Bibliographie

Abd-Elgawad, M.M.M. 2020. Managing nematodes in Egyptian citrus orchards. Bulletin of the National Research Centre, 44: 41 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1186/s42269-020-00298-9

Ainsworth, E.A. et Long, S.P. 2021. 30 years of free-air carbon enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27: 27-49.

Al-Ayedh, H.Y. Al-. 2017. The current state of the art research and technologies on RPW management. Article présenté lors de la «Consultation scientifique et réunion de haut niveau sur le charançon rouge du palmier», 29-31 mars 2017, Rome, FAO.

Albajes, R., Gullino, M.L., van Lenteren, J.C. et Elad, Y. (dir. pub.). 1999. Integrated pest and disease management in greenhouse crops. Dordrecht (Pays-Bas), Kluwer Academic Publishers.

Almeida, R.P.P., Blua, M.J., Lopes, J.R.S. et Purcell, A.H. 2005. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Annals of the Entomological Society of America, 98: 775-786.

Almekinders, C.J., Walsh, S., Jacobsen, K.S., Andrade-Piedra, J.L., McEwan, M.A., de Haan, S., Kumar, L. et Staver, C. 2019. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Security, 11: 23-42.

Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277: 1281-1287.

Altizer, S., Ostfeld, R.S., Johnson, P.T.J., Kutz, S. et Harvell, C.D. 2013. Climate change and infectious diseases: From evidence to a predictive framework. Science, 341: 514-519.

Amanifar, N., Taghavi, M., Izadpanah, K. et Babaei, G. 2014. Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathologia Mediterranea, 53(2): 318-327.

Anderegg, W.R.L., Kane, J.M. et Anderegg, L.D.L. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3: 30-36.

Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. et Daszak, P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19: 535-544.

Angelotti, F., Hamada, E., Magalhaes, E.E., Ghini, R., Garrido, L.D.R. et Junior, M.J.P. 2017. Climate change and the occurrence of downy mildew in Brazilian grapevines. Pesquisa Agropecuaria Brasileira, Brasilia, 52: 426-434.

Aukema, J.E., Leung, B., Kovacs, K., Chivers, C., Britton, K.O., Englin, J., Frankel, S.J. et al. 2011. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6(9): e24587 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0024587

Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, P., Anzueto, F., Hruska, A.J. et Morales, C. 2015. The coffee rust crises in Colombia and Central America (2008-2013): Impacts, plausible causes and proposed solutions. Food Security, 7: 303-321.

Bairstow, K.A., Clarke, K.L., McGeoch, M.A. et Andrew, N.R. 2010. Leaf miner and plant galler species richness on Acacia: Relative importance of plant traits and climate. Oecologia, 163: 437-448.

Bajwa, A.A., Farooq, M., Al-Sadi, A.M., Nawaz, A., Jabran, K. et Siddique, K.H.M. 2020. Impact of climate change on biology and management of wheat pests. Crop Protection, 137: 105304 [en ligne]. [Consulté le 31 mars 2021]. https://doi.org/10.1016/j.cropro.2020.105304

Bale, J.S. et Hayward, S.A.L. 2010. Insect overwintering in a changing climate. The Journal of Experimental Biology, 213: 980-994.

Battilani, P., Toscano, P., van der Fels-Klerx, H.J., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A. et al. 2016. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6: 24328 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1038/srep24328

Battisti, A. 2008. Forests and climate change; lessons from insects. iForest Biogeosciences and Forestry, 1: 1-5 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3832/ifor0210-0010001

Battisti, A., Stastny, M., Buffo, E. et Larsson, S. 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12: 662-667.

Bebber, D.P, Ramotowski, M.A.T. et Gurr, S.J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3: 985-988.

Bentz, B.J. et Jönsson, A.M. 2015. Modeling bark beetle responses to climate change. Dans F.E. Vega et R.W. Hofstetter (dir. pub.). Bark beetles biology and ecology of native and invasive species, p. 533-553. Cambridge, État du Massachusetts (États-Unis d’Amérique), Academic Press, Elsevier.

Bergsma-Viami, M., van de Bilt, J.L.J., Tjou-Tam-Sin, N.N.A., van de Vossenberg, B.T.L.H. et Westenberg, M. 2015. Xylella fastidiosa in Coffea arabica ornamental plants imported from Costa Rica and Honduras in The Netherlands. Journal of Plant Pathology, 97: 395.

Betz, O., Srisuka, W. et Puthz, V. 2020. Elevational gradients of species richness, community structure, and niche occupation of tropical roove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Evolutionary Ecology, 34: 193-216.

Biber-Freudenberger, L., Ziemacki, J., Tonnang, H.E.Z. et Borgemeister, C. 2016. Future risks of pest species under changing climatic conditions. PLoS ONE, 11: e0153237 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0153237

Billore, S.D. 2019. Weeds in soybean vis-à-vis other crops – a review. Soybean Research, 17: 1-21.

Bingna, H., Feifei, C., Yue, S., Kun, Q., Yan, W., Changjiao, S., Xiang, Z. et al. 2018. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials (Bâle, Suisse), 8(2): 102 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3390/nano8020102

Björkman, C. et Niemelä, P. 2015. Climate change and insect pests. Wallingford (Royaume-Uni), CABI.

Bonello, P., Campbell, F.T., Cipollini, D., Conrad, A.O., Farinas, C., Gandhi, K.J.K., Hain, F.P. et al. 2020. Invasive tree pests devastate ecosystems – a proposed new response framework. Frontiers in Forests and Global Change, 3: 2 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3389/ffgc.2020.00002

Borkataki, S., Reddy, M.D., Nanda, S.P. et Taye, R.R. 2020. Climate change and its possible impact on the existence of insect pests. Ecology, Environment and Conservation, 26: S271-S277.

Bosso, L., Russo, D., Febbraro, M.D., Cristinzio, G. et Zoina, A. 2016. Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopathologia Mediterranea, 55: 62-72.

Bregaglio, S., Donatelli, M. et Confalonieri, R. 2013. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agronomy for Sustainable Development, 33: 767-776.

Burne, A.R. 2019. Pest risk assessment: Halyomorpha halys (Brown marmorated stink bug). Version du 1er juin 2019. Ministère des industries primaires, Nouvelle-Zélande.

Butterworth, M.H., Semenov, M.A., Barnes, A., Moran, D., West, J.S. et Fitt, B.D.L. 2010. North–south divide: Contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 7: 123-130.

CABI. 2021a. Fiche informative sur Bursaphelenchus xylophilus (nématode du pin). Dans Invasive Species Compendium. Wallingford (Royaume-Uni), CABI. [Consultée le 16 mars 2021]. www.cabi.org/isc/datasheet/10448#todistribution

CABI. 2021b. Fiche informative sur Agrilus planipenni (agrile du frêne). Dans Invasive Species Compendium. Wallingford (Royaume-Uni), CABI. [Consultée le 19 mars 2021]. www.cabi.org/isc/datasheet/3780#todistribution

CABI. 2021c. Fiche informative sur Bactrocera oleae (mouche de l’olive). Dans Invasive Species Compendium. Wallingford (Royaume-Uni), CABI. [Consultée le 19 mars 2021]. www.cabi.org/isc/datasheet/17689#todistribution

Carvajal-Yepes, M., Cardwell, K., Nelson, A., Garrett, K.A., Giovani, B., Saunders, D., Kamoun, S. et al. 2019. A global surveillance system for crop diseases. Science, 364: 1237-1239.

Castellanos-Frías, D., de León, D.G., Bastida, F. et González-Andújar, J.L. 2016. Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change. The Journal of Agricultural Science, 154: 755-764.

Castillo, N.E.T., Melchior-Martinez, E.M., Sierra, J.S.O., Ramirez-Mendoza, R.A., Parra-Saldivar, R. et Iqbal, H.M.N. 2020. Impact of climate change and early development of coffee rust – an overview of control strategies to preserve organic cultivars in Mexico. Science of the Total Environment, 738: 140225.

Chakraborty, S. et Newton, A.C. 2011. Climate change, plant diseases and food security: An overview. Plant Pathology, 60: 2-14.

Chakraborty, S., Pangga, I.B. et Roper, M.M. 2012. Climate change and multitrophic interactions in soil: The primacy of plants and functional domains. Global Change Biology, 18: 2111-2125.

Chang, F.P., Kuang, L.Y., Huang, C.A., Jane, W.N., Hung, Y., Hsing, Y.I. et Mou, C.Y. 2013. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 1(39): 5279-5287 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1039/c3tb20529k

Chen, J. et Henny, R.J. 2006. Somaclonal variation: An important source for cultivar development of floriculture crops. Dans J.A. Teixeira da Silva (dir. pub.). Floriculture, ornamental and plant biotechnology, Volume II, p.244-253. Londres, Global Science Books.

Choudhary, J.S., Kumari, M. et Fand, B.B. 2019. Linking insect pest models with climate change scenarios to project against future risks of agricultural insect pests. CAB Reviews, 14: 055 [en ligne]. [Consulté le 28 décembre 2020]. www.cabi.org/cabreviews/review/20193460085

Cilas, C. et Bastide, P. 2020. Challenges to cocoa production in the face of climate change and spread of pests and diseases. Agronomy, 10: 1232 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3390/agronomy10091232

Clements, D.R. et DiTommaso, A. 2011. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Research, 51: 227-240.

Clements, D.R., DiTommaso, A. et Hyvönen, T. 2014. Ecology and management of weeds in a changing climate. Dans B.S. Chauhan et G. Mahajan (dir. pub.). Recent advances in weed management, p. 13-37. New York (États-Unis d’Amérique), Springer Science + Business Media.

Cooke, D.E.L., Cano, L.M., Raffaele, S., Bain, R.A., Cooke, L.R., Etherington, G.J., Deahl, K.L. et al. 2012. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathogens 8(10): e1002940 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.ppat.1002940

Cornara, D., Morente, M., Markheiser, A., Bodino, N., Tsai, C.-W., Fereres, A., Redak, R.A., Perring, T.M. et Lopes, J.R.S. 2019. An overview on the worldwide vectors of Xylella fastidiosa. Entomologia Generalis, 39(3-4): 157-181.

Cunningham, F.J., Goh, N.S., Demirer, G.S., Matos, J.L. et Landry, M.P. 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology, 36(9): 882-897.

Daughtrey, M. et Buitenhuis, R. 2020. Integrated pest and disease management in greenhouse ornamentals. Dans M.L. Gullino, R. Albajes et P.C. Nicot (dir. pub.). Integrated pest and disease management in greenhouse crops, p. 625-679. Dordrecht (Pays-Bas), Springer Nature.

Day, R., Quinlan, M. et Ogutu, W. 2006. Analysis of the application of the phytosanitary capacity evaluation tool. Rapport au Secrétariat de la Convention internationale pour la protection des végétaux.

Debelo, D.G. 2020. Predictions of climate change impacts on agricultural insect pests vis-à-vis food crop productivity: A critical review. Ethiopian Journal of Science and Sustainable Development, 7: 18-26.

Delcour, I., Spanoghe, P. et Uyttendaele, M. 2015. Literature review: Impact of climate change on pesticide use. Food Research International, 68: 7-15.

Delucia, E.H., Nabity, P.D., Zavala, J.A. et Berenbaum, M.R. 2012. Climate change: Resetting plant-insect interactions. Plant Physiology, 160: 1677-1685.

Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Shelton, K.S., Ghalambor, C.K., Haak, D.C. et Martin, P.R. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA, 105: 6668-6672.

Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B. et Naylor, R.L. 2018. Increase in crop losses to insect pests in a warming climate. Science, 361: 915-919.

Diamond, S.E. 2018. Contemporary climate-driven range shifts: Putting evolution back on the table. Functional Ecology, 32: 1652-1665.

Dilling, L., Daly, M.E., Travis, W.R., Wilhelmi, O.V. et Klein, R.A. 2015. The dynamics of vulnerability: Why adapting to climate variability will not always prepare us for climate change. Wiley Interdisciplinary Reviews: Climate Change, 6: 413-425.

Dita, M., Barquero, M., Heck, D., Mizubuti, E.S.G. et Staver, C.P. 2018. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9: 1468 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3389/fpls.2018.01468

Diyanat, M., Saeidian, H., Baziar, S. et Mirjafary, Z. 2019. Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environmental Science and Pollution Research International, 26(21): 21579-21588 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1007/s11356-019-05257-0

Donovan, G.H., Butry, D.T., Michael, Y.L., Prestemon, J.P., Liebhold, A.M., Demetrios Gatziolis, D. et Mao, M.Y. 2013. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. American Journal of Preventive Medicine, 44(2): 139-145.

Duan, J.J., Bauer, L.S., Van Driesche, R., Schmude, J.M., Petrice, T., Chandler, J.L. et Elkinton, J. 2020. Effects of extreme low winter temperatures on the overwintering survival of the introduced larval parasitoids Spathius galinae and Tetrastichus planipennisi: Implications for biological control of emerald ash borer in North America. Journal of Economic Entomology, 113: 1145-1151.

Duncan, L.W. 2009. Managing nematodes in citrus orchards. Dans A. Ciancio et K.G. Mukerji (dir. pub.). Integrated management of fruit crops and forest nematodes, p. 135-173. Dordrecht (Pays-Bas), Springer Science+Business Media B.V.

Duran, A., Gryzenhout, M., Slippers, B., Ahumada, R., Rotella, A., Flores, F., Wingfield, B.D. et Wingfield, M.J. 2008. Phytophthora pinifolia sp. nov. associated with a serious needle disease of Pinus radiata in Chile. Plant Pathology, 57: 715-727.

Eastburn, D.M., McElrone, A.J. et Bilgin, D.D. 2011. Influence of atmospheric and climate change on plant-pathogen interactions. Plant Pathology, 60: 54-69.

Edmonds, R.L. 2013. General strategies of forest disease management. Dans P. Gonthier et G. Nicolotti (dir. pub.). Infectious Forest Diseases, p. 29-49. Wallingford (Royaume-Uni) et Boston, Massachusetts (États-Unis d’Amérique), CABI.

Eigenbrode, S.D., Davis, T.S. et Crowder, D.W. 2015. Climate change and biological control in agricultural systems: Principles and examples from North America. Dans C. Björkman et P. Niemelä (dir. pub.). Climate change and insect pests, p. 119-135. Wallingford (Royaume-Uni), CABI.

El-Mergawy, R.A.A.M. et Al-Ajlan, A.M. 2011. Red palm weevil, Rhynchophorus ferrugineus (Olivier): Economic importance, biology, biogeography and integrated pest management. Journal of Agricultural Science and Technology, 1: 1-23.

El-Sabea, A.M. El-, Faleiro, J. et Abo-El-Saad, M.M. 2009. The threat of red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf region in the Middle-East: An economic perspective. Outlooks on Pest Management, 20(3): 131-134.

Erikson, L. et Griffin, R. 2014. The international regulatory framework. Dans G. Gordh, S. McKirdy (dir. pub.). The Handbook of Plant Biosecurity, p. 27-44. Dordrecht (Pays-Bas), Springer Science+Business Media.

Evans, N., Baierl, A., Semenov, M.A., Gladders, P. et Fitt, B.D.L. 2008. Range and increase of a plant disease increased by global warming. Journal of the Royal Society Interface, 5: 625-631.

Fahim, M.A., Hassanein, M.K., Abou Hadid, A.F. et Kadah, M.S. 2011. Impacts of climate change on the widespread and epidemics of some tomato diseases during the last decade in Egypt. Acta Horticulturae, 914: 317-320.

Fahim, M.A., Hassanein, M.K. et Mostafa, M.H. 2003. Relationships between climatic conditions and potato late blight epidemic in Egypt during winter seasons 1999–2001. Applied Ecology and Environmental Research, 1(1-2): 159-172.

Falco, S.D., Adinolfi, F., Bozzola, M. et Capitanio, F. 2014. Crop insurance as a strategy for adapting to climate change. Journal of Agricultural Economics, 65: 485-504.

FAO. 2008. Maladies et organismes nuisibles transfrontières liés au climat. Document d’information technique de la consultation d’experts qui s’est tenue du 25 au 27 février 2008. Rome. 59 pages (consultable à l’adresse www.fao.org/3/a-ai785e.pdf).

FAO. 2020. Red palm weevil: Guidelines on management practices. Rome, ix + 86 pages (consultable à l’adresse https://doi.org/10.4060/ca7703en).

FAO. 2021a. Desert locust upsurge progress report on the response in Southwest Asia (MayDecember 2020). Rome. 18 pages (consultable à l’adresse www.fao.org/3/cb2358en/cb2358en.pdf).

FAO. 2021b. Cadre stratégique de la Convention internationale pour la protection des végétaux (CIPV) pour 2020-2030. Rome, pour le compte du Secrétariat de la CIPV. 40 pages.

Fedchock, C., Gould, W.P, Hennessey, M.K., Mennig, X. et Sosa, E. 2006. Trip report Spanish lemon site visit: 23-30 septembre 2006. Riverdale (États-Unis d’Amérique), Département de l’agriculture des États-Unis, Service de l’inspection de la santé des plantes et des animaux.

Fiaboe, K.K.M., Peterson, A.T., Kairo M.T.K. et Roda, A.L. 2012. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Florida Entomologist, 95: 559-673.

Flitters, N.E. 1963. Observations on the effect of hurricane “Carla” on insect activity. International Journal of Biometeorology, 6: 85-92.

Frank, S.D. 2020. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. Forestry: An International Journal of Forest Research, cpaa033 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1093/forestry/cpaa033

Frem, M., Chapman, D., Fucilli, V., Choueiri, E., Moujabber, M.E., Notte, P.L. Altermatt, F. 2020. Xylella fastidiosa invasion of new countries in Europe, the Middle East and North Africa: Ranking the potential exposure scenarios. NeoBiota, 59: 77-97 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3897/neobiota.59.53208

Fussmann, K.E., Schwarzmüller, F., Brose, U., Jousset, A. et Rall, B.C. 2014. Ecological stability in response to warming. Nature Climate Change, 4: 206-210.

García-Bastidas, F.A., Quintero-Vargas, Ayala-Vasquez, M., Schermer, T, Seidl, M.F., Santos-Paiva, M., Noguera A.M. et al. 2019. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Disease [en ligne]. [Consulté le 31 mars 2021]. https://doi.org/10.1094/PDIS-09-19-1922-PDN

Garibaldi, A. et Gullino, M.L. 1995. Focus on critical issues in soil and substrate disinfestation towards the year 2000. Acta Horticulturae, 382: 21-36.

Garibaldi, L., Kitzberger, T. et Chaneton, E.J. 2011. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia, 167: 117-129.

Garrett, K.A., Alcalá-Briseño, R., Andersen, K.F., Brawner, J., Choudhury, R., Delaquis, E., Fayette, J., Poudel, R., Purves, D. et Rothschild, J. 2020b. Effective altruism as an ethical lens on research priorities. Phytopathology, 110: 708-722.

Garrett, K.A., Alcalá-Briseño, R.I., Andersen, K.F., Buddenhagen, C.E., Choudhury, R.A., Fulton, J.C., Hernandez Nopsa, J.F., Poudel, R. et Xing, Y. 2018. Network analysis: A systems framework to address grand challenges in plant pathology. Annual Review of Phytopathology, 56: 559-580.

Garrett, K.A., Alcalá-Briseño, R.I., Andersen, K.F., Choudhury, R.A., Dantes, W., Fayette, J., Fulton, J.C., Poudel, R. et Staub, C.G. 2020a. Adapting disease management systems under global change. Dans J.B. Ristaino et A. Records (dir. pub.). Emerging plant diseases and global food security, p.1-13. St. Paul (États-Unis d’Amérique), APS Press.

Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N. et Travers, S.E. 2006. Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44: 489-509.

Garrett, K.A., Nita, M., De Wolf, E.D., Esker, P.D., Gomez-Montano, L. et Sparks, A.H. 2016. Plant pathogens as indicators of climate change. Dans T.M. Letcher (dir. pub.). Climate change: Observed impacts on planet Earth, 2e édition, p. 325–338. Amsterdam, Elsevier.

Garrett, K.A., Nita, M., De Wolf, E.D., Esker, P.D., Gomez-Montano, L. et Sparks, A.H. 2021. Plant pathogens as indicators of climate change. Dans T.M. Letcher (dir. pub.). Climate change: Observed impacts on planet Earth, 3e édition, p. 499–513. Amsterdam, Elsevier.

Ge X., He, S., Wang, T., Yan, W. et Zong, S. 2015. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE 10(10): e0141111 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0141111

Ghini, R., Bettiol, W. et Hamada, E. 2011. Diseases in tropical plantation crops as affected by climate changes: Current knowledge and perspectives. Plant Pathology, 60: 122-132.

Ghini, R., Hamada, E. et Bettiol, W. 2008. Climate change and plant diseases. Scientia Agrícola, 65: 98-107.

Ghini, R., Hamada, E. et Bettiol, W. 2011. Impactos das mudanças climáticas sobre doenças de importantes culturas no Brasil. Brasília, Jaguariúna: Embrapa Meio Ambiente.

Ghini, R., Hamada, E., Pedro Júnior, M.J. et Gonçalves, R.R.V. 2011. Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathologica, 37: 85-93.

GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat). 2013. Changements climatiques 2013: Les éléments scientifiques. Contribution du Groupe de travail I au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex et P.M. Midgley [dir. pub.]). Cambridge (Royaume-Uni) et New York (États-Unis d’Amérique), Presses universitaires de Cambridge. 1535 pages.

GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat). 2014a. Changements climatiques 2014: Rapport de synthèse. Contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat (R.K. Pachauri et L.A. Meyer [dir. pub.]). Genève (Suisse). 161 pages (consultable à l’adresse https://archive.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_fr.pdf).

GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat). 2014b. Résumé à l’intention des décideurs. Dans Changements climatiques 2014: Incidences, adaptation et vulnérabilité. Partie A: Aspects mondiaux et sectoriels. Contribution du Groupe de travail II au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee et al. [dir. pub.]). Cambridge (Royaume-Uni) et New York (États-Unis d’Amérique), Presses universitaires de Cambridge. 1-32. (consultable à l’adresse www.ipcc.ch/site/assets/uploads/2018/02/ar5_wgII_spm_fr.pdf).

GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat). 2018. Réchauffement planétaire de 1,5 °C: Rapport spécial du GIEC sur les conséquences d’un réchauffement planétaire de 1,5 °C par rapport aux niveaux préindustriels et les trajectoires associées d’émissions mondiales de gaz à effet de serre, dans le contexte du renforcement de la parade mondiale au changement climatique, du développement durable et de la lutte contre la pauvreté (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani et al. [dir. pub.]). Genève (Suisse). 630 pages.

GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat). 2019a. Rapport spécial sur le changement climatique et les terres émergées [en ligne]. [Consulté le 19 mars 2021]. www.ipcc.ch/srccl/

GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat). 2019b. Rapport spécial sur l’océan et la cryosphère dans le contexte du changement climatique [en ligne]. [Consulté le 19 mars 2021]. www.ipcc.ch/srocc/

Gilardi, G., Garibaldi, A. et Gullino, M.L. 2018. Emerging pathogens as a consequence of globalization and climate change: Leafy vegetables as a case study. Phytopathologia Mediterranea, 57: 146-152.

Gilardi, G., Gisi, U., Garibaldi, A. et Gullino, M.L. 2017. Effect of elevated atmospheric CO2 and temperature on the chemical and biological control of powdery mildew of zucchini and the Phoma leaf spot of leaf beet. European Journal Plant Pathology, 148: 229-236.

Giovani, B., Blümel, S., Lopian, R., Teulon, D., Bloem, S., Galeano Martίnez, C., Beltrán Montoya, C. et al. 2020. Science diplomacy for plant health. Nature Plants, 6: 902-905.

Gitaitis, R. et Walcott, R. 2007. The epidemiology and management of seedborne bacterial diseases. Annual Review of Phytopathology, 45: 371-397.

Godefroid, M., Cruaud, A., Rossi, J.P. et Rasplus, J.Y. 2015. Assessing the risk of invasion by tephritid fruit flies: Intraspecific divergence matters. PLoS ONE, 10: e0135209 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0135209

Godefroid, M., Cruaud, A., Streito, J.C., Rasplus, J.Y. et Rossi, J. P. 2018. Climate change and the potential distribution of Xylella fastidiosa in Europe. bioRxiv, hal-02791548f [en ligne]. [Consulté le 28 décembre 2020]. https://hal.inrae.fr/hal-02791548/document

Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y. et Rossi, J.-P. 2019. Xylella fastidiosa: Climate suitability of European continent. Scientific Reports, 9: 8844 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1038/s41598-019-45365-y

Godefroid, M., Morente, M., Schartel, T., Cornara, D., Purcell, A., Gallego, D., Moreno, A., Pereira, J.A. et Fereres, A. 2020. The risk of Xylella fastidiosa outbreaks will decrease in the Mediterranean olive-producing regions. bioRxiv [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1101/2020.07.16.206474

Goergen, G., Kumar, P.L., Sankung, S.B., Togola, A. et Tamò, M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10): e0165632. [en ligne]. [Consulté le 15 mars 2021]. https://doi.org/10.1371/journal.pone.0165632

Goswami, A., Roy, I., Sengupta, S. et Debnath, N. 2010. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 519(3): 1252-1257.

Gouache, D., Bensadoun, A., Brun, F., Page, C., Makowski, D. et Wallach, D. 2013. Modelling climate change impact on Septoria tritici blotch (STB) in France: Accounting for climate model and disease uncertainty. Agricultural and Forest Meteorology, 170: 242-252.

Gouache, D., Roche, R., Pieri, P. et Bancal, M.O. 2011. Évolution de quelques pathosystèmes sur le blé et la vigne. Dans N. Brisson et F. Levrault (dir. pub.). Le Livre vert du projet CLIMATOR (2007-2010) - Changement climatique, agriculture et forêt en France: simulations d’impacts sur les principales espèces, section B5 Santé, Les thèmes, p. 113-126. France, Agence de la transition écologique (ADEME).

Gregory, P.J., Johnson, S.N., Newton, A.C. et Ingram, J.S.I. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60: 2827-2838.

Grillo, R., Dos Santos, N.Z.P., Maruyama, C.R., Rosa, A.H., de Lima, R. et Fraceto, L.F. 2012. Poly(ε-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials, 231–232: 1-9.

Grünig, M., Mazzi, D., Calanca, P., Karger, D.N. et Pellissier, L. 2020. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology, 3: 233 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1038/s42003-020-0962-9

Gullino, M.L., Gilardi, G. et Garibaldi, A. 2014a. Seed-borne pathogens of leafy vegetable crops. Dans M.L. Gullino et G. Munkvold (dir. pub.). Global perspectives on the health of seeds and plant propagation material, p. 47-53. Dordrecht (Pays-Bas), Springer.

Gullino, M.L., Gilardi, G. et Garibaldi, A. 2014b. Chemical and non-chemical seed dressing for leafy vegetable crops. Dans M.L. Gullino et G. Munkvold (dir. pub.). Global perspectives on the health of seeds and plant propagation material, p. 125-136. Dordrecht (Pays-Bas), Springer.

Gullino, M.L., Gilardi, G. et Garibaldi, A. 2019. Ready-to-eat salad crops: A plant pathogen’s heaven. Plant Disease, 103: 2153-2170.

Gullino, M.L. et Munkvold, G. (dir. pub.). 2014. Global perspectives on the health of seeds and plant propagation material. Dordrecht (Pays-Bas), Springer. 136 pages.

Gullino, M.L., Pugliese, M., Gilardi, G. et Garibaldi, A. 2018. Effect of increased CO2 and temperature on plant diseases: A critical appraisal of results obtained in studies carried out under controlled environment facilities. Journal of Plant Pathology, 100: 371-389.

Gullino, M.L., Pugliese, M., Paravicini, A., Casulli, E., Rettori, A., Sanna, M. et Garibaldi, A. 2011. New phytotron for studying the effect of climate change on plant pathogens. Journal of Agricultural Engineering, 1: 1-11.

Gullino, M.L., Tabone, G., Gilardi, G. et Garibaldi, A. 2020. Effects of elevated atmospheric CO2 and temperature on the management of powdery mildew of zucchini. Journal of Phytopathology, 168: 405-415.

Gutierrez, A.P., Ponti, L. et Cossu, Q.A. 2009. Effects of climate warming on Olive and olive fly (Bactrocera oleae [Gmelin]) in California and Italy. Climatic Change, 95: 195-217.

Haack, R.A., Jendek, E., Liu, H.P., Marchant, K.R., Petrice, T.R., Poland, T.M. et Ye, H. 2002. The emerald ash borer: A new exotic pest in North America. Newsletter of the Michigan Entomological Society, 47: 1-5.

Hakata, M., Wada, H., Masumoto-Kubo, C., Tanaka, R., Sato, H. et Morita, S. 2017. Development of a new heat tolerance assay system for rice spikelet sterility. Plant Methods, 13(1): 34 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1186/s13007-017-0185-3

Hannukkala, A.O., Kaukoranta, T., Lehtinen, A. et Rahkonen, A. 2007. Late-blight epidemics on potato in Finland, 1933-2002: Increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56: 167-176.

Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. et Samuel, M.D. 2002. Climate warming and disease risk for terrestrial and marine biota. Science, 296: 2158-2162.

Harvey, J.A., Heinen, R., Gols, R. et Thakur, M.P. 2020. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology, 26: 6685-6701.

Heeb, L., Jenner, E. et Cock, M.J.W. 2019. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. Journal of Pest Science, 92: 951-969.

Heltberg, R., Siegel, P.B. et Jorgensen, S.L. 2009. Addressing human vulnerability to climate change: Toward a ‘no-regrets’ approach. Global Environmental Change, 19: 89-99.

Heraud, J. 2018. Blue River Technology. Resource, 25(6): 12-12.

Herms, D.A. et McCullough, D.G. 2014. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annual Review of Entomology, 59: 13-30.

Hill, M.P. et Thomson, L.J. 2015. Species distribution modelling in predicting response to climate change. Dans C. Björkman et P. Niemelä (dir. pub.). Climate change and insect pests, p. 16-37. Wallingford (Royaume-Uni), CABI.

Hoffmann, A.A., Rymer, P.D., Byrne, M., Ruthrof, K.X., Whinam, J., McGeoch, M., Bergstrom, D.M. et al. 2019. Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology, 44: 3-27.

Howden, S.M., Gifford, R.G. et Meinke, H. 2010. Grains. Dans C. Stokes et M. Howden (dir. pub.). Adapting agriculture to climate change: Preparing Australian agriculture for the future, p. 21-40. Melbourne (Australie), CSIRO.

Hu, J., Angeli, S., Schuetz, S, Luo, Y. et Hajek, A.E. 2009. Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agricultural and Forest Entomology, 11: 359-375.

Huang, J. et Hao, H. 2020. Effects of climate change and crop planting on the abundance of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Ecology and Evolution, 10: 1324-1338.

Hunjan, M.S. et Lore, J.S. 2020. Climate change: Impact on plant pathogens, diseases, and their management. Dans K. Jabran, S. Florentine et B.S. Chauhan (dir. pub.). Crop protection under changing climate, p. 85-100. Springer International Publishing.

Ikegami, M. et Jenkins, T.A.R. 2018. Estimate global risks of a forest disease under current and future climates using distribution model and simple thermal model – pine wilt disease as a model case. Forest Ecology and Management, 409: 343-352.

Ingram, J.S.I., Gregory, P.J. et Izac, A.-M. 2008. The role of agronomic research in climate change and food security policy. Agriculture, Ecosystems & Environment, 126(1-2): 4-12.

Iscaro, J. 2014. The impact of climate change on coffee production in Colombia and Ethiopia. Global Majority E-Journal, 5: 33-43.

Jabran, K., Florentine, S. et Chauhan, B.S. 2020. Impacts of climate change on weeds, insect pests, plant diseases and crop yields: Synthesis. Dans K. Jabran, S. Florentine et B.S. Chauhan (dir. pub.). Crop protection under changing climate, p. 189-196. Springer International Publishing.

Jactel, H., Desprez-Loustau, M.L., Battisti, A., Brockerhoff, E., Santini, A., Stenlid, A., Björkman, C. et al. 2020. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 58: 107-127.

Jactel, H, Koricheva, J. et Castagneyrol, B. 2019. Responses of forest insect pests to climate change: Not so simple. Current Opinion in Insect Science, 35: 103-108.

Janse, J.D. et Obradovic, A. 2010. Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology, 92: 35-48.

Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G. et al. 2018. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA Journal, 16(8): 5351 [en ligne]. [Consulté le 6 avril 2021]. https://doi.org/10.2903/j.efsa.2018.5351

Jeger, M.J. et Pautasso, M. 2008. Plant disease and global change – the importance of long-term data sets. New Phytologist, 177: 8-11.

Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T. et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14: 946-961.

Jones, R.A.C. 2016. Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research, 95: 87-147.

Jönsson A.M., Harding S., Krokene P., Lange H., Lindelow Å., Okland B., Ravn H.P y Schroeder, M. 2011. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Climatic Change, 109: 606-718.

Junk, J., Jonas, M. et Eickermann, M. 2016. Assessing meteorological key factors influencing crop invasion by pollen beetle (Meligethes aeneus F.) – past observations and future perspectives. Meteorologische Zeitschrift, 25: 357-364.

Juroszek, P., Racca, P., Link, S., Farhumand, J. et Kleinhenz, B. 2020. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 69: 179-193.

Juroszek, P. et von Tiedemann, A. 2011. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60: 100-112.

Juroszek, P. et von Tiedemann, A. 2013a. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. The Journal of Agricultural Science, 151: 163-188.

Juroszek, P. et von Tiedemann, A. 2013b. Climate change and potential future risks through wheat diseases. European Journal of Plant Pathology, 136: 21-33.

Juroszek, P. et von Tiedemann, A. 2013c. Climatic changes and the potential future importance of maize diseases: A short review. Journal of Plant Diseases and Protection, 120: 49-56.

Juroszek, P. et von Tiedemann, A. 2015. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A review. Journal of Plant Diseases and Protection, 122: 3-15.

Karaca, M. et Dursun, S.S. 2020. Possible effects of climate change on weeds in agriculture. Selcuk Journal of Agriculture and Food Sciences, 34: 111-117.

Karkanis, A., Ntatsi, G., Alemardan, A, Petropoulos, S. et Bilalis, D. 2018. Interference of weeds in vegetable crop cultivation, in the changing climate of Southern Europe with emphasis on drought and elevated temperatures: A review. The Journal of Agricultural Science, 156: 1175-1185.

Kellermann, V. et van Heerwaarden, B. 2019. Terrestrial insects and climate change: Adaptive responses in key traits. Physiological Entomology, 44: 99-115.

Kimathi, E., Tonnang, H.E.Z., Subramanian, S., Cressman, K., Abdel-Rahman, E.M., Tesfayohannes, M., Niassy, S., Torto, B. et al. 2020. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Scientific Reports 10: 11937 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1038/s41598-020-68895-2

King, M., Altdorff, D., Li, P. Galagedara L., Holden, J. et Unc, A. 2018. Northward shift of the agricultural climate zone under 21st-century global climate change. Scientific Reports, 8: 7904 [en ligne]. [Consulté le 31 mars 2021]. https://doi.org/10.1038/s41598-018-26321-8

Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štěpánek , P., Semerádová, D., Balek, J. et al. 2011. Estimating the impact of climate change on the occurrence of selected pests at high spatial resolution: A novel approach. The Journal of Agricultural Science, 149: 185-195.

Koo, T.H., Hong, S.J. et Yun, S.C. 2016. Changes in the aggressiveness and fecundity of hot pepper anthracnose pathogen (Colletotrichum acutatum) under elevated CO2 and temperature over 100 infection cycles. The Plant Pathology Journal, 32: 260-265.

Koricheva, J. et Larsson, S. 1998. Insect performance on experimentally stressed woody plants: A meta-analysis. Annual Review Entomology, 43: 195-216.

Korres, N.E., Norsworthy, J.K., Tehranchian, P., Gitsopoulos, T.K., Loka, D.A., Oosterhuis, D.M., Gealy, D.R. et al. 2016. Cultivars to face climate change effects on crops and weeds: A review. Agronomy for Sustainable Development, 36: 12 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1007/s13593-016-0350-5

Kremer, P., Schlüter, J., Racca, P., Fuchs, H.J. et Lang, C. 2016. Possible impact of climate change on the occurrence and the epidemic development of cercospora leaf spot disease (Cercospora beticola sacc.) in sugar beets for Rhineland-Palatinate and the southern part of Hesse. Climatic Change, 137: 481-494.

Kriticos, D.J., Watt, M.S., Potter, K.J.B., Mannig, L.K., Alexander, N.S. et Tallent-Halsell, N. 2011. Managing invasive weeds under climate change: Considering the current and potential future distribution of Buddleja davidii. Weed Research, 51: 85-96.

Kumar, N. et Khurana, S.M.P. 2020. Invasion of major fungal diseases in crop plants and forest trees due to recent climate fluctuations. Dans A. Raj, M.K. Jhariya, D.K. Yadav, et A. Banerjee (dir. pub.). Climate Change and Agroforestry Systems: Adaptation and Mitigation Strategies, Chapter 8, p. 209-236. Burlington (Canada), Apple Academic Press.

Launay, M., Caubel, J., Bourgeois, G., Huard, F., de Cortazar-Atauri, I.G., Bancal, M.O. et Brisson, N. 2014. Climatic indicators for crop infection risk: Application to climate impacts on five major foliar fungal diseases in Northern France. Agriculture, Ecosystems & Environment, 197: 147-158.

Launay, M., Zurfluh, O., Huard, F., Buis, F., Bourgeois, G., Caubel, J., Huber, L. et Bancal, M.O. 2020. Robustness of crop disease response to climate change signal under modelling uncertainties. Agricultural Systems, 178: 102733.

Leguizamon, E.S. et Acciaresi, H.A. 2014. Climate change and the potential spread of Sorghum halepense in the central area of Argentina based on growth, biomass allocation and eco-physiological traits. Theoretical and Experimental Plant Physiology, 26: 101-113.

Lehmann, P., Ammunet, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G. et al. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18: 141-150.

Liang, L. et Fei, S. 2014. Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Climatic Change, 122: 735-746.

Liebhold, A.M. et Kean, J.M. 2019. Eradication and containment of non-native forest insects: Successes and failures. Journal of Pest Science, 92: 83-91.

Lipper, L., Thornton, P., Campbell, B.M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D. et Henry, K. 2014. Climate-smart agriculture for food security. Nature Climate Change, 4: 1068-1072.

Litkas, V.D., Migeon, A., Navajas, M., Tixier, M.S. et Stavrinides, M.C. 2019. Impacts of climate change on tomato, a notorious pest and its natural enemy: Small scale agriculture at higher risk. Environmental Research Letters, 14: 084041 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1088/1748-9326/ab3313

Liu, T., Wan, A., Liu, D. et Chen, X. 2017. Changes of races and virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Plant Disease, 101: 1522-1532.

Lopian, R. 2018. Climate change, sanitary and phytosanitary measures and agricultural trade. The state of agricultural commodity markets (SOCO) 2018: Background paper. Rome, FAO. 48 pages (consultable à l’adresse www.fao.org/3/CA2351EN/ca2351en.pdf).

Loustau, D., Ogee J., Dufrene, E., Deque, M., Duponey, J.I., Badeau, V., Viovy, N. et al. 2007. Impacts of climate change on temperate forests and interaction with management. Dans P.H. Freer-Smith, M.S.J. Broadmeadow et J.M. Lynch (dir. pub.). Forestry and climate change, p. 243-250. Wallingford (Royaume-Uni), CABI.

Luck, I., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K. et Chakraborty S. 2011. Climate change and diseases of food crops. Plant Pathology, 60: 113-121.

Luo, Y., TeBeest, D.O., Teng, P.S. et Fabellar, N.G. 1995. Simulation studies on risk analysis of rice blast epidemics associated with global climate change in several Asian countries. Journal of Biogeography, 22: 673-678.

Luo, Y., Teng, P.S., Fabellar, N.G. et TeBeest, D.O. 1998. The effects of global temperature change on rice leaf blast epidemics: a simulation study in three agroecological zones. Agriculture, Ecosystems & Environment, 68: 187-196.

Macfayden, S, McDonald, G. et Hill, M.P. 2018. From species distributions to climate change adaptation: Knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agriculture, Ecosystems & Environment, 253: 208-219.

Maclean, I.M.D. 2020. Predicting future climate at high spatial and temporal resolution. Global Change Biology, 26(2): 1003-1011.

Madgwick, J.W., West, J.S., White, R.P., Semenov, M.A., Townsend, J.A., Turner, J.A. et Fitt, B.D.L. 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130: 117-131.

Magan, N., Medina, A. et Aldred, D. 2011. Possible climate-change effects on mycotoxin contamination of food crops pre-and postharvest. Plant Pathology, 60: 150-163.

McConnachie, A.J., Strathie, L.W., Mersie, W., Gebrehiwot, L., Zewdie, K., Abdurehim, A., Abrha, B., Araya, T., Asaregew, F., Assefa, F., Gebre-Tsadik, R., Nigatu, L., Tadesse, B. et Tana, T. 2011. Current and potential geographical distribution of the invasive plant Parthenium hysterophorus (Asteraceae) in eastern and southern Africa. Weed Research, 51: 71-84.

Manisankar, G. et Ramesh, T. 2019. Response of weeds under elevated CO2 and temperature: A review. Journal of Pharmacognosy and Phytochemistry, SP2: 427-431.

Marshall, K.E., Gotthard, K. et Williams, C.M. 2020. Evolutionary impacts of winter climate change on insects. Current Opinion in Insect Science, 41: 54-62.

Massad, T.J. et Dyer, L.A. 2010. A meta-analysis of the effects of global environmental change on plant-herbivore interactions. Arthropod-Plant Interactions, 4: 181-188.

Matzrafi, M., Seiwert, B., Reemtsma, T., Rubin, B. et Peleg, Z. 2016. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta, 244: 1217-1227.

McCullough, D.G., Work, T.T., Cavey, J.F., Liebhold, A.M. et Marshall, D. 2006. Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biological Invasions, 8: 611-630.

Medina, A., Akbar, A., Baazeem, A., Rodriguez, A. et Managan, N. 2017. Climate change, food security and mycotoxins. Do we know enough? Fungal Biology Reviews, 31(3): 143-154.

Mehmood, M.Z., Afzal, O., Aslam, M.A., Riaz, H., Raza, M.A., Ahmed, S., Qadir, G. et al. 2020. Disease modeling as a tool to assess the impacts of climate variability on plant diseases and health. Dans M. Ahmed (dir. pub.). Systems modeling, p. 327-351. Singapour, Springer Nature Singapore.

Melloy, P., Hollaway, G., Luck, J., Norton, R., Aitken, E. et Chakraborty, S. 2010. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology, 16: 3363-3373.

Meurisse, N., Rassati, D., Hurley, B.P., Brockerhoff, E.G. etHaack, R.A. 2019. Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science, 92: 13-27.

Meynard, C.N., Gay, P.E., Lecoq, M., Foucart, A., Piou, C. et Chapuis, M.P. 2017. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Global Change Biology, 23: 4739-4749.

Miedaner, T. et Juroszek, P. 2021a. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theoretical and Applied Genetics [en ligne]. [Consulté le 13 mars 2021]. https://doi.org/10.1007/s00122-021-03807-0

Miedaner, T. et Juroszek, P. 2021b. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathology [en ligne]. [Consulté le 26 février 2021]. https://doi.org/10.1111/ppa.13365

Mikkelsen, B.L., Jørgensen, R.B. et Lyngkjær, M.F. 2014. Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathology, 64: 319-327.

Misra, A.K., Yadav, S.B., Mishra, S.K. et Tripathi, M.K. 2020. Impact of meteorological variables and climate change on plant diseases. Dans P. Kumar, A.K. Tiwari, M. Kamle, Z. Abbas et P. Singh (dir. pub.). Plant pathogensdetection and management for sustainable agriculture, p. 313-327. Oakville, Ontario Canada), Apple Academic Press.

Moriyama, M. et Numata, H. 2019. Ecophysiological responses to climate change in cicadas. Physiological Entomology, 44: 65-76.

Mostert, D., Molina, A.B., Daniells, J., Fourie, G., Hermanto, C., Chao, C.P., Fabregar, E. et al. 2017. The distribution and host range of the banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE, 12: e0181630 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0181630

Munkvold, G.P. 2009. Seed pathology progress in the academia and industry. Annual Review of Phytopathology, 47: 285-311.

Munkvold, G.P. et Gullino, M.L. 2020. Seed and propagative material. Dans M.L. Gullino, R. Albajes et P.C. Nicot (dir. pub.). Integrated pest and disease management in greenhouse crops, p.331-679. Dordrecht (Pays-Bas), Springer Nature.

Naidu, V.S.G.R. 2015. Climate change, crop-weed balance and the future of weed management. Indian Journal of Weed Science, 47: 288-295.

Niblack, T.L. 2005 Soybean cyst nematode management reconsidered. Plant Disease, 89: 1020-1026.

NIMP n° 2. 2019. Cadre de l’analyse du risque phytosanitaire. Rome, Secrétariat de la CIPV, FAO.

NIMP n° 5. Glossaire des termes phytosanitaires. Rome, Secrétariat de la CIPV, FAO.

NIMP n° 6. 2018. Surveillance. Rome, Secrétariat de la CIPV, FAO.

NIMP n° 11. 2019. Analyse du risque phytosanitaire pour les organismes de quarantaine. Rome, Secrétariat de la CIPV, FAO.

NIMP n° 20. 2019. Directives pour un système phytosanitaire de réglementation des importations. Rome, Secrétariat de la CIPV, FAO.

NIMP n° 21. 2019. Analyse du risque phytosanitaire pour les organismes réglementés non de quarantaine. Rome, Secrétariat de la CIPV, FAO.

O’Bannon, J.H. et Tomerlin, A.T. 1973. Citrus tree decline caused by Pratylenchus coffeae. Journal of Nematology, 5: 311-316.

OEPP (Organisation européenne et méditerranéenne pour la protection des plantes). 2020a. Liste A1 des organismes nuisibles recommandés pour réglementation en tant qu’organismes de quarantaine 2020-09. Dans Organisation européenne et méditerranéenne pour la protection des plantes [en ligne]. [Consultée le 28 décembre 2020]. www.eppo.int/ACTIVITIES/plant_quarantine/A1_list

OEPP (Organisation européenne et méditerranéenne pour la protection des plantes). 2020b. Premier signalement de Spodoptera frugiperda en Israël. Service d’information de l’OEPP, n° 08-2020: 2020/161. Dans Base de données mondiale de l’OEPP [en ligne]. Paris. [Consulté le 28 décembre 2020]. https://gd.eppo.int/reporting/article-6839

OEPP (Organisation européenne et méditerranéenne pour la protection des plantes). 2021a. Anoplophora glabripennis. Fiches informatives de l’OEPP sur les organismes nuisibles recommandés pour la réglementation. Dans Base de données mondiale de l’OEPP [en ligne]. [Consulté le 20 février 2021]. https://gd.eppo.int/taxon/ANOLGL/datasheet

OEPP (Organisation européenne et méditerranéenne pour la protection des plantes). 2021b. Agrilus planipennis. Fiche informative de l’OEPP mise à jour en janvier 2021. Dans Base de données mondiale de l’OEPP [en ligne]. [Consultée le 20 février 2021]. https://gd.eppo.int/taxon/AGRLPL/datasheet

OEPP (Organisation européenne et méditerranéenne pour la protection des plantes). 2021c. Répartition mondiale actuelle de Bactrocera dorsalis (DACUDO) telle qu’enregistrée en janvier 2021 et articles du Service d’information. Dans Base de données mondiale de l’OEPP [en ligne]. [Consulté le 20 février 2021]. https://gd.eppo.int/taxon/DACUDO/distribution et https://gd.eppo.int/taxon/DACUDO/reporting

Oliveira, H., Stolf-Moreira, R., Martinez, C., Grillo, R., Jesus, M. et Fraceto, L. 2015. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE, 10(7): e0132971 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0132971

Ormsby, M. et Brenton-Rule, E. 2017. A review of global instruments to combat invasive alien species in forestry. Biological Invasions, 19: 3355-3364.

Paini, D.R., Mwebaze, P., Kuhnert, P.M. et Kriticos, D.J. 2018. Global establishment threat from a major forest pest via international shipping: Lymantria dispar. Scientific Reports, 8: 13723. [en ligne] [Consulté le 12 décembre 2020]. https://doi.org/10.1038/s41598-018-31871-y

Palmer, G., Platts, P.J., Brereton, T., Chapman, J.W., Dytham, C., Fox, R., Pearce-Higgins, J.W., Roy, D.B., Hill, J.K. et Thomas, C.D. 2017. Climate change, climatic variation and extreme biological responses. Philosophical Transactions of the Royal Society B, 372: 20160144.

Paraschivu, M., Cotuna, O., Paraschivu, M. et Olaru, L. 2019. Effects of interaction between abiotic stress and pathogens in cereals in the context of climate change: An overview. Annals of the University of Craiova, XLIX: 413-424.

Paterson, R.R.M. et Lima, N. 2019. Ecology and biotechnology of thermophilic fungi on crops under global warming. Dans S.M. Tiquia-Arashiro et M. Grube (dir. pub.). Fungi in extreme environments: Ecological role and biotechnological significance, p. 81-96. Springer International Publishing.

Pautasso, M. 2013. Responding to diseases caused by exotic tree pathogens. Dans P. Gonthier et G. Nicolotti (dir. pub.). Infectuous Forest Diseases, p. 29-49. Wallingford (Royaume-Uni) et Boston (États-Unis d’Amérique), CABI.

Pautasso, M., Doring, T.F., Garbelotto, M., Pellis, L. et Jeger, M.J. 2012. Impacts of climate change on plant diseases – opinions and trends. European Journal of Plant Pathology, 133: 295-313.

Pegg, K.G., Coates, L.M., O’Neill, W.T. et Turner, D.W. 2019. The epidemiology of Fusarium wilt of banana. Frontiers in Plant Science, 10: 1395 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3389/fpls.2019.01395

Pegg, G., Taylor, T., Entwistle, P., Guymer, G., Giblin, F. et Carnegie, A. 2017. Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS ONE 12(11): e0188058 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.1371/journal.pone.0188058

Peng, H.X.X., Sivasithamparam, K. et Turner, D.W.W. 1999. Chlamydospore germination and Fusarium wilt of banana plantlets in suppressive and conducive soils are affected by physical and chemical factors. Soil Biology and Biochemistry, 31: 1363-1374.

Perez, C., Nicklin, C., Dangles, O., Vanek, S., Sherwood, S., Halloy, S., Garrett, K.A. et Forbes, G. 2010. Climate change in the high Andes: Implications and adaptation strategies for small-scale farmers. International Journal of Environmental, Cultural, Economic and Social Sustainability, 6: 71-88.

Perrone, G., Ferrara, M., Medina, A., Pascale, M. et Magan, N. 2020. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms, 8: 1496 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.3390/microorganisms8101496

Peters, K., Breitsameter, L. et Gerowitt, B. 2014. Impact of climate change on weeds in agriculture: A review. Agronomy for Sustainable Development, 38: 707-721.

Peterson, A.T, Menon, S. et Li, X. 2010. Recent advances in the climate change biology literature: Describing the whole elephant. WIREs Climate Change, 1: 548-555.

Ploetz, R.C. 2005. Panama disease, an old nemesis rears its ugly head: Part 1 – The beginnings of the banana export trades. Plant Health Progress, 6(1) [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1094/PHP-2005-1221-01-RV

Ploetz, R.C. et Pegg, K.G. 2000. Fungal diseases of root, corm and pseudostem. Dans D.R. Jones (dir. pub.). Diseases of banana abacá and enset, p. 143-172. Wallingford (Royaume-Uni), CABI.

Porter, J.R., Challinor, A.J., Henriksen, C.B., Howden, S.M., Martre, P. et Smith, P. 2019. IPCC, agriculture and food – a case of shifting cultivation and history. Global Change Biology, 25(8): 2518-2529.

Prank, M., Kenaley, S.C., Bergstrom, G.C., Acevedo, M. et Mahowald, N.M. 2019. Climate change impacts the spread of wheat stem rust, a significant crop disease. Environmental Research Letters, 14: 124053 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1088/1748-9326/ab57de

Preisler, A.C., Pereira, A.E., Campos, E.V., Dalazen, G., Fraceto, L.F. et Oliveira, H.C. 2020. Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Management Science, 76(1): 141-149.

Pritchard, S.G. 2011. Soil organisms and global climate change. Plant Pathology, 60: 82-99.

Priyanka, A.K.M., Varma, S., Kumar, V. et Sharma, R.S. 2020. Impact of climate change on plant diseases and management strategies: A review. International Journal of Chemical Studies, 8: 2968-2973.

Pugliese, M., Gullino, M.L. et Garibaldi, A. 2010. Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: First results under phytotron conditions. Journal of Plant Diseases and Protection, 117: 9-14.

Qin, Z., Zhang, J.E., Di Tommaso, A., Wang, R.I. et Liang, K.M. 2016. Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models. Climatic Change, 134: 193-208.

Racca, P., Kakau, J., Kleinhenz, B. et Kuhn, C. 2015. Impact of climate change on the phenological development of winter wheat, sugar beet and winter oilseed rape in Lower Saxony, Germany. Journal of Plant Diseases and Protection, 122: 16-27.

Raderschall, C.A., Vico, G., Lundin, O., Taylor, A.R. et Bommarco, R. 2021. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Global Change Biology, 27: 71-83.

Rai, M. et Ingle, A. 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94 (2): 287-293 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1007/s00253-012-3969-4

Raliya, R., Saharan, V., Dimkpa, C. et Biswas, P. 2018. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. Journal of Agricultural and Food Chemistry, 66(26): 6487-6503.

Ramesh, K., Matloob, A., Aslam, F., Florentine, S.K. et Chauhan, B.S. 2017. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science, 8: 95 [en ligne]. [Consulté le 28 décembre 2020]. https://doi.org/10.3389/fpls.2017.00095

Ramirez-Cabral, N.Y.Z, Kumar, L. et Shabani, F. 2017. Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. The Journal of Agricultural Science, 155(8): 1219-1238.

Ramirez-Cabral, N.Y.Z, Kumar, L. et Shabani, F. 2019. Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theoretical and Applied Climatology, 135: 409-424.

Ramsfield, T.D., Bentz, B.J., Faccoli, M., Jactel, H. et Brockerhoff, E.G. 2016. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry, 89: 245-252.

Rathee, M. et Dalal, P. 2018. Emerging insect pests in Indian agriculture. Indian Journal of Entomology, 80: 267-281.

Reineke, A. et Thiéry, D. 2016. Grapevine insect pests and their natural enemies in the age of global warming. Journal of Pest Science, 89: 313-328.

Revich, B., Tokarevich, N. et Parkinson, A.J. 2012. Climate change and zoonotic infections in the Russian Arctic. International Journal of Circumpolar Health, 71: 18792 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.3402/ijch.v71i0.18792

Reynaud, B., Delatte, H., Peterschmitt, M. et Fargette, D. 2009. Effects of temperature increase on the epidemiology of three major vector-borne viruses. European Journal of Plant Pathology, 123: 269-280.

Richerzhagen, D., Racca, P., Zeuner, T., Kuhn, C., Falke, K., Kleinhenz, B. et Hau, B. 2011. Impact of climate change on the temporal and regional occurrence of Cercospora leaf spot in Lower Saxony. Journal of Plant Diseases and Protection, 118: 168-177.

Rizzo, D., Garbelotto, M. et Hansen, E. M. 2005. Phythophora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annual Review of Phytopathology, 43: 309-335.

Robinet, C. et Roques, A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5: 132-142.

Roth, M.G., Webster, R.W., Mueller, D.S., Chilvers, M.I., Faske, T.R., Mathew, F.M., Bradley, C.A., Damicone, J.P., Kabbage, M. et Smith, D.L. 2020. Integrated management of important soybean pathogens of the United States in changing climate. Journal of Integrated Pest Management, 11: 17 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1093/jipm/pmaa013

Ruttledge, A. et Chauhan, B.S. 2020. Climate change and weeds of cropping systems. Dans K. Jabran, S. Florentine et B.S. Chauhan (dir. pub.). Crop protection under changing climate, p. 57-84. Springer International Publishing.

Sabry, K. et Ragaei, M. 2018. Nanotechnology and their applications in insect’s pest control. Dans: K.A. Abd-Elsalam et R. Prasad (dir. pub.). Nanobiotechnology applications in plant protection, p. 1-28. Cham, Springer International Publishing AG. https://doi.org/10.1007/978-3-319-91161-8.

Salinari, F., Giosuè, S., Rettori, A., Rossi, V., Tubiello, F.N., Spanna, F., Rosenzweig, C. et Gullino, M.L. 2006. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology, 12: 1299-1307.

Salinari, F., Giosuè, S., Rossi, V., Tubiello, F.N., Rosenzweig, C. et Gullino, M.L. 2007. Downy mildew outbreaks on grapevine under climate change: Elaboration and application of an empirical-statistical model. Bulletin OEPP, 37: 317-326.

Salvacion, A.R., Cumagun, C.J.R., Pangga, I.B., Magcale-Macandog D.B., Cruz, P.C.S., Saludes, R.B., Solpot, T.C. et Aguilar, E.A. 2019. Banana suitability and Fusarium wilt distribution in the Philippines under climate change. Spatial Information Research, 27: 339-349.

Santini, A. et Battisti, A. 2019. Complex insect–pathogen interactions in tree pandemics. Frontiers in Physiology, 10: 550 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.3389/fphys.2019.00550

Saponari, M., Boscia, D., Nigro, F. et Martelli, G.P. 2013. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). Journal of Plant Pathology, 95(3): 668.

Saunders, D.G.O., Pretorius, Z.A. et Hovmøller, M.S. 2019. Tackling the re-emergence of wheat stem rust in Western Europe. Communications Biology, 2: 51 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1038/s42003-019-0294-9

Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N. et Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3: 430-439. Scalone, R., Lemke, A., Stefanic, E., Kolseth, A.K., Rasic, S. et Andersson, L. 2016. Phenological variation in Ambrosia artemisiifolia L. facilitates near future establishment at northern latitudes. PLoS ONE, 11: e0166510 [en ligne]. [Consulté le 31 mars 2021]. https://doi.org/10.1371/journal.pone.0166510

Scheffers, B.R., De Meester, L., Bridge, T.C.L., Hoffmann, A.A., Pandolfi, J.M., Corlett, R.T., Butchart, S.H.M. et al. 2016. The broad footprint of climate change from genes to biomes to people. Science, 354 (6313): aaf7671.

Schneider, K., van der Werf, W., Cendoya, M., Mourits, M., Navas-Cortes J.A., Vicent, A. et Lansink, A.O. 2020. Impact of Xylella fastidiosa subspecies pauca in European olives. PNAS, 117: 9250-9259.

Schumann, G.L. 1991. Plant diseases: Their biology and social impact. St Paul (États-Unis d’Amérique), APS Press.

Scott, N.R., Chen, H. et Cui, H. 2018. Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. Journal of Agricultural and Food Chemistry, 66(26): 6451-6456.

Scott, P. et Williams, N. 2014. Phytophthora diseases in New Zealand forests. New Zealand Journal of Forestry, 59: 14-21.

Secrétariat de la CIPV. 1997. Convention internationale pour la protection des végétaux. Rome, FAO (consultable à l’adresse https://assets.ippc.int/static/media/files/publications/fr/2013/06/03/1034340690890_frippc_201304232117fr.pdf).

Secrétariat de la CIPV. 2012. Stratégie de renforcement des capacités phytosanitaires nationales de la CIPV [en ligne]. Rome, FAO. 24 pages. [Consulté le 6 avril 2021]. www.ippc.int/static/media/files/mediakit/IPPCCapacityDevelopmentStrategy-fr.pdf

Secrétariat de la CIPV. 2016. Surveillance des organismes nuisibles: Un guide pour comprendre les principales exigences des programmes de surveillance à l’intention des organisations nationales de protection des végétaux [en ligne]. Rome, FAO. [Consulté le 6 avril 2021]. www.fao.org/3/ca3764fr/CA3764fr.pdf

Secrétariat de la CIPV. 2020a. Première détection de Spodoptera frugiperda (chenille légionnaire d’automne) aux Émirats arabes unis. Signalement d’organisme nuisible daté du 10 mai 2020. Dans Convention internationale pour la protection des végétaux [en ligne]. Rome, FAO. [Consulté le 28 décembre 2020]. www.ippc.int/fr/countries/united-arab-emirates/pestreports/2020/05/the-first-detection-of-fall-armywormfam-spodoptera-frugiperda-in-united-arab-emirates

Secrétariat de la CIPV. 2020b. Première détection de Spodoptera frugiperda (chenille légionnaire d’automne) en Jordanie. Signalement d’organisme nuisible daté du 27 septembre 2020. Dans Convention internationale pour la protection des végétaux [en ligne]. Rome, FAO. [Consulté le 28 décembre 2020]. www.ippc.int/fr/countries/jordan/pestreports/2020/09/report-of-first-detection-of-spodoptera-frugiperda-fall-armyworm-faw-in-jordan-1/

Secrétariat de la CIPV. 2021. Détection de Spodoptera frugiperda (chenille légionnaire d'automne) en Australie. Signalement d’organisme nuisible daté du 5 mai 2021. Dans Convention internationale pour la protection des végétaux [en ligne]. Rome, FAO. [Consulté le 20 mai 2021]. https://www.ippc.int/en/countries/australia/pestreports/2021/05/spodoptera-frugiperda-fall-armyworm-detections-australia/

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano G., Wild, J. et al. 2017. Forest disturbances under climate change. Nature Climate Change, 7: 395-402.

Shabani, F., Ahmadi, M., Kumar, L., Soljouy-Fad, S., Tehrany, M.S., Shabani, F., Kalantar, B. et Esmaeili, A. 2020. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecological Indicators, 116: 106436 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1016/j.ecolind.2020.106436

Shabani, F. et Kumar, L. 2013. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS ONE, 8: e83404 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1371/journal.pone.0083404

Shaibu, A.S., Li, B., Zhang, S. et Sun, J. 2020. Soybean cyst nematode-resistance: Gene identification and breeding strategies. The Crop Journal, 8(6): 892-904 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1016/j.cj.2020.03.001

Sharma, S., Hooda, K.S. et Goswami, P. 2019. Scenario of plant diseases under changing climate. Journal of Pharmacognosy and Phytochemistry, 8: 2490-2495.

Shaw, M.W. et Osborne, T.M. 2011. Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60: 31-43.

Sicard, A., Zeilinger, A.R., Vanhove, M., Schartel, T.E., Beal, D.J., Daugherty, M.P. et Almeida, R.P.P. 2018. Xylella fastidiosa: Insights into an emerging plant pathogen. Annual Review of Phytopathology, 56: 181-202.

Siciliano, I., Berta, F., Bosio, P., Gullino, M.L. et Garibaldi, A. 2017a. Effect of different temperatures and CO2 levels on Alternaria toxins produced on cultivated rocket, cabbage and cauliflower. World Mycotoxin Journal, 10: 63-71.

Siciliano, I., Bosio, P., Gilardi, G., Gullino, M.L. et Garibaldi, A. 2017b. Verrucarin A and roridin E produced on spinach by Myrothecium verrucaria under different temperatures and CO2 levels. Mycotoxin Research, 33: 139-146.

Sidorova, I. et Voronina, E. 2020. Terrestrial fungi and global climate change. Dans J. Marxsen (dir. pub.). Climate change and microbial ecology: Current research and future trends, 2e édition, Chapitre 5. Poole (Royaume-Uni), Caister Academic Press. (consultable à l’adresse https://doi.org/10.21775/9781913652579.05).

Singh, V.K., Shukla, A.K. et Singh, A.K. 2019. Impact of climate change on plant–microbe interactions under agroecosystems. Dans K.K. Choudhary, A. Kumar et A.K. Singh (dir. pub.). Climate change and agricultural ecosystems, p. 153-179. Cambridge (Royaume-Uni), Woodhead Publishing, Elsevier.

Skelsey, P., Cooke, D.E.L., Lynott, J.S. et Lees, A.K. 2016. Crop connectivity under climate change: Future environmental and geographic risks of potato late blight in Scotland. Global Change Biology, 22: 3724-3738.

Sousa, E., Naves, P., Bonifácio, L., Henriques, J., Inácio, M.L. et Evans, H. 2011. Survival of Bursaphelenchus xylophilus and Monochamus galloprovincialis in pine branches and wood packaging material. Bulletin OEPP, 41: 203-207.

Sparks, A.H., Forbes, G.A., Hijmans, R.J. et Garrett, K.A. 2014. Climate change may have limited effect on global risk of potato late blight. Global Change Biology, 20: 3621-3631.

Srivastava, A., Kumar, S.N. et Aggarwal, P.K. 2010. Assessment of vulnerability of sorghum to climate change in India. Agriculture, Ecosystems & Environment, 138: 160-169.

Stack, J., Fletcher, J. et Gullino, M.L. 2013. Climate change and plant biosecurity: A new world disorder? Dans: B. Bodo, C. Burnley, I. Comardicea, A. Maas et R. Roffey (dir. pub.). Global environmental change: New drivers for resistance, crime and terrorism, p. 161-181. Baden-Baden (Allemagne), Nomos.

STDF/Banque mondiale. 2011. Changement climatique et commerce: Relation avec les normes sanitaires et phytosanitaires. Document conjoint de la Banque mondiale, Groupe de recherchesur le développement, Commerce et intégration internationale(DECTI), et du Fonds pour l’application des normeset le développement du commerce (FANDC) Genève (Suisse), 26 pages (consultable à l’adresse www.standardsfacility.org/sites/default/files/STDF_Climate_Change_FR_0.pdf).

St-Marseille, A.F.G., Bourgeois, G., Brodeur, J. et Mimee, B. 2019. Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agricultural and Forest Meteorology, 264: 178-187.

Stoeckli, S., Felber, R. et Haye, T. 2020. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. International Journal of Biometeorology, 64: 2019-2032 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1007/s00484-020-01992-z

Storkey, J., Stratonovitch, P., Chapman, D. et Vidotto, F. 2014. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE, 9: e88156 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1371/journal.pone.0088156

Stover, R.H. 1986. Disease management strategies and the survival of the banana industry. Annual Review of Phytopathology, 24: 83-91.

Strand, J.F. 2000. Some agrometeorological aspects of pest and disease management for the 21st century. Agricultural and Forest Meteorology, 103: 73-82.

Sturrock, R.N., Frankel, S.J., Brown, A.V., Hennon, P.E., Kliejunas, J.T. et Lewis, K.J. 2011. Climate change and forest diseases. Plant Pathology, 60: 133-149.

Su, C., Ji, Y., Gao, S., Cao, S., Xu, X., Zhou, C. et Liu, Y. 2020. Fluorescence-labeled abamectin nanopesticide for comprehensive control of pinewood nematode and Monochamus alternatus hope. ACS Sustainable Chemistry & Engineering, 8(44): 16555-16564 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1021/acssuschemeng.0c05771

Suggitt, A.J., Wilson, R.J., Isaac, N.J., Beale, C.M., Auffret, A.G., August, T., Maclean, I.M.D. et al. 2018. Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8(8): 713-717.

Sun, Y., Ding, J., Siemann, E. et Keller, S.R. 2020. Biocontrol of invasive weeds under climate change: Progress, challenges and management implications. Current Opinion in Insect Science, 38: 72-78.

Sutherst, R.W. 1991. Pest risk analysis and the greenhouse effect. Review of Agricultural Entomology, 79: 1177-1187.

Sutherst, R.W., Baker, R.H.A., Coakley, S.M., Harrington, R., Kriticos, D.J. et Scherm, H. 2007. Pest under global change – meeting your future landlords? Dans J.G. Canadell, D.E. Pataki et L.F. Pitelka (dir. pub.). Terrestrial ecosystems in a changing world. Berlin, Springer, p. 211-226.

Sutherst, R.W., Constable, F., Finlay, K.J., Harrington, R., Luck, J. et Zalucki, M.P. 2011. Adapting to crop pest and pathogen risks under a changing climate. WIREs Climate Change, 2: 220-237.

Sutherst, R.W., Maywald, G.F. et Russell, B.L. 2000. Estimating vulnerability under global change: Modular modelling of pests. Agriculture, Ecosystems & Environment, 82(1-3): 303-319.

Taylor, R.A.J., Herms, D.A., Cardina, J. et Moore, R.H. 2018. Climate change and pest management: Unanticipated consequences of trophic dislocation. Agronomy, 8(1): 7 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.3390/agronomy8010007

Tenllado, F. et Canto, T. 2020. Effects of a changing environment on the defences of plants to viruses. Current Opinion in Virology, 42: 40-46.

Thomas J.E., Wood, T.A., Gullino, M.L. et Ortu, G. 2017. Diagnostic tools for plant biosecurity. Dans M.L. Gullino, J. Stack, J. Fletcher et J. Mumford (dir. pub.). Practical tools for plant and food biosecurity, p. 209-226. Dordrecht (Pays-Bas), Springer.

Thomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J., Bao, S., Charkowski, A., Crook, D. et al. 2016. Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65: 3-16.

Thomson, L.J., MacFadyen, S. et Hoffmann, A.A. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52: 296-306.

Torney, F., Trewyn, B.G., Lin, V.S.-Y. et Wang, K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5): 295-300.

Torresen, K.S., Fykse, H., Rafoss, T. et Gerowitt, B. 2020. Autumn growth of three perennial weeds at high latitude benefits from climate change. Global Change Biology, 26: 2561-2572.

Trebicki, P. 2020. Climate change and plant virus epidemiology. Virus Research, 286: 198059. https://doi.org/10.1016/j.virusres.2020.198059

Trebicki, P. et Finlay, K. 2019. Pests and diseases under climate change; its threat to food security. Dans S.S. Yadav, R.J. Redden, J.L. Hatfield, A.W. Ebert et D. Hunter (dir. pub.). Food security and climate change, p. 229-249. New York (États-Unis d’Amérique), John Wiley et Sons Inc.

Tresson, P., Brun, L., de Cortazar-Atauri, I.G., Audergon, J.M., Buléon, S., Chenevotot, H., Combe, F. et al. 2020. Future development of apricot blossom blight under climate change in Southern France. European Journal of Agronomy, 112: 125960.

Tylka, G.L. et Marett, C.C. 2014. Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954 to 2014. Plant Health Progress, 15: 85-87.

Valerio, M., Tomecek, M.B., Lovelli, S. et Ziska, L.H. 2011. Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C3 crop and a C4 weed (Amaranthus retroflexus). Weed Research, 51: 591-600.

Van der Fels-Klerx, H.J., Liu, C. et Battilani, P. 2016. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin Journal, 9: 717-726.

Van der Putten, W.H., Macel, M. et Visser, M.E. 2010. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2025-2034.

Vilà, M., Beaury, E.M., Blumenthal, D.M., Bradley, B.A., Early, R., Laginhas, B.B., Trillo, A., Dukes, J.S., Sorte, C.J.B. & Ibáñez, I. 2021. Understanding the combined impacts of weeds and climate change on crops. Environmental Research Letters, 16: 034043.

Viswanath, K., Sinha, P., Kumar, S.N., Sharma, T., Saxena, S., Panjwani, S., Pathak, H. et Shukla, S.M. 2017. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Climatic Change, 142: 155-167.

Wan, J.Z. et Wang, C.J. 2019. Contribution of environmental factors toward distribution of ten most dangerous weed species globally. Applied Ecology and Environmental Research, 17: 14835-14846.

Wang, C., Hawthorne, D., Qin, Y., Pan, X., Li, Z. et Zhu, S. 2017. Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports, 7: 4489 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1038/s41598-017-04607-7

Wang, C., Zhang, X., Pan, X., Li, Z. et Zhu, S. 2015. Greenhouses: Hotspots in the invasive network for alien species. Biodiversity and Conservation, 24: 1825-1829.

Wang, R., Li, Q., He, S., Liu, Y., Wang, M. et Jiang, G. 2018. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE, 13: e0192153 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1371/journal.pone.0192153

Watt, M.S., Kriticos, D.J., Lamoureaux, S.L. et Bourdot, G.W. 2011. Climate change and the potential global distribution of serrated tussock (Nassella trichotoma). Weed Science, 59: 538-545.

Wattanapongsiri, A. 1966. A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Bulletin du Département des sciences agronomiques. Bangkok, Département des sciences agronomiques.

Wells, J.M., Raju, B.C., Hung, H.Y., Weisburg, W.G., Mandelco-Paul, L. et Brenner, D.J. 1987. Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic Bacteriology, 37(2): 136-143.

West, A.M., Kumar, S., Wakie, T., Brown, C.S., Stohlgren, J., Laituri, M. et Bromberg, J. 2015. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park. PLoS ONE, 10: e0117893 [en ligne]. [Consulté le 29 décembre 2020]. https://doi.org/10.1371/journal.pone.0117893

Wilkinson, K., Grant, W.P., Green, L.E., Hunter, S., Jeger, M.J., Lowe, P., Medley, G.F. et al. 2011. Infectious diseases of animals and plants: An interdisciplinary approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 366: 1933-1942.

Williams, A.L., Wills, K.E., Janes, J.K., Van der Schoor, J.K., Newton, P.C.D. et Hovenden, M.J. 2007. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytologist, 176: 365-374.

Williamson, V.M. et Gleason, C.A. 2003. Plant-nematode interactions. Current Opinion in Plant Biology, 6: 327-333.

Wolfe, D.W., Ziska, L., Petzoldt, C., Seaman, A., Chase, L. et Hayhoe, K. 2008. Projected change in climate thresholds in the Northeastern U.S.: Implications for crops, pests, livestock, and farmers. Mitigation and Adaptation Strategies for Global Change, 13: 555-575.

Woolhouse, M.E.J., Webster, J.P., Domingo, E., Charlesworth, B. et Levin, B.R. 2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics, 32 (4): 569-577.

Wright, D., Hammond, N., Thomas, G., MacLeod, B. et Abbott, L.K. 2018. The provision of pest and disease information using Information Communication Tools (ICT); an Australian example. Crop Protection, 103: 20-29.

Wu, E., Wang, Y.-P., Yahuza, L., He, M.-H., Sun, D.-L., Huang, Y.-M., Liu, Y.-C., Yang, L.N., Zhu, W. et Zhan, J. 2020. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evolutionary Applications, 13(4): 768-780.

Wuebbles, D.J. et Hayhoe, K. 2002. Atmospheric methane and global change. Earth-Science Reviews, 57: 177-210.

Yadav, S., Stow, A.J. et Dudaniec, R. 2019. Detection of environmental and morphological adaptation despite high landscape genetic connectivity in a pest grasshopper (Phaulacridium vittatum). Molecular Ecology, 28: 3395-3412.

Zacarias, D.A. 2020. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Climatic Change, 161: 555-566.

Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B. et Zeng, Z. 2018. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry, 66(26): 6504-651.

Ziska, L.H., Blumenthal, D.M. et Franks, S.J. 2019. Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12: 79-88.

Ziska, L.H., Epstein, P.R. et Schlesinger, W.H. 2009. Rising CO2, climate change, and public health: Exploring the links to plant biology. Environmental Health Perspectives, 117: 155-158.