.org/3/i3696e/i3696e.pdf

FAO. 2019a. FAO framework for Urban Food Agenda. Leveraging sub-nationals and local government action to ensure sustainable food systems and improved nutrition. Rome. https://www.fao.org/publications/card/en/c/CA3151EN/

FAO. 2019b. On-farm practices for the safe use of wastewater in urban and peri-urban horticulture – a training handbook for Farmer Field Schools in sub-Saharan Africa, Second edition. Rome. https://www.fao.org/3/CA1891EN/ca1891en.pdf

FAO. 2020. Cities and local governments at the forefront in building inclusive and resilient food systems. Key results from the FAO survey “Urban Food Systems and COVID-19”. Rome. https://www.fao.org/3/cb0407en/CB0407EN.pdf

FAO & WHO. 2002. Evaluation of certain food additives. Fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, World Health Organization. http://whqlibdoc.who.int/trs/WHO_TRS_913.pdf

FAO & WHO. 2019. Safety and quality of water used in food production and processing - Meeting report. Microbiological Risk Assessment Series No. 33. Rome. https://www.fao.org/3/ca6062en/CA6062EN.pdf

Fewtrell, L. 2004. Drinking-water nitrate, methemoglobininemia, and global burden of disease: A discussion. Environmental Health Perspectives, 112(14): 1371–1374. https://doi.org/10.1289/ehp.7216

Fry, S. 2018. The world’s first floating farm making waves in Rotterdam. BBC News, 17 August 2018. London. Cited 7 September 2021. https://www.bbc.com/news/business-45130010

Galeana-Pizaña, J.M., Couturier, S. & Monsivais-Huertero, A. 2018. Assessing food security and environmental protection in Mexico with a GIS-based Food Environmental Efficiency index. Land Use Policy, 76: 442–454. https://doi.org/10.1016/j.landusepol.2018.02.022

Gallagher, C.L., Oettgen, H.L & Barbander, D.J. 2020. Beyond community gardens: A participatory research study evaluating nutrient and lead profiles of urban harvested fruit. Elementa Science of the Anthropocene, 8: 1: doi: https://doi.org/10.1525/elementa.2020.004

Izquierdo, M., De Miguel, E., Ortega, MF. & Mingot, J. 2015. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere, 135: 312–318. http://dx.doi.org/10.1016/j.chemosphere.2015.04.079

Jay-Russell, M. 2011. Feral in the fields: Food safety risks from wildlife. In: Food Safety News. Cited 15 October 2021. https://www.foodsafetynews.com/2011/09/co-management-of-food-safety-risks-from-wildlife-the-environment/

Jokinen, K., Salovaara, A.-K., Wasonga, D.O., Edelmann, M., Simpura, I. & Mäkelä, P.S.A. 2022. Root-applied glycinebetaine decreases nitrate accumulation and improves quality in hydroponically grown lettuce. Food Chemistry, 366: 130558. https://doi.org/10.1016/j.foodchem.2021.130558

Kaiser, M.L., Williams, M.L., Basta, N., Hand, M. & Huber, S. 2015. When vacant lots become urban gardens: Characterizing the perceived and actual food safety concerns of urban agriculture in Ohio. Journal of Food Protection, 78(11): 2070 – 2080. doi:10.4315/0362-028X.JFP-15-181

Khouryieh, M., Khouryieh, H., Daday, J.K. & Shen, C. 2019. Consumers’ perceptions of the safety of fresh produce sold at farmers’ markets. Food Control, 105: 242–247. https://doi.org/10.1016/j.foodcont.2019.06.003

Knorr, D., Khoo, C.S.H. & Augustin, M.A. 2018. Food for an urban planet: Challenges and research opportunities. Frontiers in Nutrition, 4: 73. doi: 10.3389/fnut.2017.00073

Larsen, T.A., Hoffmann, S., Lüthi, C., Truffer, B. & Maurer, M. 2016. Emerging solutions to the water challenges of an urbanizing world. Science, 352(6288): 928–933. doi: 10.1126/science.aad8641

Li, J., Yu, H. & Luan, Y. 2015. Meta-analysis of the copper, zinc, and cadmium adsorption capacities of aquatic plants in heavy metal-polluted water. International Journal of Environmental Research and Public Health, 12: 14958–14973. doi:10.3390/ijerph121214959

Lim, X. 2021. Microplastics are everywhere – but are they harmful? Nature, 593: 22–25. https://doi.org/10.1038/d41586-021-01143-3

Love, D.C., Uhl, M.S. & Genello, L. 2015. Energy and water use if a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering, 68: 19–27. http://dx.doi.org/10.1016/j.aquaeng.2015.07.003

Malakoff, D., Wigginton, N.S., Fahrenkamp-Uppenbrink, J. & Wible, B. 2016. Use our infographics to explore the rise of the urban planet. Science. doi: 10.1126/science.aaf5729

Marquez-Bravo, L.G., Briggs, D., Shayler, H., McBride, M., Lopp, D., Stone, E., Ferenz, G., Bogdan, K.G., Mitchell, R.G. & Spliethoff, H.M. 2016. Concentrations of polycyclic aromatic hydrocarbons in New York City community garden soils: Potential sources and influential factors. Environmental Toxicology and Chemistry, 35(2): 357–367. doi: 10.1002/etc.3215

Martin, M. & Molin, E. 2019. Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability, 11: 4124. doi:10.3390/su11154124

McBride, M.B., Shayler, H.A., Spliethoff, H.M., Mitchell, R.G., Marquez-Bravo, L.G., Ferenz, G.S., Russell-Anelli, J.M. et al. 2014. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environmental Pollution, 194: 254–261. https://doi.org/10.1016/j.envpol.2014.07.036

Meftaul, I.M., Venkatewarlu, K., Dharmarajan, R., Annamalai, P. & Meghraj, M. 2020. Pesticides in the urban environment: A potential threat that knocks at the door. Science of the Total Environment, 711: 134612. https://doi.org/10.1016/j.scitotenv.2019.134612

Meineke, E.K., Dunn, R.R., Sexton, J.O. & Frank, S.D. 2013. Urban warming drives insect pest abundance on street trees. PLoS One, 8(3): e59687. doi:10.1371/journal.pone.0059687

Merino, M.V., Gajjar, S.P., Subedi, A., Polgar, A. & Van Den Hoof, C. 2021. Resilient governance regimes that support urban agriculture in sub-Saharan cities: Learning from local challenges. Frontiers in Sustainable Food Systems, 5: 692167. doi: 10.3389/fsufs.2021.692167

Miner, R.C. & Raftery, S.R. 2012. Turning brownfields into “green fields” growing food using marginal lands. Environmental Impact, 162: 413–419. doi: 10.2495/EID120361

Mok, H.-F., Williamson, V.G., Grove, J.R., Burry, K, Barker, S.F. & Hamilton, A.J. 2014. Strawberry fields forever? Urban agriculture in developed countries: a review. Agronomy for Sustainable Development, 34: 21–43. doi: 10.1007/s13593-013-0156-7

Muehe, E.M., Wang, T., Kerl, C.F., Planer-Friedrich, B. & Fendorf, S. 2019. Rice production threatened by coupled stresses of climate and soil arsenic. Nature Communications, 10(1): 4985. https://doi.org/10.1038/s41467-019-12946-4

Mukherjee, M., Laird, E., Gentry, T.J., Brooks, J.P. & Karthikeyan, R. 2021. Increased antimicrobial and multidrug resistance downstream of wastewater treatment plants in an urban watershed. Frontiers in Microbiology, 12: 657353. doi: 10.3389/fmicb.2021.657353

Nabulo, G., Black, C.R., Craigon, J. & Young, S.D. 2012. Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environmental Pollution, 162: 389–398. doi:10.1016/j.envpol.2011.11.040

News Desk. 2021. Patient count climbs in outbreak traced to backyard chicken. In: Food Safety News. Cited 19 September 2021. https://www.foodsafetynews.com/2021/09/patient-count-climbs-in-outbreak-traced-to-backyard-chickens/?utm_source=Food+Safety+News&utm_campaign=099a3c1ace-RSS_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_f46cc10150-099a3c1ace-40295383

Noh, K., Thi, L.T. & Jeong, B.R. 2019. Particulate matter in the cultivation area may contaminate leafy vegetables with heavy metals above safe levels in Korea. Environmental Science and Pollution Research, 26: 25762–25774. https://doi.org/10.1007/s11356-019-05825-4

Norton, G., Deacon, C., Mestrot, A., Feldmann, J., Jenkins, P., Baskaran, C. & Meharg, A.M. 2013. Arsenic speciation and localization in horticultural produce grown in a historically impacted mining region. Environmental Science & Technology, 47: 6164 – 6172. https://doi.org/10.1021/es400720r

Ortolo, M. 2017. Air pollution risk assessment on urban agriculture. Wageningen, The Netherlands, Wageningen University & Research. Master’s Thesis.

Paltiel, O., Fedorova, G., Tadmor, G., Kleinstern, G., Maor, Y. & Chefetz, B. 2016. Human exposure to wastewater-derived pharmaceuticals in fresh produce: a randomized controlled trial focusing on carbamazepine. Environmental Science & Technology, 50: 4476–4482. doi: 10.1021/acs.est.5b06256

Park, W. 2021. Why we still haven’t solved global food insecurity. In: BBC News Follow The Food. London, BBC News. Cited 21 November 2021. https://www.bbc.com/future/bespoke/follow-the-food/the-race-to-improve-food-security/

Poulsen, M.N., Hulland, K.R.S., Gulas, C.A., Pham, H., Dalglish, S.L., Wilkinson, R.K. & Winch, P.J. 2014. Growing an Urban Oasis: A Qualitative Study of the Perceived Benefits of Community Gardening in Baltimore, Maryland. Culture, Agriculture, Food and Environment, 36(2): 69–82. https://doi.org/10.1111/cuag.12035

Pruden, A., Pei, R., Storteboom, H. & Carlson, K.H. 2006. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environmental Science & Technology, 40(23): 74457450. doi: 10.1021/es060413

Qiu, R., Song, Y., Zhang, X., Xie, B. & He, D. 2020. Microplastics in Urban Environments: Sources, Pathways, and Distribution. In: D. He & Y. Luo, eds. Microplastics in Terrestrial Environments. Emerging Contaminants and Major Challenges. Switzerland, Springer. https://doi.org/10.1007/698_2020_447

Quijano, L., Yusà, V., Font, G., McAllister, C., Torres, C. & Pardo, O. 2017. Risk assessment and monitoring programme of nitrates through vegetables in the Region of Valencia (Spain). Food and Chemical Toxicology, 100: 42–4٩. https://doi.org/10.1016/j.fct.2016.12.010

Ramaswami, A., Russell, A.G., Culligan, P.J., Sharma, K.R. & Kumar, E. 2016. Meta-principles for developing smart, sustainable, and healthy cities. Science, 352: 6288.

Rosenzweig, C., W. Solecki, P. Romero-Lankao, S. Mehrotra, S. Dhakal, T. Bowman & S. Ali Ibrahim. 2015. ARC3.2 Summary for City Leaders — Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. New York, NY, USA, Columbia University.

Santo, R., Palmer, A. & Kim, B. 2016. Vacant lots to vibrant plots. A review of the benefits and limitations of urban agriculture. Baltimore, MD, USA, Johns Hopkins Center for a Liveable Future. https://clf.jhsph.edu/sites/default/files/2019-01/vacant-lots-to-vibrant-plots.pdf

Sarker, A.H. Bornman, J.F. & Marinova, D. 2019. A framework for integrating agriculture in urban sustainability in Australia. Urban Science, 3: 50. doi:10.3390/urbansci3020050

Säumel, I., Kotsyuk, I., Hölscher, M., Lenkereit, C., Weber, F. & Kowarik, I. 2012. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environmental Pollution, 165: 124–132. https://doi.org/10.1016/j.envpol.2012.02.019

Skar, S.L.G., Pineda-Martos, R., Timpe, A., Pölling, B., Bohn, K., Külvik, M., Delgado, C. et al. 2020. Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Systems, 2(1): 1–27. https://doi.org/10.2166/bgs.2019.931

Stark, P.B., Miller, D., Carlson, T.J. & de Vasquez, K.R. 2019. Open-source food: nutrition, toxicology, and availability of wild edible greens in the East Bay. PLoS One, 14(1): e0202450. doi.org/10.1371/journal.pone.0202450

Strawn, L.K., Gröhn, Y.T., Warchocki, S., Worobo, R.W., Bihn, E.A. & Wiedmann, M. 2013. Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields. Applied and Environmental Microbiology, 79(24): 7618–7627. doi:10.1128/AEM.02831-13

Suriyagoda, L.D.B., Dittert, K. & Lambers, H. 2018. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agriculture, Ecosystems and Environment, 253: 23–37. http://dx.doi.org/10.1016/j.agee.2017.10.017

Taguchi, M. & Makkar, H. 2015. Issues and options for crop-livestock integration in peri-urban settings. Agriculture for Development, 26: 7. https://www.feedipedia.org/node/21258

Tatum, M. 2021. An eight-story fish farm will bring locally produced food to Singapore. In: Smithsonian Magazine. Washington, DC. Cited 17 August 2021. https://www.smithsonianmag.com/innovation/eight-story-fish-farm-will-bring-locally-produced-food-to-singapore-180976956/

Tefft, J., Jonasova, M., Zhang, F. & Zhang, Y. Urban food systems governance – current context and future opportunities. Rome, FAO and Washington, DC, The World Bank. https://doi.org/10.4060/cb1821en

The Economist. 2010. Does it really stack up? The Economist, 11 December 2010. London. Cited 25 September 2021. https://www.economist.com/technology-quarterly/2010/12/11/does-it-really-stack-up?story_id=17647627

Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U.B. & Sawicka, M. 2014. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renewable Agriculture and Food Systems, 30(1): 43–54. doi:10.1017/S1742170514000143

Tobin, M.R., Goldshear, J.L., Price, L.B., Graham, J.P. & Leibler, J.H. 2015. A framework to reduce infectious disease risk from urban poultry in the United States. Public Health Reports, 130(4): 380–391. doi: 10.1177/003335491513000417

Wang, X., Biswas, S., Paudyal, N., Pan, H., Li, X., Fang, W. & Yue, M. 2019. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through National Antimicrobial Resistance Monitoring System between 1996 and 2016. Frontiers in Microbiology, 10: 985. doi: 10.3389/fmicb.2019.00985

Wang, Y.-J., Deering, A.J. & Kim, H.-J. 2020. The occurrence of Shiga toxin-producing E.coli in aquaponic and hydroponic systems. Horticulture, 6:1. doi:10.3390/horticulturae6010001

Weber, C.L. & Matthews, H.S. 2008. Food-miles and the relative climate impacts of food choices in the United States. Environmental Science & Technology, 42: 3508–3513. https://doi.org/10.1021/es702969f

Wei, J., Guo, X., Marinova, D. & Fan, J. 2014. Industrial SO2 pollution and agricultural losses in China: evidence from heavy air polluters. Journal of Cleaner Production, 64: 404–413. http://dx.doi.org/10.1016/j.jclepro.2013.10.027

Werkenthin, M., Kluge, B. & Wessolek, G. 2014. Metals in European roadside soils and soil solution – A review. Environmental Pollution, 98–110. http://dx.doi.org/10.1016/j.envpol.2014.02.025

Wielemaker, R., Oenema, O., Zeeman, G. & Weijma, J. 2019. Fertile cities: Nutrient management practices in urban agriculture. Science of the Total Environment, 668: 1277–1288. https://doi.org/10.1016/j.scitotenv.2019.02.424

Wortman, S.E. & Lovell, S.T. 2013. Environmental challenges threatening the growth of urban agriculture in the United States. Journal of Environmental Quality, 42(5): 1283–1294. doi:10.2134/jeq2013.01.0031

Yan, Z.-Z., Chen, Q.-L., Zhang, Y.-J., He, J.-Z. & Hu, H.-W. 2019. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 132: 105106. https://doi.org/10.1016/j.envint.2019.105106

Zammit, I., Marano, R.B.M., Vaiano, V., Cytryn, E. & Rizzo, L. 2020. Changes in antibiotic resistance gene levels in soil after irrigation with treated wastewater: A comparison between heterogenous photocatalysis and chlorination. Environmental Science & Technology, 54: 7677–7686. https://dx.doi.org/10.1021/acs.est.0c01565

Zhao, Y., Cocerva, T., Cox, S., Tardif, S., Su, J.-Q., Zhu, Y.-G. & Brandt, K.K. 2019. Evidence for co-selection of antibiotic genes and mobile genetic elements in metal polluted urban soils. Science of the Total Environment, 656: 512–520. https://doi.org/10.1016/j.scitotenv.2018.11.372

Zhao, F.-J. & Wang, P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil, 446: 1–21. https://doi.org/10.1007/s11104-019-04374-6

6. Exploring circular economy through plastic recycling

Amaral-Zettler, L.A., Zettler, E.R. & Mincer, T.J. 2020. Ecology of the plastisphere. Nature Reviews Microbiology, 18: 139–151. https://doi.org/10.1038/s41579-019-0308-0

Bandyopadhyay, J. & Sinha Ray, S. 2018. Are nanoclay-containing polymer composites safe for food packaging applications? – An overview. Journal of Applied Polymer Science, 136(12): 47214. https://doi.org/10.1002/app.47214

Bilo, F., Pandini, S., Sartore, L., Depero, L.E., Gargiulo, G., Bonassi, A., Federici, S. et al. 2018. A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200: 357–368. https://doi.org/10.1016/j.jclepro.2018.07.252

Borrelle, S.B., Rochman, C.M., Liboiron, M., Bond, A.L., Lusher, A., Bradshaw, H. & Provencher, J.F. 2017. Opinion: Why we need an international agreement on marine plastic pollution. Proceedings of the National Academy of Sciences, 114(38): 9994–9997. https://doi.org/10.1073/pnas.1714450114

Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H. & Prather, K.A. 2021. Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Science, 118(6): e2020719118. https://doi.org/10.1073/pnas.2020719118

Bumbudsanpharoke, N. & Ko, S. 2015. Nano-food packaging: An overview of market, migration research, and safety regulations. Journal of Food Science, 80: R910 – R923. https://doi.org/10.1111/1750-3841.12861

Campanale, C., Massarelli, C., Savino, I., Locaputo, V. & Uricchio, V.F. 2020. A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17: 1212. doi:10.3390/ijerph17041212

CIEL. 2019. Plastic & Climate. The Hidden Costs of a Plastic Planet. In: Center for International Environmental Law. Washington, DC and Geneva. www.ciel.org/plasticandclimate

Chen, Q., Allgeier, A., Yin, D. & Hollert, H. 2019. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International, 130: 104938. https://doi.org/10.1016/j.envint.2019.104938

Davis, G. & Song, J.H. 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23: 147–161. doi: 10.1016/j.indcrop.2005.05.004

Diepens, N.J. & Koelmans, A.A. 2018. Accumulation of plastic debris and associated contaminants in aquatic food webs. Environmental Science and Technology, 52: 8510–8520. doi: 10.1021/acs.est.8b02515

Dris, R., Agarwal, A. & Laforsch, C. 2020. Plastics: From a success story to an environmental problem and a global challenge. Global Challenges, 4: 2000026. doi: 10.1002/gch2.202000026

Drummond, J.D., Schneidewind, U., Li, A., Hoellein, T.J., Krause, S. & Packman, A.I. 2022. Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstreams. Science Advances, 8(2): eabi9305. doi: 10.1126/sciadv.abi9305

Edwards, L., McCray, N.L., VanNoy, B.N., Yau, A., Geller, R.J., Adamkiewicz, G. & Zota, A.R. 2021. Phthalate and novel plasticizer concentrations in food items from U.S. fast food chains: a preliminary analysis. Journal of Exposure Science & Environmental Epidemiology. https://doi.org/10.1038/s41370-021-00392-8

EFSA. 2015. Scientific Opinion on the risks to public health related to the presence of bisphenol A(BPA) in food stuffs. EFSA Journal, 13(1): 3978. https://doi.org/10.2903/j.efsa.2015.3978

Ellen MacArthur Foundation. 2016. The New Plastics Economy: Rethinking the future of plastics & catalysing actions. In: Ellen MacArthur Foundation. Isle of Wight, UK. Cited 12 August 2021. https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing

Espinosa, M.J.C., Blanco, A.C., Scmidgall, T., Atanasoff-Karjalieff, A.K., Kappelmeyer, U., Tischler, D., Pieper, D.H. et al. 2020. Towards biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Frontiers in Microbiology, 11: 404. https://doi.org/10.3389/fmicb.2020.00404

Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S. & Stohl, A. 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11: 3381. https://doi.org/10.1038/s41467-020-17201-9

Evans, M.C. & Ruf, C.S. 2021. Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar. IEEE Transactions on Geoscience and Remote Sensing: 1–9. https://doi.org/10.1109/TGRS.2021.3081691

FAO. 2017. Microplastics in fisheries and aquaculture. Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615. Rome. https://www.fao.org/3/I7677E/I7677E.pdf

FAO. 2019. Microplastics in Fisheries and Aquaculture. What so we know? Should we be worried? Rome. https://www.fao.org/3/ca3540en/ca3540en.pdf

FAO. 2021a. Assessment of agricultural plastics and their sustainability - A call for action. Rome. https://doi.org/10.4060/cb7856en

FAO. 2021b. Reduce, reuse, recycle: a mantra for food packaging. How a circular approach to packaging can reduce food loss and waste and respect the environment. In: FAO. Rome. Cited 14 August 2021. https://www.fao.org/fao-stories/article/en/c/1441299/

FAO & WHO. 2010. Toxicological and Health Aspects of Bisphenol A. Geneva, WHO. https://apps.who.int/iris/handle/10665/44624

FAO & WHO. 2019. FAO/WHO expert consultation on dietary risk assessment of chemical mixtures (risk assessment of combined exposure to multiple chemicals). Geneva, WHO. https://www.who.int/foodsafety/areas_work/chemical-risks/Euromix_Report.pdf

Fang, X. & Vitrac, O. 2017. Predicting diffusion coefficients of chemicals in and through packaging materials. Critical Reviews in Food Science and Nutrition, 57(2): 275–312. https://doi.org/10.1080/10408398.2013.849654

FERA. 2019. Bio-based materials for use in food contact applications. Fera project number FR/001658. Report to the Food Standards Agency. York, UK, Fera Science Ltd. https://www.food.gov.uk/sites/default/files/media/document/bio-based-materials-for-use-in-food-contact-applications_0.pdf

Ferreira-Filipe, D.A., Paço, A., Duarte, A.C., Rocha-Santos, T. & Silva, A.L.P. 2021. Are Biobased Plastics Green Alternatives?–A Critical Review. International Journal of Environmental Research and Public Health, 18(15): 7729. doi: 10.3390/ijerph18157729

Fournier, S.B., D’Errico, J.N., Adler, D.S., Kollontzi, S., Goedken, M.J., Fabris, L., Yurkow, E.J. & Stapleton, P.A. 2020. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Technology, 17: 55. https://doi.org/10.1186/s12989-020-00385-9

Froggett, S.T., Clancy, S.F., Boverhof, D.R. & Canady, R.A. 2014. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Particle and Fibre Toxicology, 11: 17. https://doi.org/10.1186/1743-8977-11-17

Garcia, C.V., Shin, G.H. & Kim, J.T. 2018. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science & Technology, 82: 21–31. https://doi.org/10.1016/j.tifs.2018.09.021

Garrido Gamarro, E., Ryder, J., Elvevoll, E.O. & Olsen, R.L. 2020. Microplastics in fish and shellfish – A threat to seafood safety? Journal of Aquatic Food Product Technology, 29(4): 417–425. https://doi.org/10.1080/10498850.2020.1739793

Geyer, R., Jambeck, J.R. & Law, K.L. 2017. Production, use and fate of all plastics ever made. Science Advances, 3: e1700782. doi: 10.1126/sciadv.1700782

Ghisellini, P., Cialani, C. & Ulgiati, S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Clean Production, 114: 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007

Gkoutselis, G., Rohrbach, S., Harjes, J., Obst, M., Brachmann, A., Horn, M.A. & Rambold, G. 2021. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Scientific Reports, 11(1): 13214. https://doi.org/10.1038/s41598-021-92405-7

Groh, K.J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P.A., Lennquist, A., Leslie, H.A. et al. 2019. Overview of known plastic packaging-associated chemicals and their hazards. Science of The Total Environment, 651: 3253–3268. https://doi.org/10.1016/j.scitotenv.2018.10.015

Groh, K.J., Geueke, B., Martin, O., Maffini, M. & Muncke, J. 2021. Overview of intentionally used food contact chemicals and their hazards. Environment International, 150: 106225. https://doi.org/10.1016/j.envint.2020.106225

Geueke, B., Groh, K. & Muncke, J. 2018. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193: 491–505. https://doi.org/10.1016/j.jclepro.2018.05.005

Han, J.-W, Ruiz-Garcia, L., Qian, J.-P. & Yang, X.-T. 2018. Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4): 860–877. https://doi.org/10.1111/1541-4337.12343

Haram, L.E., Carlton, J.T., Ruiz, G.M. & Maximenko, N.A. 2020. A Plasticene Lexicon. Marine Pollution Bulletin, 150: 110714. https://doi.org/10.1016/j.marpolbul.2019.110714

Hopewell, J., Dvorak, R. & Kosior, E. 2009. Plastic recycling: challenges and opportunities. Philosophical Transactions of the Royal Society, 364: 2115–2126. doi: 10.1098/rstb.2008.0311

Hou, L., McMahan, C.D., McNeish, R.E., Munno, K., Rochman, C.M. & Hoellein, T.J. 2021. A fish tale: a century of museum specimens reveal increasing microplastic concentrations in freshwater fish. Ecological Applications, 31(5). https://doi.org/10.1002/eap.2320

Katan, L.L. 1996. Migration from food contact materials. Boston, MA, Springer. https://doi.org/10.1007/978-1-4613-1225-3

Kitamura, S., Ohmegi, M., Sanoh, S., Sugihara, K., Yoshihara, S., Fujimoto, N. & Ohta, S. 2003. Estrogenic activity of styrene oligomers after metabolic activation by ray liver microsomes. Environmental Health Perspectives, 111(3): 329–334. doi: 10.1289/ehp.5723

Kovačič, A., Gys, C., Gulin, M.R., Kosjek, T., Heath, D., Covaci, A. & Heath, E. 2020. The migration of bisphenols from beverage cans and reusable sports bottles. Food Chemistry, 331: 127326. https://doi.org/10.1016/j.foodchem.2020.127326

Lambert, S. & Wagner, M. 2017. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 46: 6855. doi: 10.1039/c7cs00149e

Lantham, K. 2021. The world’s first ‘infinite’ plastic. BBC Future Planet, 12 May 2021. London. Cited November 3 2021. https://www.bbc.com/future/article/20210510-how-to-recycle-any-plastic

Lee, H., Kunz, A., Shim, W.J. & Walther, B.A. 2019. Microplastic contamination of table salts from Taiwan, including a global review. Scientific Reports, 9: 10145. https://doi.org/10.1038/s41598-019-46417-z

Li, D., Shi, Y., Yang, L., Xiao, L., Kehoe, D.K., Gun’ko, Y.K., Boland, J.J. et al. 2020. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food, 1(11): 746–754. https://doi.org/10.1038/s43016-020-00171-y

Lim, X. 2021. Microplastics are everywhere – but are they harmful? Nature, 593: 22–25. https://doi.org/10.1038/d41586-021-01143-3

Lyche, J.L., Gutleb, A.C., Bergman, Å., Eriksen, G.S., Murk, A.J., Ropstad, E., Saunders, M. et al. 2009. Reproductive and Developmental Toxicity of Phthalates. Journal of Toxicology and Environmental Health, Part B, 12(4): 225–249. https://doi.org/10.1080/10937400903094091

Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., Wang, R. et al. 2019. The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 176: 108575. https://doi.org/10.1016/j.envres.2019.108575

McClements, D.J. & Xiao, H. 2017. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Science of Food, 1: 6. https://doi.org/10.1038/s41538-017-0005-1

Meys, R., Frick, F., Westhaus, S., Sternberg, A., Klankermayer, J. & Bardow, A. 2020. Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resources, Conservation & Recycling, 162: 105010. https://doi.org/10.1016/j.resconrec.2020.105010

Muncke, J., Backhaus, T., Geueke, B., Maffini, M.V., Martin, O.V., Myers, J.P., Soto, A.M. et al. 2017. Scientific Challenges in the Risk Assessment of Food Contact Materials. Environmental Health Perspectives, 125(9): 095001. https://doi.org/10.1289/EHP644

Muncke, J., Andersson, A.-M., Backhaus, T., Boucher, J.M., Carney Almroth, B., Castillo Castillo, A., Chevrier, J. et al. 2020. Impacts of food contact chemicals on human health: a consensus statement. Environmental Health, 19(1): 25, s12940-020-0572–5. https://doi.org/10.1186/s12940-020-0572-5

Napper, I.E. & Thompson, R.C. 2019. Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over a 3-Year Period. Environmental Science & Technology, 53(9): 4775–4783. https://doi.org/10.1021/acs.est.8b06984

National Academies of Sciences, Engineering, and Medicine. 2021. Reckoning with the U.S. Role in Global Plastic Waste. Washington, D.C., The National Academies Press. https://doi.org/10.17226/26132

Nazareth, M., Marques, M.R.C., Leite, M.C.A. & Castra, I.B. 2019. Commercial plastics claiming biodegradable status: Is this also accurate for marine environments? Journal of Hazardous Materials, 366: 714–722. https://doi.org/10.1016/j.jhazmat.2018.12.052

Pham, D.N., Clark, L. & Li, M. 2021. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. Journal of Hazardous Materials Letters, 2: 100014. https://doi.org/10.1016/j.hazl.2021.100014

Rahman, A., Sarkar, A., Yadav, O.P., Achari, G. & Slobodnik, J. 2021. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Science of the Total Environment, 757: 143872. https://doi.org/10.1016/j.scitotenv.2020.143872

Rochester, J. & Bolden, A.L. 2015. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environmental Health Perspectives, 123: 643–650. http://dx.doi.org/10.1289/ehp.1408989

Rollinson, A.N. & Oladejo, J. 2020. Chemical recycling: Status, Sustainability, and Environmental Impacts. Global Alliance for Incinerator Alternatives. https://doi.org/10.46556/ONLS4535

Rubin, B.S. 2011. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. The Journal of Steroid Biochemistry and Molecular Biology, 127(1–2): 27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002

Samsonek, J. & Puype, F. 2012. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market. Food Additives & Contaminants: Part A, 30(11): 1976–1986. https://doi.org/10.1080/19440049.2013.829246

SAPEA. 2019. Science Advice for Policy by European Academies. A Scientific Perspective on Microplastics in Nature and Society. Berlin, SAPEA. https://doi.org/10.26356/microplastics

Schweitzer, J.-P., Gionfra, S., Pantzar, M., Mottershead, D., Watkins, E., Petsinaris, F. & ten Brink, P. et al. 2018. Unwrapped: How throwaway plastics is failing to solve Europe’s food waste problem (and what we need to do instead). A study by Zero Waste Europe and Friends of the Earth Europe for the Rethink Plastic Alliance. Brussels, Institute for Europe Environmental Policy (IEEP). https://zerowasteeurope.eu/wp-content/uploads/2018/04/Unwrapped_How-throwaway-plastic-is-failing-to-solve-Europes-food-waste-problem_and-what-we-need-to-do-instead_FoEE-ZWE-April-2018_final.pdf

Silva, A.L.P. 2021. Future-proofing plastic waste management for a circular bioeconomy. Current Opinion in Environmental Science & Health, 22: 100263. https://doi.org/10.1016/j.coesh.2021.100263

Stahel, W.R. 2016. The circular economy. Nature, 531: 435–438. https://doi.org/10.1038/531435a

Schnys, Z.OG. & Shaver, M.P. 2020. Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, 42(3): 2000415. https://doi.org/10.1002/marc.202000415

Störmer, A., Bott, J. & Franz, K.R. 2017. Critical review of the migration potential of nanoparticles in food contact plastics. Trends in Food Science & Technology, 63: 39–50. https://doi.org/10.1016/j.tifs.2017.01.011

Szakal, C., Roberts, S.M., Westerhoff, P., Bartholomaeus, A., Buck, N., Illuminato, I., Canady, R. & Rogers, M. 2014. Measurement of nanomaterials in foods: Integrative consideration of challenges and future prospects. ACS Nano, 8(4): 3128–3135. https://doi.org/10.1021/nn501108g

Thiele, C.J., Hudson, M.D., Russell, A.E., Saluveer, M. & Sidaoui-Haddad, G. 2021. Microplastics in fish and fishmeal: an emerging environmental challenge? Scientific Reports, 11: 2045. https://doi.org/10.1038/s41598-021-81499-8

Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D. et al. 2004. Lost at Sea: Where Is All the Plastic? Science, 304(5672): 838–838. https://doi.org/10.1126/science.1094559

UNEP. 2014. Valuing Plastic. The Business Case for Measuring, Managing and Disclosing Plastic Use in the Consumer Goods Industry. In: UNEP Document Repository. https://wedocs.unep.org/handle/20.500.11822/25302

van der A, J.G. & Sijm, D.T.H.M. 2021. Risk governance in the transition towards sustainability, the case of bio-based plastic food packaging materials. Journal of Risk Research, 24(12): 1639–1651. https://doi.org/10.1080/13669877.2021.1894473

van der Oever, M., Molenveld, K., van der Zee, M. & Bos, H. 2017. Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. Wageningen, Wageningen Food & Biobased Research. https://doi.org/10.18174/408350

Verghese, K., Lewis, H., Lockrey, S. & Williams, H. 2015. Packaging’s role in minimizing food loss and waste across the supply chain. Packaging Technology and Science, 28: 603–620. doi: 10.1002/pts.2127

Vilarinho, F., Sendón, R., van der Kellen, A., Vaz, M.F. & Silva, S. 2019. Bisphenol A in food as a result of its migration from food packaging. Trends in Food Science & Technology, 91: 33–65. https://doi.org/10.1016/j.tifs.2019.06.012

Weinstein, J. E., Dekle, J. L., Leads, R. R. & Hunter, R. A. 2020. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Marine Pollution Bulletin, 160: 111518. https://doi.org/10.1016/j.marpolbul.2020.111518

Weithmann, N., Möller, J.N., Löder, M.G., Piehl, S., Laforsch, C. & Freitag, R. 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4: eaap8060. doi: 10.1126/sciadv.aap8060

Wiesinger, H., Wang, Z. & Hellweg, S. 2021. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environmental Science & Technology, 55(13): 9339–9351. https://doi.org/10.1021/acs.est.1c00976

Yang, Y., Yang, J., Wu, W.M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20): 12080–12086. https://doi.org/10.1021/acs.est.5b02661

Yates, J., Deeney, M., Rolker, H.B., White, H., Kalamatianou & Kadiyah, S. 2021. A systematic scoping review of environmental, food security and health impacts of food system plastics. Nature Food, 2: 80–87. https://doi.org/10.1038/s43016-021-00221-z

Yu, H.-Y., Yang, X.-Y., Lu, F.-F., Chen, G.-Y. & Yao, J.-M. 2016. Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method. Carbohydrate Polymers, 140: 209–219. doi: 10.1016/j.carbpol.2015.12.030

Yuan, H., Xu, X., Sima, Y. & Xu, S. 2013. Reproductive toxicity effects of 4-nonylphenol with known endocrine disrupting effects and induction of vitellogenin gene expression in silkworm, Bombyx mori. Chemosphere, 93: 263–268. http://dx.doi.org/10.1016/j.chemosphere.2013.04.075

Zimmerman, L., Dombrowski, A., Völker, C. & Wagner, M. 2020. Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environmental International, 145: 106066. https://doi.org/10.1016/j.envint.2020.106066

Zhao, X. & You, F. 2021. Consequential life cycle assessment and optimization of high-density polyethylene plastic waste chemical recycling. ACS Sustainable Chemistry & Engineering, 9(36): 12167. doi: 10.1021/acssuschemeng.1c03587

7. Microbiomes, a food safety perspective

Abdelsalam, N. A., Ramadan, A. T., Elrakaiby, M. T. & Aziz, R. K. 2020. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Frontiers in Pharmacology, 11(390). https://doi.org/10.3389/fphar.2020.00390

Beck, K. L., Haiminen, N., Chambliss, D., Edlund, S., Kunitomi, M., Huang, B. C., Kong, N. et al. 2021. Monitoring the microbiome for food safety and quality using deep shotgun sequencing. npj Science of Food, 5(1): 3. https://doi.org/10.1038/s41538-020-00083-y

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C.C., Charles, T., Chen, X. et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1): 103. https://doi.org/10.1186/s40168-020-00875-0

Cahill, S. M., Desmarchelier, P., Fattori, V., Bruno, A. & Cannavan, A. 2017. Global Perspectives on Antimicrobial Resistance in the Food Chain. Food Protection Trends, 37(5): 353–360.

Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B. & Xia, X. 2020. Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science & Technology, 99: 295–310. https://doi.org/10.1016/j.tifs.2020.03.006

Chiu, K., Warner, G., Nowak, R. A., Flaws, J. A. & Mei, W. 2020. The Impact of Environmental Chemicals on the Gut Microbiome. Toxicological Sciences, 176(2): 253-284. https://doi.org/10.1093/toxsci/kfaa065

Claus, S. P., Guillou, H. & Ellero-Simatos, S. 2016. The gut microbiota: a major player in the toxicity of environmental pollutants? npj Biofilms and Microbiomes, 2(1): 16003. https://doi.org/10.1038/npjbiofilms.2016.3

Das, B. & Nair, G. B. 2019. Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 44(5).

De Filippis, F., Valentino, V., Alvarez-Ordóñez, A., Cotter, P. D. & Ercolini, D. 2021. Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Current Opinion in Food Science, 38: 168–176. https://doi.org/10.1016/j.cofs.2020.11.012

Economou, V. & Gousia, P. 2015. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and drug resistance, 8: 49–61. https://doi.org/10.2147/IDR.S55778

FAO & WHO. 2009. Principles and methods for the risk assessment of chemicals in food. Geneva, WHO. https://www.who.int/publications/i/item/9789241572408

Feng, J., Li, B., Jiang, X., Yang, Y., Wells, G. F., Zhang, T. & Li, X. 2018. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses. Environmental Microbiology, 20(1): 355–368. https://doi.org/10.1111/1462-2920.14009

Flandroy, L., Poutahidis, T., Berg, G., Clarke, G., Dao, M.-C., Decaestecker, E., Furman, E. et al. 2018. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of The Total Environment, 627: 1018-1038. https://doi.org/10.1016/j.scitotenv.2018.01.288

Galloway-Peña, J. & Hanson, B. 2020. Tools for Analysis of the Microbiome. Digestive Diseases and Sciences, 65(3): 674–685. https://doi.org/10.1007/s10620-020-06091-y

Hendriksen, R. S., Bortolaia, V., Tate, H., Tyson, G. H., Aarestrup, F. M. & Mcdermott, P. F. 2019. Using Genomics to Track Global Antimicrobial Resistance. Frontiers in Public Health, 7(242). https://doi.org/10.3389/fpubh.2019.00242

Hu, Y. & Zhu, B. 2016. The human gut antibiotic resistome in the metagenomic era: progress and perspectives. Infectious Diseases and Translational Medicine (IDTM), 2(1): 41–47.

Kim, D.-W. & Cha, C.-J. 2021. Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53(3): 301–309. https://doi.org/10.1038/s12276-021-00569-z

Lynch, S. V. & Pedersen, O. 2016. The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375(24): 2369–2379. https://doi.org/10.1056/NEJMra1600266

Merten, C., Schoonjans, R., Di Gioia, D., Peláez, C., Sanz, Y., Maurici, D. & Robinson, T. 2020. Editorial: Exploring the need to include microbiomes into EFSA’s scientific assessments. EFSA Journal, 18(6): e18061. https://doi.org/10.2903/j.efsa.2020.e18061

National Academies of Sciences, E. & Medicine 2018. Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy. Washington, DC, The National Academies Press. https://www.nap.edu/catalog/24960/environmental-chemicals-the-human-microbiome-and-health-risk-a-research2018

Penders, J., Stobberingh, E., Savelkoul, P. & Wolffs, P. 2013. The human microbiome as a reservoir of antimicrobial resistance. Frontiers in Microbiology, 4(87). https://doi.org/10.3389/fmicb.2013.00087

Pilmis, B., Le Monnier, A. & Zahar, J.-R. 2020. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020269

Piñeiro, S. A. & Cerniglia, C. E. 2021. Antimicrobial drug residues in animal-derived foods: Potential impact on the human intestinal microbiome. Journal of Veterinary Pharmacology and Therapeutics, 44(2): 215–222. https://doi.org/10.1111/jvp.12892

Roca-Saavedra, P., Mendez-Vilabrille, V., Miranda, J. M., Nebot, C., Cardelle-Cobas, A., Franco, C. M. & Cepeda, A. 2018. Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of Physiology and Biochemistry, 74(1): 69–83. https://doi.org/10.1007/s13105-017-0564-2

Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & De Vos, W. M. 2017. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 41(2): 182–199. https://doi.org/10.1093/femsre/fuw045

Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A. & Alm, E. J. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376): 241–244. https://doi.org/10.1038/nature10571

Sutherland, V. L., Mcqueen, C. A., Mendrick, D., Gulezian, D., Cerniglia, C., Foley, S., Forry, S. et al. 2020. The Gut Microbiome and Xenobiotics: Identifying Knowledge Gaps. Toxicological Sciences, 176(1): 1–10. https://doi.org/10.1093/toxsci/kfaa060

VICH. 2019. VICH GL36 Studies to evaluate the safety of residues of veterinary drugs in human food: General approach to establish a microbiological ADI - Revision 2. Amsterdam, European Medicines Agency, and Brussels, VICH. https://www.ema.europa.eu/documents/scientific-guideline/vich-gl36r2-studies-evaluate-safety-residues-veterinary-drugs-human-food-general-approach-establish_en.pdf

Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. 2020. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell, 180(2): 221–232. https://doi.org/10.1016/j.cell.2019.12.025

Weimer, B. C., Storey, D. B., Elkins, C. A., Baker, R. C., Markwell, P., Chambliss, D. D., Edlund, S. B. & Kaufman, J. H. 2016. Defining the food microbiome for authentication, safety, and process management. IBM Journal of Research and Development, 60(5/6): 1:1–1:13. https://doi.org/10.1147/JRD.2016.2582598

WHO. 2015. Global action plan on antimicrobial resistance. Geneva. https://www.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf

Wilson, A.S., Koller, K.R., Ramaboli, M.C., Nesengani, L.T., Ocvirk, S., Chen, C., Flanagan, C.A. et al. 2020. Diet and the Human Gut Microbiome: An International Review. Digestive Diseases and Sciences, 65(3): 723–740. https://doi.org/10.1007/s10620-020-06112-w

8. Technological innovations and scientific advances

Albrecht, C. 2019. Sensor to detect many different types of food allergens. In: The Spoon. Cited 17 September 2021. https://thespoon.tech/sensogenic-is-making-a-handheld-sensor-to-detect-many-different-types-of-food-allergens/

Aung, M.M. & Chang, Y.S. 2014. Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39: 172–184. https://doi.org/10.1016/j.foodcont.2013.11.007

Atzori, M. 2017. Blockchain technology and decentralized governance: Is the state still necessary? Journal of Governance and Regulation, 6(1): 45–62. https://doi.org/10.22495/jgr_v6_i1_p5

Azimi, P., Zhao, D., Pouzet, C., Crain, N.E. & Stephens, B. 2016. Emissions of ultrafine particles and volatile oganic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental Science & Technology, 50(3): 1260–1268. https://doi.org/10.1021/acs.est.5b04983

Bandoim, L. 2021. World’s First 3D Bioprinted And Cultivated Ribeye Steak Is Revealed. In: Forbes. Cited 6 June 2021. https://www.forbes.com/sites/lanabandoim/2021/02/12/worlds-first-3d-bioprinted-and-cultivated-ribeye-steak-is-revealed/?sh=3f435f244781

Banis, D. 2018. These Two Dutch Students Create 3D-Printed Snacks From Food Waste. In: Forbes. Cited 18 October 2021. https://www.forbes.com/sites/davidebanis/2018/12/24/these-two-dutch-students-create-3d-printed-snacks-from-food-waste/?sh=7d98ab0b4130

BBC News. 2021. How fresh is your food? Sensors could show you [video]. Cited 21 November 2021. https://www.bbc.com/news/av/world-australia-58976338

Bhoge, A. 2018. Smart labels: the next big thing in IoT and packaging. In: Packaging Strategies. Cited 7 November 2021. https://www.packagingstrategies.com/articles/90618-smart-labels-the-next-big-thing-in-iot-and-packaging

Blutinger, J.D., Tsai, A., Storvick, E., Seymour, G., Liu, E., Samarelli, N., Karthik, S. et al. 2021. Precision cooking for printed foods via multiwavelength lasers. npj Science of Food, 5(1): 24. https://doi.org/10.1038/s41538-021-00107-1

Bouzembrak, Y., Klüche, M., Gavai, A. & Marvin, H.J.P. 2019. Internet of Things in food safety: Literature review and a bibliographic analysis. Trends in Food Science and Technology, 94: 54–64. https://doi.org/10.1016/j.tifs.2019.11.002

Cai, Y. & Zhu, D. 2016. Fraud detections for online businesses: a perspective from blockchain technology. Financial Innovation, 2: 20. doi: 10.1186/s40854-016-0039-4

Cece, S. 2019. Is IoT the future of food safety? In: Food Engineering. Cited 12 August 2021. https://www.foodengineeringmag.com/articles/98212-is-iot-the-future-of-food-safety

Chai, Y., Wikle, H.C., Wang, Z., Horikawa, S., Best, S., Cheng, Z., Dyer, D.F. & Chin, B.A. 2013. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor. Journal of Applied Physics, 114: 10. doi: 10.1063/1.4821025

Delgado, J.A., Short Jr. N.M., Roberts, D.P. & Vandenberg, B. 2019. Big data analysis for sustainable agriculture on a geospatial cloud platform. Frontiers in Sustainable Food Systems, 3: 54. doi: 10.3389/fsufs.2019.00054

Deshpande, A., Stewart, K., Lepetit, L. & Gunashekar, S. 2017. Distributed Ledger Technologies/ Blockchain. Challenges, opportunities and the prospects for standards. Overview report. Cambridge, RAND Europe and London, BSI. https://www.bsigroup.com/LocalFiles/zh-tw/InfoSec-newsletter/No201706/download/BSI_Blockchain_DLT_Web.pdf

Donaghy, J.A., Danyluk, M.D., Ross, T., Krishna, B. & Farber, J. 2021 Big data impacting dynamic food safety risk management in the food chain. Frontiers in Microbiology, 12: 668196. https://doi.org/10.3389/fmicb.2021.668196

Drakvik, E., Altenburger, R., Aoki, Y., Backhaus, T., Bahadori, T., Barouki, R., Brack, W. et al. 2020. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 134: 105267. https://doi.org/10.1016/j.envint.2019.105267

EC. 2019. Smart device detects food contaminants in real time. In: Cordis Europa. Cited 10 October 2021. https://cordis.europa.eu/article/id/125205-smart-device-detects-food-contaminants-in-real-time

EFSA Panel on Food Additives and Flavourings (FAF), Younes, M., Aquilina, G., Castle, L., Engel, K., Fowler, P., Frutos Fernandez, M.J. et al. 2021. Safety assessment of titanium dioxide (E171) as a food additive. EFSA Journal, 19(5). https://doi.org/10.2903/j.efsa.2021.6585

EFSA Scientific Committee, Hardy, A., Benford, D., Halldorsson, T., Jeger, M.J., Knutsen, H.K., More, S. et al. 2018. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16(7). https://doi.org/10.2903/j.efsa.2018.5327

EFSA Scientific Committee, More, S.J., Bampidis, V., Benford, D., Bennekou, S.H., Bragard, C., Halldorsson, T.I. et al. 2019. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal, 17(3). https://doi.org/10.2903/j.efsa.2019.5634

FAO. 2019. Digital technologies in Agriculture and Rural Areas. Briefing paper. Rome. https://www.fao.org/3/ca4887en/ca4887en.pdf

FAO & WHO. 2010. FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications: meeting report. Geneva, WHO. https://www.who.int/publications/i/item/9789241563932

FAO & WHO. 2012. Nanotechnologies in food and agriculture. Joint FAO/WHO meeting report. Rome, FAO. https://www.fao.org/publications/card/en/c/fce9f48e-64a4-49a0-a32b-6ba52478cbfd/

FAO & WHO. 2013. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. FAO/WHO technical paper. Rome, FAO. https://apps.who.int/iris/handle/10665/87458

FAO & WHO. 2018a. Science, Innovation and Digital Transformation at the Service of Food Safety. Rome, FAO. http://www.fao.org/3/CA2790EN/ca2790en.pdf

FAO & WHO. 2018b. FAO/WHO Framework for the Provision of Scientific Advice on Food Safety and Nutrition (to Codex and member countries). Rome, FAO. https://www.fao.org/3/i7494en/I7494EN.pdf

FAO & WHO. 2019. FAO/WHO Expert Consultation on Dietary risk assessment of chemical mixtures. (Risk assessment of combined exposure to multiple chemicals). WHO, Geneva, 16–18 April 2019. https://www.who.int/foodsafety/areas_work/chemical-risks/Euromix_Report.pdf

Friedlander, A. & Zoellner, C. Artificial Intelligence opportunities to improve food safety at retail. Food Protection Trends, 40(4): 272–278.

Garber, M. 2014. What 3D-Printed Cake Tastes Like. The Atlantic, 8 January 2014. Cited 21 October 2021. Washington, DC, USA. https://www.theatlantic.com/technology/archive/2014/01/what-3d-printed-cake-tastes-like/282904/

Ghazal, A.F., Zhang, M., Bhandari, B. & Chen, H. 2021. Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Research International, 142: 110215. https://doi.org/10.1016/j.foodres.2021.110215

Gibbs, A. 2015. Tech turns tasty with printed pancakes. In: CNBC. Cited 24 October 2021. https://www.cnbc.com/2015/03/27/tech-turns-tasty-with-3d-printed-pancakes.html

Godoi, F.C., Prakash, S. & Bhandari, B.R. 2016. #d printing technologies applied to food design: Status and prospects. Journal of Food Engineering, 179: 44–54. https://doi.org/10.1016/j.jfoodeng.2016.01.025

Jacobs, N., Brewer, S., Craigon, P.J., Frey, J., Gutierrez, A., Kanza, S., Manning, L. et al. 2021. Considering the ethical implications of digital collaboration in the Food Sector. Patterns, 2(11): 100335. https://doi.org/10.1016/j.patter.2021.100335

Jarrett, C. 2020. Could robots lead the fight against contamination in food production lines? In: Food Industry Executive. Cited 8 October 2021. https://foodindustryexecutive.com/2020/07/putting-food-safety-first-with-robots/

Jones, T.J., Jambon-Puillet, E., Marthelot, J. & Brun, P.-T. 2021. Bubble casting soft robotics. Nature, 599: 229–233. https://doi.org/10.1038/s41586-021-04029-6

Kamath, R. 2018. Food traceability on blockchain: Walmart’s pork and mango pilots with IBM. The Journal of British Blockchain Association, 1(1): 1–2. doi: 10.31585/jbba-1-1-(10)2018

Kaplan, E. 2021. Crytocurrency goes green: could ‘proof of stake’ offer a solution to energy concerns? In: NBC News. Cited 11 November 2021. https://www.nbcnews.com/tech/tech-news/cryptocurrency-goes-green-proof-stake-offer-solution-energy-concerns-rcna1030

Karthika, V. & Jaganathan, S. 2019. A quick synopsis of blockchain technology. International Journal of Blockchains and Cryptocurrencies, 1(1): 54. https://doi.org/10.1504/IJBC.2019.101852

Köhler, S. & Pizzol, M. 2019. Life cycle assessment of Bitcoin mining. Environmental Science & Technology, 53: 13598–13606. doi: 10.1021/acs.est.9b05687

Landman, F. 2018. How will IoT reshape our kitchens? In: Readwrite. Cited 10 November 2021. https://readwrite.com/2018/07/05/how-will-iot-reshape-our-kitchens/

Li, Y., Li, X., Zeng, X., Cao, J. & Jiang, W. 2020. Application of blockchain technology in food safety control: current trends and future prospects. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2020.1858752

Lovell, R. 2021. The farms being run from space. In: BBC News Follow The Food. London, BBC News. Cited 9 September 2021. https://www.bbc.com/future/bespoke/follow-the-food/the-farms-being-run-from-space/

Malone, E. & Lipson, H. 2007. Fab@Home: the personal desktop fabricator kit. Rapid Prototype Journal, 13(4): 245–155. doi:10.1108/13552540710776197

Marvin, H.J.P., Janssen, E.M., Bouzembrak, Y., Hendriksen, P.J.M. & Staats, M. 2017. Big data in food safety: An overview. Critical reviews in Food Science and Nutrition, 57(11): 2286–2295. http://dx.doi.org/10.1080/10408398.2016.1257481

Mateus, M., Fernandes, J., Revilla, M., Ferrer, L., Villarreal, M.R., Miller, P., Schmidt, W. et al. 2019. Early Warning Systems for Shellfish Safety: The Pivotal Role of Computational Science. In J.M.F. Rodrigues, P.J.S. Cardoso, J. Monteiro, R. Lam, V.V. Krzhizhanovskaya, M.H. Lees, J.J. Dongarra, et al., eds. Computational Science – ICCS 2019, pp. 361–375. Lecture Notes in Computer Science. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-030-22747-0_28

Mistry, I., Tanwar, S., Tyagi, S. & Kumar, N. 2020. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135: 106382. https://doi.org/10.1016/j.ymssp.2019.106382

Mohan, A.M. 2020. Robotics special report: Food-safe solutions emerge. In: Packaging World. Cited 10 October 2021. https://www.packworld.com/machinery/robotics/article/21141584/robotics-special-report-foodsafe-solutions-emerge

Moon, L. 2020. Would you eat a steak from a 3D printer? In: SBS. Cited 12 September 2021. https://www.sbs.com.au/food/article/2020/08/21/would-you-eat-steak-3d-printer

Nakamoto, S. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf

Neethirajan, S., Weng, X., Tah, A., Cordero, J.O. & Ragavan, K.V. 2018. Nano-biosensor platforms for detecting food allergens - New trends. Sensing and Bio-sensing Research, 18: 13–30. https://doi.org/10.1016/j.sbsr.2018.02.005

Newton, E. 2021. How food processors can use robots to improve food safety. In: Food Safety Tech. Cited 21 August 2021. https://foodsafetytech.com/column/how-food-processors-can-use-robots-to-improve-food-quality/

OECD. 2018. Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals. Series on Testing and Assessment No. 296. Paris, France, Environment, Health and Safety Division, OECD Environment Directorate. https://www.oecd.org/chemicalsafety/risk-assessment/considerations-for-assessing-the-risks-of-combined-exposure-to-multiple-chemicals.pdf

Pearson, S., May, D., Leontidis, G., Swainson, M., Brewer, S., Bidaut, L., Frey, J.G. et al. 2019. Are Distributed Ledger Technologies the panacea for food traceability? Global Food Security, 20: 145–149. https://doi.org/10.1016/j.gfs.2019.02.002

Rateni, G., Dario, P. & Cavallo, F. 2017. Smartphone-Based Food Diagnostic Technologies: A Review. Sensors, 17(6): 1453. https://doi.org/10.3390/s17061453

Raza, M.M., Harding, C., Liebman, M. & Leandro, L.F. 2020. Exploring the Potential of High-Resolution Satellite Imagery for the Detection of Soybean Sudden Death Syndrome. Remote Sensing, 12(7): 1213. https://doi.org/10.3390/rs12071213

Severini, C., Derossi, A., Ricci, I., Caporizzi, R. & Fiore, A. 2018. Printing a blend of fruits and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering, 220: 89–100. https://doi.org/10.1016/j.jfoodeng.2017.08.025

Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V.K. & Rather, I.A. 2017. Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8: 1501. doi: 10.3389/fmicb.2017.01501

So, K. 2019. Cobots: Transforming the food and beverage industry. In: Asia Pacific Food Industry. Cited 28 August 2021. https://apfoodonline.com/industry/cobots-transforming-the-food-and-beverage-industry/

Underwood, S. 2016. Blockchain beyond bitcoin. Communications of the ACM, 59(11): 15–17. https://doi.org/10.1145/2994581

Unuvar, M. 2017. The food industry gets an upgrade with blockchain. In: IBM Supply Chain and Blockchain Blog. Cited on 11 August 2021. https://www.ibm.com/blogs/blockchain/2017/06/the-food-industry-gets-an-upgrade-with-blockchain/

US EPA. 2000. Supplementary guidance for conducting health risk assessment of chemical mixtures. Washington, DC, USA. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533

US EPA. 2003. Framework for cumulative risk assessment. Washington, DC, USA. https://www.epa.gov/sites/default/files/2014-11/documents/frmwrk_cum_risk_assmnt.pdf

US EPA. 2008. Concepts, methods, and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: A resource document. Washington, DC, USA. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=190187

US EPA. 2016. Pesticide cumulative risk assessment framework. Washington, DC, USA. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/pesticide-cumulative-risk-assessment-framework

van Pelt, R., Jansen, S., Baars D. & Overbeek, S. 2021. Defining Blockchain Governance: A Framework for Analysis and Comparison. Information Systems Management, 38:(1) 21–41. doi: 10.1080/10580530.2020.1720046

World Bank. 2019. Future of Food. Harnessing Digital Technologies to Improve Food System Outcomes. In: World Bank. Washington, DC, USA. Cited 14 July 2021. https://openknowledge.worldbank.org/bitstream/handle/10986/31565/Future-of-Food-Harnessing-Digital-Technologies-to-Improve-Food-System-Outcomes.pdf?sequence=1&isAllowed=y

Yannis, F. 2018. A new era of food transparency powered by blockchain. Innovations: Technology, Governance, Globalization, 12(1–2): 46–56. https://doi.org/10.1162/inov_a_00266

9. Food fraud-reshaping the narrative

Bachmann, R. 2001. Trust, Power and Control in Trans-Organizational Relations. Organization Studies, 22(2): 337–365. https://doi.org/10.1177/0170840601222007

Bindt, V. 2016. Costs and benefits of the Food Fraud Vulnerability Assessment in the Dutch food supply chain. Wageningen, The Netherlands, Wageningen University.

Elliott, C. 2014. Elliott Review into the Integrity and Assurance of Food Supply Networks - Final Report. London, UK, HM Government. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/350726/elliot-review-final-report-july2014.pdf

European Commission a. (n.d.). Food fraud: What does it mean? In: European Commission. Brussels, Belgium. Cited 8 November 2021. https://ec.europa.eu/food/safety/food-fraud/what-does-it-mean_en#:~:text=Food%20fraud%20is%20about%20%E2%80%9Cany,%2Dfood%20chain%20legislation)%E2%80%9D

European Commission b. (n.d.). The EU Food Fraud Network. In: European Commission. Brussels, Belgium. Cited 8 November 2021 https://ec.europa.eu/food/index_en: https://ec.europa.eu/food/safety/agri-food-fraud/eu-food-fraud-network_en

European Parliament. 2013. Report on the food crisis, fraud in the food chain and the control thereof (2013/2091(INI)). Brussels, Belgium, European Parliament. https://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A7-2013-0434&format=PDF&language=EN

European Union. 2020. The EU Food Fraud Network. In: European Commission. Brussels, Belgium. Cited 6 November 2021 https://ec.europa.eu/food/safety/food-fraud/ffn_en

FAO. 2016. Handbook on Food Labelling to Protect Consumers. Rome. https://www.fao.org/3/i6575e/i6575e.pdf

FAO. 2020. Legal mechanisms to contribute to safe and secured food supply chains in time of COVID-19. Rome. https://www.fao.org/documents/card/en/c/ca9121en

FAO. 2021. Food fraud – Intention, detection and management. Food safety technical toolkit for Asia and the Pacific No. 5. Bangkok. https://www.fao.org/3/cb2863en/cb2863en.pdf

FAO & WHO. 2019. Food control system assessment tool: Introduction and glossary. Food safety and quality series No. 7/1. Rome. http://www.fao.org/3/ca5334en/CA5334EN.pdf

Levi, M. 2008. Organized fraud and organizing frauds: Unpacking research on networks and organization. Criminology & Criminal Justice, 8(4): 389–419. https://doi.org/10.1177/1748895808096470

Reilly, A. 2018. Overview of food fraud in the fisheries sector. FAO Fisheries and Aquaculture Circular(C1165). Rome, FAO. https://www.fao.org/documents/card/en/c/I8791EN/

Roberts, M., Viinikainen, T. & Bullon, C. Forthcoming. International and national regulatory strategies to counter food fraud. FAO. Rome

Shears, P. 2010. Food fraud – a current issue but an old problem. British Food Journal, 198–213. doi: https://doi.org/10.1108/00070701011018879

UK Government, Department for Environment, Food and Rural Affairs. 2014. Government response to the Elliott review of the integrity and assurance of food supply networks. OGL. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/350735/elliott-review-gov-response-sept-2014.pdf

Yale Law School. 2008. The Code of Hammurabi. In: The Avalon Project. New Haven, Connecticut, USA. Cited 1 November 2021. https://avalon.law.yale.edu/ancient/hamframe.asp

Zucker, L. G. 1986. Production of trust: Institutional sources of economic structure, 1840–1920. Research in Organizational Behavior, 8: 53–111. https://psycnet.apa.org/record/1988-10420-001

10. Conclusions

FAO. 2020. Climate change: Unpacking the burden on food safety. Food Safety and Quality Series No. 8. 176 pp. https://doi.org/10.4060/ca8185en

FAO. 2021a. FAO Strategic Framework 2022 – 31. https://www.fao.org/3/ne577en/ne577en.pdf

FAO. 2021b. The outline and roadmap of the “FAO Science and Innovation Strategy”. FAO Council. Hundred and Sixty-eighth Session. 29 November – 3 December 2021. https://www.fao.org/3/ng734en/ng734en.pdf

Joint Tripartite (FAO, OIE, WHO) & UNEP. 2021. Tripartite and UNEP support OHHLEP’s definition of “One Health”. Rome, FAO. https://www.fao.org/3/cb7869en/cb7869en.pdf