مراجع متوفرة باللغة العر بية:
(مترتبة حسب ورودها في النص)
5 منظمة الأغذية والزراعة. 2022. حالة الغابات في العالم 2022. المسارات الحرجية لتحقيق التعافي الأخضر وبناء اقتصادات شاملة وقادرة على الصمود ومستدامة. روما. https://doi.org/10.4060/cb9360ar.
9 منظمة الأغذية والزراعة. 2022. استراتيجية منظمة الأغذية والزراعة للعلوم الابتكار. روما. https://openknowledge.fao.org/server/api/core/bitstreams/b4642957-6ae3-452e-8b70-88e659c931c5/content
10 منظمة الأغذية والزراعة. 2021. الإطار الاستراتيجي للفترة 2022-2031. روما. https://openknowledge.fao.org/server/api/core/bitstreams/5dc5f665-c558-4072-ab73-3420f7f09fc5/content.
11 منظمة الأغذية والزراعة. 2023. لجنة الغابات الدورة السادسة والعشرون. روما. https://www.fao.org/3/nk728ar/nk728ar.pdf
12 منظمة الأغذية والزراعة. 2022. استراتيجية الأغذية والزراعة الخاصة بتغير المناج 2022-2031. روما. https://openknowledge.fao.org/server/api/core/bitstreams/f6270800-eec7-498f-9887-6d937c4f575a/content
13 منظمة الأغذية والزراعة. 2020. استراتيجية منظمة الأغذية والزراعة لتعميم التنوع البيولوجي عبر مختلف القطاعات الزراعية. روما. https://doi.org/10.4060/ca7722ar.
15 منظمة الأغذية والزراعة. 2023. مصطلحات وتعاريف. تقييم حالة الموارد الحرجية 2025. تقييم حالة الموارد الحرجي، ورقة عمل 194. روما. https://www.fao.org/3/cc4691ar/cc4691ar.pdf.
17 منظمة الأغذية والزراعة. 2023. إنتاج وتجارة الغابات. [تمّ الاطلاع على الموقع في 1 ديسمبر/كانون الأوّل 2023]. https://www.fao.org/faostat/ar/#data/FO. الترخيص: CC-BY-4.0
18 منظمة الأغذية والزراعة. 2020. التقييم العالمي لحالة الموارد الحرجية 2020. التقرير الرئيسي. روما. https://doi.org/10.4060/ca9825ar.
25 منظمة الأغذية والزراعة. 2023. تقييم الموارد الحرجية العالمية 2020. منظمة الأغذية والزراعة. [تمّ الاطلاع على الموقع في 2 مارس/آذار 2024]. https://fra-data.fao.org/assessments/fra/2020
36 أمانة الاتفاقية الدولية لوقاية النباتات. 2021. المراجعة العلمية لتأثير تغير المناخ على الآفات. منظمــة الأغذيــة والزراعــة نيابة عــن أمانة الاتفاقية الدوليــة لوقايــة النباتات. https://doi.org/10.4060/cb4769ar.
39 منظمة الأغذية والزراعة. 2023. أثر الكوارث على الزراعة والأمن الغذائي 2023: تجنب الخسائر وتقليلها من خلال الاستثمار في القدرة على الصمود. روما. https://doi.org/10.4060/cc7900ar.
46 منظمة الأغذية والزراعة. 2023. وضع النساء في النظم الزراعية والغذائية. روما. https://doi.org/10.4060/cc5060ar.
109 منظمة الأغذية والزراعة. 2023. إنتاج وتجارة الغابات. [تمّ الاطلاع على الموقع في 1 ديسمبر/كانون الأوّل 2023]. https://www.fao.org/faostat/ar/#data/FO. الترخيص: CC-BY-4.0
180 Trendov, N.M. و Varas, S. و Zeng, M.. 2019. التكنولوجيا الرقمية في الزراعة والمناطق الريفية. وثيقة موجزة. روما، منظمة الأغذية والزراعة. https://www.fao.org/3/ca4887ar/ca4887ar.pdf
227 برنامج الأمم المتحدة للبيئة. 2022. تقرير الحالة العالمية لعام 2022 لمباني والتشييد: نحو قطاع مباني وإنشاءات خالي من الانبعاثات ويتسم بالكفاءة والمرونة. نيروبي، برنامج الأمم المتحدة للبيئة. https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
231 منظمة الأغذية والزراعة. 2023. مرفق الغابات والمزارع. منظمة الأغذية والزراعة. [ورد ذكره في 14 نوفمبر/تشرين الثاني 2023]. https://www.fao.org/forest-farm-facility/ar/
236 منظمة الأغذية والزراعة. 2023. فريق الخبراء الرفيع المستوى المعني بنهج الصحة الواحدة. نهج «صحة واحدة». [ورد ذكره في 14 نوفمبر/تشرين الثاني 2023]. https://www.fao.org/one-health/background/ohhlep/ar
250 منظمة الأغذية والزراعة. 2023. حالة الأغذية والزراعة 2023: الكشف عن الكلفة الحقيقية للأغذية من أجل تحويل النظم الزراعية والغذائية. روما، إيطاليا، منظمة الأغذية والزراعة. https://doi.org/10.4060/cc7724ar
268 منظمة الأغذية والزراعة. 2023. تقديم التوقعات الخاصة بالتكنولوجيات والابتكارات في مجال النُظم الزراعية والغذائية لعام 2022. روما. https://doi.org/10.4060/cc2506ar
276 منظمة الأغذية والزراعة. 2014. حالة الأغذية والزراعة في العالم. روما. https://www.fao.org/3/i4040a/i4040a.pdf
279 منظمة الأمم المتحدة للتربية والعلم والثقاقة. 2017. مبادئ توجيهية بشأن إدراج علوم الاستدامة في البحوث والتعليم. باريس. https://unesdoc.unesco.org/ark:/48223/pf0000260600_ara
المراجع الأجنبية
(مترتبة حسب ورودها في النص)
1 IPCC (Intergovernmental Panel on Climate Change). 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core writing team, H. Lee & J. Romero, eds. Geneva, Switzerland, IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647
2 IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Geneva, Zenodo. https://doi.org/10.5281/ZENODO.3553579
3 Seymour, F., Wolosin, M. & Gray, E. 2022. Not Just Carbon: Capturing All the Benefits of Forests for Stabilizing the Climate from Local to Global Scales. World Resources Institute. https://doi.org/10.46830/wrirpt.19.00004
4 Vié, J-C., Hilton-Taylor, C. & Stuart, S.N., eds. 2009. Wildlife in a Changing World: An analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland, IUCN (International Union for Conservation of Nature). https://portals.iucn.org/library/efiles/documents/RL-2009-001.pdf
6 Libert-Amico, A., Duchelle, A.E., Cobb, A., Peccoud, V. & Djoudi, H. 2022. Forest-based adaptation: transformational adaptation through forests and trees. Rome, FAO. https://doi.org/10.4060/cc2886en
7 FAO. 2019. The State of the World’s Biodiversity for Food and Agriculture. Rome, Commission on Genetic Resources for Food and Agriculture Assessments. Rome. http://www.fao.org/3/CA3129EN/CA3129EN.pdf
8 Ickowitz, A., McMullin, S., Rosenstock, T., Dawson, I., Rowland, D., Powell, B., Mausch, K. et al. 2022. Transforming food systems with trees and forests. The Lancet Planetary Health, 6(7): e632–e639. https://doi.org/10.1016/S2542-5196(22)00091-2
14 Lippe, R.S., Schweinle, J., Cui, S., Gurbuzer, Y., Katajamäki, W., Villarereal-Fuentes, M. & Walter, S. 2022. Contribution of the forest sector to total employment in national economies - Estimating the number of people employed in the forest sector. Rome and Geneva, FAO and ILO (International Labour Organization). https://doi.org/10.4060/cc2438en
16 FAO. 2022. FRA 2020 Remote Sensing Survey. FAO Forestry Paper 186. Rome. https://doi.org/10.4060/cb9970en
19 Ministry of Environment and Forestry, Republic of Indonesia. 2022. The State of Indonesia’s Forests 2022: Towards FOLU Net Sink 2030. Jakarta. https://phl.menlhk.go.id/static/file/publikasi/1664941652-Digital_SoIFO%202022_09.25.22.pdf
20 Kementerian Lingkungan Hidup dan Kehutanan. 2023. Deforestasi Indonesia Tahun 2021–2022. Jakarta. https://sigap.menlhk.go.id/sigap-admin/files/download/buku-pemantauan-deforestasi-indonesia-tahun-2021-2022_v4-compressed.pdf
21 Instituto Brasileiro de Geografia e Estatística. undated. IBGE: Legal Amazon. [Cited 20 February 2024]. https://www.ibge.gov.br/en/geosciences/maps/brazil-geographic-networks-mapasdobrasil/17927-legal-amazon.html?=&t=o-que-e
22 Ministry of Science, Technology and Innovations (Brazil). undated. TerraBrasilis. [Cited 20 February 2024]. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/amazon/increments
23 JRC (European Commission, Joint Research Centre). 2023. EU Observatory on deforestation and forest degradation. Belgium. https://forest-observatory.ec.europa.eu
24 FAO. 2023. The world’s mangroves 2000–2020. Rome. https://doi.org/10.4060/cc7044en
26 Giglio, L., Randerson, J.T., Van Der Werf, G.R., Kasibhatla, P.S., Collatz, G.J., Morton, D.C. & DeFries, R.S. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 7(3): 1171–1186. https://doi.org/10.5194/bg-7-1171-2010
27 Van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecology and Management, 352: 78–88. https://doi.org/10.1016/j.foreco.2015.06.010
28 Global Wildfire Information System. 2023. GWIS Statistical Portal. [Accessed on 27 November 2023]. https://gwis.jrc.ec.europa.eu/apps/gwis.statistics/
29 Chuvieco, E., Roteta, E., Sali, M., Stroppiana, D., Boettcher, M., Kirches, G., Storm, T. et al. 2022. Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Science of The Total Environment, 845: 157139. https://doi.org/10.1016/j.scitotenv.2022.157139
30 IUFRO (International Union of Forest Research Organizations).. 2018. Global Fire Challenges in a Warming World. François-Nicolas Robinne, Janice Burns, Promode Kant, Mike D. Flannigan, Michael Kleine, Bill de Groot & D. Mike Wotton, eds. Occasional Paper No. 32. Vienna. https://www.iufro.org/uploads/media/op32.pdf
31 Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J.G., Chen, Y., Van Der Velde, I.R. et al. 2023. Record-high CO 2 emissions from boreal fires in 2021. Science, 379(6635): 912–917. https://doi.org/10.1126/science.ade0805
32 Copernicus. 2023. Record-breaking wildfires throughout the 2023 boreal wildfire season. Copernicus. [Cited 18 December 2023]. https://atmosphere.copernicus.eu/copernicus-record-breaking-wildfires-throughout-2023-boreal-wildfire-season
33 CIFFC (Canadian Interagency Forest Fire Centre Inc.). 2023. CIFFC: Situation Reports. [Accessed on 22 September 2023]. https://ciffc.net/statistics
34 UNEP & GRID-Arendal. 2022. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. UNEP. https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires
35 Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Bakker, D.C.E., Hauck, J., Landschützer, P. et al. 2023. Global Carbon Budget 2023. Earth System Science Data, 15(12): 5301–5369. https://doi.org/10.5194/essd-15-5301-2023
37 Liebhold, A.M., Brockerhoff, E.G. & Nuñez, M.A. 2017. Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration. Biological Invasions, 19(11): 3073–3077. https://doi.org/10.1007/s10530-017-1547-5
38 Gomez, D.F., Sathyapala, S. & Hulcr, J. 2020. Towards Sustainable Forest Management in Central America: Review of Southern Pine Beetle (Dendroctonus frontalis Zimmermann) Outbreaks, Their Causes, and Solutions. Forests, 11(2): 173. https://doi.org/10.3390/f11020173
40 Potter, K., Escanferla, M., Jetton, R. & Man, G. 2019. Important Insect and Disease Threats to United States Tree Species and Geographic Patterns of Their Potential Impacts. Forests, 10(4): 304. https://doi.org/10.3390/f10040304
41 Gitz, V., Linhares-Juvenal, T. & Meybeck, A. 2023. Optimizing the role of planted forests in the bioeconomy. Unasylva 74, 74(254): 11–16. https://doi.org/10.4060/cc8584en
42 EUWID Pulp and Paper. 2022. Russia issues export ban for logs and wood residues. EUWID Pulp and Paper. 23 March 2022. [Cited 11 April 2024]. https://www.euwid-paper.com/news/markets/russia-issues-export-ban-for-logs-and-woodresidues-230322/
43 IEA (International Energy Agency). 2023. A Vision for Clean Cooking Access for All. Paris. https://iea.blob.core.windows.net/assets/75f59c60-c383-48ea-a3be-943a964232a0/AVisionforCleanCookingAccessforAll.pdf
44 Shackleton, C.M. & De Vos, A. 2022. How many people globally actually use non-timber forest products? Forest Policy and Economics, 135: 102659. https://doi.org/10.1016/j.forpol.2021.102659
45 IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). 2022. Thematic assessment of the sustainable use of wild species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo. https://doi.org/10.5281/ZENODO.8199039
47 Tribal Co-Operative Marketing Development Federation of India Limited. 2023. Important Minor Forest Produces (MFPs). TRIFED - Tribal. [Cited 27 November 2023]. https://trifed.tribal.gov.in/non/timber/msp-mfp
48 Lovrić, M., Da Re, R., Vidale, E., Prokofieva, I., Wong, J., Pettenella, D., Verkerk, P.J. & Mavsar, R. 2020. Non-wood forest products in Europe – A quantitative overview. Forest Policy and Economics, 116: 102175. https://doi.org/10.1016/j.forpol.2020.102175
49 Hall, C., Macdiarmid, J.I., Matthews, R.B., Smith, P., Hubbard, S.F. & Dawson, T.P. 2019. The relationship between forest cover and diet quality: a case study of rural southern Malawi. Food Security, 11(3): 635–650. https://doi.org/10.1007/s12571-019-00923-0
50 El Bizri, H.R., Morcatty, T.Q., Valsecchi, J., Mayor, P., Ribeiro, J.E.S., Vasconcelos Neto, C.F.A., Oliveira, J.S. et al. 2020. Urban wild meat consumption and trade in central Amazonia. Conservation Biology, 34(2): 438–448. https://doi.org/10.1111/cobi.13420
51 Mayor, P., El Bizri, H.R., Morcatty, T.Q., Moya, K., Bendayán, N., Solis, S., Vasconcelos Neto, C.F.A. et al. 2022. Wild meat trade over the last 45 years in the Peruvian Amazon. Conservation Biology, 36(2): e13801. https://doi.org/10.1111/cobi.13801
52 FAO. 2024. Review of the state of world fishery resources: inland fisheries. Fisheries and Aquaculture Circulare. Rome. https://openknowledge.fao.org/server/api/core/bitstreams/1efc1225-d7da-41fc-b710-47244fe22678/content
53 Rubegeta, E., Makolo, F., Kamatou, G., Enslin, G., Chaudhary, S., Sandasi, M., Cunningham, A.B. & Viljoen, A. 2023. The African cherry: A review of the botany, traditional uses, phytochemistry, and biological activities of Prunus africana (Hook.f.) Kalkman. Journal of Ethnopharmacology, 305: 116004. https://doi.org/10.1016/j.jep.2022.116004
54 Nakicenovic, N., Lempert, R.J. & Janetos, A.C. 2014. A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay: A Forthcoming Special Issue of Climatic Change. Climatic Change, 122(3): 351–361. https://doi.org/10.1007/s10584-013-0982-2
55 Johnston, C.M.T, Guo, J. & Prestemon, J.P. 2023. RPA forest products market data for U.S. RPA Regions and the world, historical (1990–2015), and projected (2020–2070) using the Forest Resource Outlook Model (FOROM). 2nd Edition. In: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2022-0073-2
56 FAO. 2022. Global forest sector outlook 2050: Assessing future demand and sources of timber for a sustainable economy. Rome. https://doi.org/10.4060/cc2265en
57 FAO. 2023. Towards more resilient and diverse planted forests. FAO. https://doi.org/10.4060/cc8584en
58 Hetemäki, L. & Seppälä, J. 2022. Planetary Boundaries and the Role of the Forest-Based Sector. In: L. Hetemäki, J. Kangas & H. Peltola, eds. Forest Bioeconomy and Climate Change. pp. 19–31. Vol. 42. Managing Forest Ecosystems. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-030-99206-4_2
59 Hetemäki, L., Palahí, M., Adams, J. & White, L. 2021. How to preserve Africa’s forests and build a green economy. Article. Cologny, Switzerland, World Economic Forum. https://www.weforum.org/agenda/2021/06/preserve-africa-forests-green-economy/
60 Hetemäki, L., Tegegne, Y.T. & Ochieng, R.M. 2023. Outlook for Sustainable Forest Bioeconomy in Gabon, Kenya, Nigeria, South Africa and Tanzania. Circular Bioeconomy Alliance. https://circularbioeconomyalliance.org/wp-content/uploads/2023/12/CBA_Outlook_Sustainable_Forest_Bioeconomy_2023.pdf
61 FAO & ITTO (International Tropical Timber Organization). 2020. Forest product conversion factors. Rome, FAO; Yokohama, Japan, ITTO; and New York, United Nations. https://doi.org/10.4060/ca7952en
62 Messier, C., Baker, C., Carreiras, J.M.B, Pearson, T.R.H. & Vasconcelos, M.J. 2022. Warning: Natural and Managed Forests are Losing their Capacity to Mitigate Climate Change. The Forestry Chronicle, 98(1): 2–8. https://doi.org/10.5558/tfc2022-007
63 Reich, P.B., Bermudez, R., Montgomery, R.A., Rich, R.L., Rice, K.E., Hobbie, S.E. & Stefanski, A. 2022. Even modest climate change may lead to major transitions in boreal forests. Nature, 608(7923): 540–545. https://doi.org/10.1038/s41586-022-05076-3
64 Massey, R., Rogers, B.M., Berner, L.T., Cooperdock, S., Mack, M.C., Walker, X.J. & Goetz, S.J. 2023. Forest composition change and biophysical climate feedbacks across boreal North America. Nature Climate Change. https://doi.org/10.1038/s41558-023-01851-w
65 FAO & UNECE (United Nations Economic Commission for Europe). 2021. Forest Sector Outlook Study 2020-2040. Geneva, UNECE. https://unece.org/sites/default/files/2022-05/unece-fao-sp-51-main-report-forest-sector-outlook_0.pdf
66 Nepal, P., Korhonen, J., Prestemon, J.P. & Cubbage, F.W. 2019. Projecting global planted forest area developments and the associated impacts on global forest product markets. Journal of Environmental Management, 240: 421–430. https://doi.org/10.1016/j.jenvman.2019.03.126
67 United Nations. 2019. Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development. New York, United Nations. https://sdgs.un.org/publications/future-now-science-achieving-sustainable-development-gsdr-2019-24576
68 Granstrand, O. & Holgersson, M. 2020. Innovation ecosystems: A conceptual review and a new definition. Technovation, 90–91: 102098. https://doi.org/10.1016/j.technovation.2019.102098
69 Paasi, J., Wiman, H., Apilo, T. & Valkokari, K. 2023. Modeling the dynamics of innovation ecosystems. International Journal of Innovation Studies, 7(2): 142–158. https://doi.org/10.1016/j.ijis.2022.12.002
70 Hall, A., Dijkman, J., Taylor, B., Williams, L. & Kelly, J. 2017. Synopsis: Towards a Framework for Unlocking Transformative Agricultural Innovation. Agri-food Innovation and Impact Discussion Paper Series. Canberra, CSIRO (Commonwealth Scientific and Industrial Research Organisation). http://hdl.handle.net/102.100.100/88656?index=1
71 Đuric, I. 2020. Digital technology and agricultural markets – Background paper for The State of Agricultural Commodity Markets (SOCO). Rome, FAO. https://doi.org/10.4060/cb0701en
72 Kindt, R. 2023. TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Global Change Biology, 29(22): 6303–6318. https://doi.org/10.1111/gcb.16914
73 Bey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F. et al. 2016. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sensing, 8(10): 807. https://doi.org/10.3390/rs8100807
74 FAO. 2022. SEPAL - Forest and Land Monitoring for Climate Action. Rome. https://www.fao.org/documents/card/en/c/cc1803en
75 Tzamtzis, I., Federici, S. & Hanle, L. 2019. A Methodological Approach for a Consistent and Accurate Land Representation Using the FAO Open Foris Collect Earth Tool for GHG Inventories. Carbon Management, 10(4): 437–450. https://doi.org/10.1080/17583004.2019.1634934
76 Open Foris. 2023. Open Foris. [Accessed on 13 November 2023]. https://openforis.org/
77 Open Foris. 2023. SEPAL. [Accessed on 27 November 2023]. https://sepal.io/
78 FAO. 2023. Improving reporting on forest degradation emissions, 4 May 2023. FAO Forestry Newsroom. [Cited 22 September 2023]. https://www.fao.org/forestry/newsroom/news-detail/improving-reporting-on-forest-degradation-emissions/en
79 Olofsson, P., Foody, G.M., Stehman, S.V. & Woodcock, C.E. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129: 122–131. https://doi.org/10.1016/j.rse.2012.10.031
80 Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. & Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148: 42–57. https://doi.org/10.1016/j.rse.2014.02.015
81 Stehman, S.V. 2014. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. International Journal of Remote Sensing, 35(13): 4923–4939. https://doi.org/10.1080/01431161.2014.930207
82 GFOI (Global Forest Observations Initiative). 2020. Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests. Rome.
83 Achard, F. & House, J.I. 2015. Reporting carbon losses from tropical deforestation with Pan-tropical biomass maps. Environmental Research Letters, 10(10): 101002. https://doi.org/10.1088/1748-9326/10/10/101002
84 Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Turubanova, S. & Goetz, S.J. 2015. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environmental Research Letters, 10(7): 074002. https://doi.org/10.1088/1748-9326/10/7/074002
85 Sandker, M., Carrillo, O., Leng, C., Lee, D., d’Annunzio, R. & Fox, J. 2021. The Importance of High–Quality Data for REDD+ Monitoring and Reporting. Forests, 12(1): 99. https://doi.org/10.3390/f12010099
86 Tewkesbury, A.P., Comber, A.J., Tate, N.J., Lamb, A. & Fisher, P.F. 2015. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment, 160: 1–14. https://doi.org/10.1016/j.rse.2015.01.006
87 FAO. 2018. Strengthening National Forest Monitoring Systems for REDD+. National Forest Monitoring and Assessment Working Paper No. 47. Rome. [Cited 13 June 2024]. https://www.fao.org/documents/card/en/c/CA0525EN
88 Sandker, M., Neeff, T., Todd, K., Poultouchidou, A., Cóndor-Gólec, R., Felicani-Robles, F., SantosAcuña, L. & Duchelle, A.. 2022. From reference levels to results: REDD+ reporting by countries – 2022 update. Forestry Working Paper No. 35. Rome, FAO. https://doi.org/10.4060/cc2899en
89 UNFCCC (United Nations Framework Convention on Climate Change). 2021. Forest reference emission levels. REDD+ Web Platform. UNFCC. [Cited 28 January 2022]. https://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html
90 Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D. et al. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160): 850–853. https://doi.org/10.1126/science.1244693
91 Melo, J., Baker, T., Nemitz, D., Quegan, S. & Ziv, G. 2023. Satellite-based global maps are rarely used in forest reference levels submitted to the UNFCCC. Environmental Research Letters, 18(3): 034021. https://doi.org/10.1088/1748-9326/acba31
92 ART (Architecture for REDD+ Transactions). 2021. TREES. The REDD+ Environmental Excellence Standard. In: ART. [Cited 27 November 2023].. https://www.artredd.org/trees/
93 Ojanen, M., Brockhaus, M., Korhonen-Kurki, K. & Petrokofsky, G. 2021. Navigating the science-policy interface: Forest researcher perspectives. Environmental Science & Policy, 118: 10–17. https://doi.org/10.1016/j.envsci.2021.01.002
94 Martin, P., Teles Da Silva, S., Duarte Dos Santos, M. & Dutra, C. 2022. Governance and metagovernance systems for the Amazon. Review of European, Comparative & International Environmental Law, 31(1): 126–139. https://doi.org/10.1111/reel.12425
95 Congo Basin Forest Partnership. 2023. Congo Basin Forest Partnership. [Cited 15 November 2023]. https://pfbc-cbfp.org/home.html
96 Rantala, S., Swallow, B., Paloniemi, R. & Raitanen, E. 2020. Governance of forests and governance of forest information: Interlinkages in the age of open and digital data. Forest Policy and Economics, 113: 102123. https://doi.org/10.1016/j.forpol.2020.102123
97 Arts, B., Heukels, B. & Turnhout, E. 2021. Tracing timber legality in practice: The case of Ghana and the EU. Forest Policy and Economics, 130: 102532. https://doi.org/10.1016/j.forpol.2021.102532
98 Google. 2022. Google Earth Engine. [Accessed on 15 November 2023]. https://earthengine.google.com
99 Gonzalez, L., Montes, G., Puig, E., Johnson, S., Mengersen, K. & Gaston, K. 2016. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors, 16(1): 97. https://doi.org/10.3390/s16010097
100 Rožman, M., Oreški, D. & Tominc, P. 2023. Artificial-Intelligence-Supported Reduction of Employees’ Workload to Increase the Company’s Performance in Today’s VUCA Environment. Sustainability, 15(6): 5019. https://doi.org/10.3390/su15065019
101 European Commission. 2023. Frequently Asked Questions - Deforestation Regulation. European Commission – Environment. Brussels. [Cited 9 October 2023]. https://environment.ec.europa.eu/publications/frequently-asked-questions-deforestation-regulation_en
102 Verkerk, P.J., Hassegawa, M., Van Brusselen, J., Cramm, M., Chen, X., Maximo, Y.I., Koç, M., Lovrić, M. & Tegegne, Y.T. 2022. The role of forest products in the global bioeconomy – Enabling substitution by wood-based products and contributing to the Sustainable Development Goals. Rome, FAO. https://doi.org/10.4060/cb7274en
103 Teacă, C.-A., Roşu, D., Mustaţă, F., Rusu, T., Roşu, L., Roşca, I. & Varganici, C.-D. 2019. Natural bio-based products for wood coating and protection against degradation: A Review. BioResources, 14(2): 4873–4901. https://doi.org/10.15376/biores.14.2.Teaca
104 Jones, D. & Sandberg, D. 2020. A Review of Wood Modification Globally – Updated Findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment, 1. https://doi.org/10.37947/ipbe.2020.vol1.1
105 Mayes, D., Burton, P., Black, G. & Lake, J. 2023. Next generation Mass Timber from fast rotation pulp logs utilizing Lignor CLST® strand technology. International Panel Products Conference, Llandudno, Wales, October 2023.
106 Ronquillo, G., Hopkin, D. & Spearpoint, M. 2021. Review of large-scale fire tests on cross-laminated timber. Journal of Fire Sciences, 39(5): 327–369. https://doi.org/10.1177/07349041211034460
107 Amidon, T.E., Bujanovic, B., Liu, S. & Howard, J.R. 2011. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery. Forests, 2(4): 929–947. https://doi.org/10.3390/f2040929
108 Kallio, A.M.I. 2021. Wood-based textile fibre market as part of the global forest-based bioeconomy. Forest Policy and Economics, 123: 102364. https://doi.org/10.1016/j.forpol.2020.102364
110 Northvolt. 2022. Stora Enso & Northvolt partner to develop wood-based battery. Northvolt. [Cited 16 November 2023]. https://northvolt.com/articles/stora-enso-and-northvolt/
111 Ani, P.C., Nzereogu, P.U., Agbogu, A.C., Ezema, F.I. & Nwanya, A.C. 2022. Cellulose from waste materials for electrochemical energy storage applications: A review. Applied Surface Science Advances, 11: 100298. https://doi.org/10.1016/j.apsadv.2022.100298
112 Bergamasco, S., Tamantini, S., Zikeli, F., Vinciguerra, V., Scarascia Mugnozza, G. & Romagnoli, M. 2022. Synthesis and Characterizations of Eco-Friendly Organosolv Lignin-Based Polyurethane Coating Films for the Coating Industry. Polymers, 14(3): 416. https://doi.org/10.3390/polym14030416
113 Henn, K.A., Forsman, N., Zou, T. & Österberg, M. 2021. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Applied Materials & Interfaces, 13(29): 34793–34806. https://doi.org/10.1021/acsami.1c06087
114 Stora Enso. 2023. NeoLigno by Stora Enso. StoraEnso. [Cited 29 November 2023]. https://www.storaenso.com/en/products/bio-based-materials/neoligno-by-stora-enso
115 Ebrahimian, F. & Mohammadi, A. 2023. Assessing the environmental footprints and material flow of 2,3-butanediol production in a wood-based biorefinery. Bioresource Technology, 387: 129642. https://doi.org/10.1016/j.biortech.2023.129642
116 Baydoun, S., Hani, N., Nasser, H., Ulian, T. & Arnold-Apostolides, N. 2023. Wild leafy vegetables: A potential source for a traditional Mediterranean food from Lebanon. Frontiers in Sustainable Food Systems, 6: 991979. https://doi.org/10.3389/fsufs.2022.991979
117 Burlingame, B., Vogliano, C. & Eme, P.E. 2019. Leveraging agricultural biodiversity for sustainable diets, highlighting Pacific Small Island Developing States. In: Advances in Food Security and Sustainability, 4: 133–173. https://doi.org/10.1016/bs.af2s.2019.06.006
118 Durazzo, A., Lucarini, M., Zaccardelli, M. & Santini, A. 2020. Forest, Foods, and Nutrition. Forests, 11(11): 1182. https://doi.org/10.3390/f11111182
119 Vinha, A.F., Barreira, J.C.M., Costa, A.S.G. & Oliveira, M.B.P.P. 2016. A New Age for Quercus spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Comprehensive Reviews in Food Science and Food Safety, 15(6): 947–981. https://doi.org/10.1111/1541-4337.12220
120 FAO. 2021. Utilisation des glands de chêne dans la préparation du couscous bil ballout à Jijel, Algérie. Rome. https://doi.org/10.4060/cb3865fr
121 Bilek, M., Cebula, E., Krupa, K., Lorenc, K., Adamowicz, T. & Sosnowski, S. 2018. New technologies for extending shelf life of birch tree sap. ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes, 7 7(4): 3–8. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-0f77d11b-1088-44e4-a0f3-1e6922401284.
122 Ludvig, A., Tahvanainen, V., Dickson, A., Evard, C., Kurttila, M., Cosovic, M., Chapman, E., Wilding, M. & Weiss, G. 2016. The practice of entrepreneurship in the non-wood forest products sector: Support for innovation on private forest land. Forest Policy and Economics, 66: 31–37. https://doi.org/10.1016/j.forpol.2016.02.007
123 Trivedi, P., Nguyen, N., Hykkerud, A.L., Häggman, H., Martinussen, I., Jaakola, L. & Karppinen, K. 2019. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. Frontiers in Plant Science, 10: 431. https://doi.org/10.3389/fpls.2019.00431
124 Walia, K., Kapoor, A. & Farber, J.M. 2018. Qualitative risk assessment of cricket powder to be used to treat undernutrition in infants and children in Cambodia. Food Control, 92: 169–182. https://doi.org/10.1016/j.foodcont.2018.04.047
125 Tanga, C.M., Egonyu, J.P., Beesigamukama, D., Niassy, S., Emily, K., Magara, H.J., Omuse, E.R., Subramanian, S. & Ekesi, S. 2021. Edible insect farming as an emerging and profitable enterprise in East Africa. Current Opinion in Insect Science, 48: 64–71. https://doi.org/10.1016/j.cois.2021.09.007
126 FAO, ILO & UNECE (United Nations Economic Commission for Europe). 2023. Occupational safety and health in the future of forestry work. Rome, FAO; Geneva, ILO and UNECE. https://doi.org/10.4060/cc6723en
127 Legg, B., Dorfner, B., Leavengood, S. & Hansen, E. 2021. Industry 4.0 Implementation in US Primary Wood Products Industry. Drvna industrija, 72(2): 143–153. https://doi.org/10.5552/drvind.2021.2017
128 Landscheidt, S. & Kans, M. 2016. Automation Practices in Wood Product Industries: Lessons learned, current Practices and Future Perspectives. In: The 7th Swedish Production Symposium SPS, 25-27. Lund, Sweden, Lund University. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58199
129 Roshetko, J., Pingault, N., Quang Tan, N., Meybeck, A., Matta, R. & Gitz, V. 2022. Asia-Pacific roadmap for innovative technologies in the forest sector. Bogor, Indonesia and Rome, CIFOR (Center for International Forestry Research) & CGIAR. https://doi.org/10.17528/cifor/008515
130 El-Kassaby, Y.A. & Lstibůrek, M. 2009. Breeding without breeding. Genetics Research, 91(2): 111–120. https://doi.org/10.1017/S001667230900007X
131 Lstibůrek, M., Schueler, S., El-Kassaby, Y.A., Hodge, G.R., Stejskal, J., Korecký, J., Škorpík, P., Konrad, H. & Geburek, T. 2020. In Situ Genetic Evaluation of European Larch Across Climatic Regions Using Marker-Based Pedigree Reconstruction. Frontiers in Genetics, 11: 28. https://doi.org/10.3389/fgene.2020.00028
132 Hohenlohe, P.A., Funk, W.C. & Rajora, O.P. 2021. Population genomics for wildlife conservation and management. Molecular Ecology, 30(1): 62–82. https://doi.org/10.1111/mec.15720
133 Padovezi, A., Secco, L., Adams, C. & Chazdon, R.L. 2022. Bridging Social Innovation with Forest and Landscape Restoration. Environmental Policy and Governance, 32(6): 520–531. https://doi.org/10.1002/eet.2023
134 Nijnik, M., Secco, L., Miller, D. & Melnykovych, M. 2019. Can social innovation make a difference to forest-dependent communities? Forest Policy and Economics, 100: 207–213. https://doi.org/10.1016/j.forpol.2019.01.001
135 Pascual, U., McElwee, P.D., Diamond, S.E., Ngo, H.T., Bai, X., Cheung, W.W., Lim, M., Steiner, N., Agard, J., Donatti, C.I. & Duarte, C.M. 2022. Governing for transformative change across the biodiversity-climate-society nexus. Bioscience, 72(7): 684–704. https://doi.org/10.1093/biosci/biac031
136 Crouzeilles, R., Beyer, H.L., Monteiro, L.M., Feltran-Barbieri, ., Pessôa, A.C.M., Barros, F.S.M., Lindenmayer, D.B. et al. 2020. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conservation Letters, 13(3): e12709. https://doi.org/10.1111/conl.12709
137 Van Noordwijk, M., Pham, T.T., Leimona, B., Duguma, L.A., Baral, H., Khasanah, N., Dewi, S. & Minang, P.A. 2022. Carbon footprints, informed consumer decisions and shifts towards responsible agriculture, forestry, and other land uses? Carbon Footprints, 1(1): 4. https://doi.org/10.20517/cf.2022.02
138 World Agroforestry. undated. SHARED. Transforming Lives and Landscapes with Trees. World Agroforestry. [Cited 20 February 2024]. https://www.worldagroforestry.org/shared
139 Andaya, E. 2016. Cambodia: Mondulkiri forest venture. In: Anna Bolin & Duncan Macqueen, eds. Securing the future – Managing risk and building resilience within locally controlled forest businesses. pp. 19–44. London, UK, IIED (International Institute for Environment and Development). https://www.iied.org/sites/default/files/pdfs/migrate/13587IIED.pdf
140 FAO. undated. Environment and Social Management (FAO): Poverty, Reforestation, Energy and Climate Change. Rome, FAO and Government of Paraguay. https://www.fao.org/fileadmin/templates/FCIT/documents/PROEZA_ESMF.pdf
141 Lambin, E.F., Meyfroidt, P., Rueda, X., Blackman, A., Börner, J., Cerutti, P.O., Dietsch, T. et al. 2014. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Global Environmental Change, 28: 129–140. https://doi.org/10.1016/j.gloenvcha.2014.06.007
142 Rana, P. & Chhatre, A. 2017. Beyond committees: Hybrid forest governance for equity and sustainability. Forest Policy and Economics, 78: 40–50. https://doi.org/10.1016/j.forpol.2017.01.007
143 Le Coq, J.-F., Froger, G., Pesche, D., Legrand, T. & Saenz, F. 2015. Understanding the governance of the Payment for Environmental Services Programme in Costa Rica: A policy process perspective. Ecosystem Services, 16: 253–265. https://doi.org/10.1016/j.ecoser.2015.10.003
144 Sundstrom, L. & Henry, L. 2017. Private Forest Governance, Public Policy Impacts: The Forest Stewardship Council in Russia and Brazil. Forests, 8(11): 445. https://doi.org/10.3390/f8110445
145 Mansourian, S., Kleymann, H., Passardi, V., Winter, S., Derkyi, M.A.A., Diederichsen, A., Gabay, M. et al. 2022. Governments commit to forest restoration, but what does it take to restore forests? Environmental Conservation, 49(4): 206–214. https://doi.org/10.1017/S0376892922000340
146 OECD (Organisation for Economic Co-operation and Development) & FAO. 2023. OECD-FAO Business Handbook on Deforestation and Due Diligence in Agricultural Supply Chains. Paris, OECD. https://doi.org/10.1787/c0d4bca7-en
147 Macqueen, D., Bolin, A., Greijmans, M., Grouwels, S. & Humphries, S. 2020. Innovations towards prosperity emerging in locally controlled forest business models and prospects for scaling up. World Development, 125: 104382. https://doi.org/10.1016/j.worlddev.2018.08.004
148 Macqueen, D. 2022. The Forest and Farm Facility (FFF) approach: delivering climate-resilient landscapes and improved livelihoods. London, IED. [Cited 13 June 2024]. https://www.iied.org/21186iied
149 Usnayo Ramos, R.D. & Fernández, B. 2023. Mobilising internal finance within a forest and farm producer organisation: a case study of Alternative Finance for Development (AFID) of El Ceibo. London, IIED. [Cited 13 June 2024]. https://www.iied.org/21506g
150 Macqueen, D. 2019. Vietnamese forest and farm producers work towards more resilient livelihoods and landscapes. IIED. [Cited 15 November 2023]. https://www.iied.org/vietnamese-forest-farm-producers-work-towards-more-resilient-livelihoods-landscapes
151 FAO. 2023. Strengthening coherence between forestry and social protection for sustainable agrifood systems transformation: Framework for analysis and action. Rome. https://www.fao.org/3/cc8648en/cc8648en.pdf
152 Tata–Cornell Institute. 2022. Aggregation Models and Small Farm Commercialization: An Annotated Bibliography of Relevant Literature. Ithaca, USA. [Cited 13 June 2024]. https://tci.cornell.edu/?publications=aggregation-models-and-small-farm-commercialization-an-annotated-bibliography-of-relevant-literature
153 Humphries, S., Holmes, T., Andrade, D.F.C.D., McGrath, D. & Dantas, J.B. 2020. Searching for win-win forest outcomes: Learning-by-doing, financial viability, and income growth for a community-based forest management cooperative in the Brazilian Amazon. World Development, 125: 104336. https://doi.org/10.1016/j.worlddev.2018.06.005
154 Lemenih, M. & Idris, H. 2015. Ethiopia: Aburo Forest Managing and Utilization Cooperative (Agubela frankincense business group) and Birbirsa Natural Resource Conservation Cooperative (coffee producer group) Non-timber forest product business models in Ethiopia. In: Duncan Macqueen, Anna Bolin & Martin Greijmans, eds. Democratising Forest Business: A Compendium of Successful Locally Controlled Forest Business Organizations. pp. 133–154. London, IIED. [Cited 13 June 2024]. https://www.recoftc.org/publications/0000141
155 Macqueen, D. 2016. Community forest business in Myanmar: Pathway to peace and prosperity?. London, UK., IIED. http://rgdoi.net/10.13140/RG.2.1.2177.9605
156 Elias, M., Grosse, A. & Campbell, N. 2020. Unpacking ‘gender’ in joint forest management: Lessons from two Indian states. Geoforum, 111: 218–228. https://doi.org/10.1016/j.geoforum.2020.02.020
157 Pandey, H.P. & Pokhrel, N.P. 2021. Formation trend analysis and gender inclusion in community forests of Nepal. Trees, Forests and People, 5: 100106. https://doi.org/10.1016/j.tfp.2021.100106
158 ForestLink. 2020. Unlocking the potential of forest guardians. ForestLink. [Cited 15 November 2023]. https://forestlink.org/
159 Mangrove Alliance. 2023. Global Mangrove Watch. Global Mangrove Watch. [Cited 15 November 2023]. http://www.globalmangrovewatch.org/
160 LandMark. 2022. Global Platform of Indigenous and Community Lands. LandMark. [Cited 15 November 2023]. https://www.landmarkmap.org/
161 The Rainforest Foundation. 2020. Mapping For Rights. The Rainforest Foundation. [Cited 15 November 2023]. https://www.mappingforrights.org/
162 UNEP (United Nations Environment Programme). 2022. State of Finance for Nature - Time to act: Doubling investment by 2025 and eliminating nature-negative finance flows. Nairobi. [Cited 13 June 2024]. wedocs.unep.org/20.500.11822/41333
163 Surayya, T. 2012. Innovative Financial Instruments and mechanisms for financing forest restoration and mitigating climate change: select cases from India. European Journal of Sustainable Development, 1(2): 361. https://doi.org/10.14207/ejsd.2012.v1n2p361
164 Louman, B., Meybeck, A., Mulder, G., Brady, M., Fremy, L., Savenije, H., Gitz, V. & Trines, E. 2020. Innovative finance for sustainable landscapes. Working Paper 7. Bogor, Indonesia, The CGIAR Research Program on Forests, Trees and Agroforestry (FTA). https://www.cifor-icraf.org/publications/pdf_files/FTA/WPapers/FTA-WP-7.pdf
165 Louman, B., Girolami, E.D., Shames, S., Primo, L.G., Gitz, V., Scherr, S.J., Meybeck, A. & Brady, M. 2022. Access to Landscape Finance for Small-Scale Producers and Local Communities: A Literature Review. Land, 11(9): 1444. https://doi.org/10.3390/land11091444
166 Besacier, C., Garrett, L., Iweins, M. & Shames, S. 2021. Local financing mechanisms for forest and landscape restoration: A review of local-level investment mechanisms. Forestry Working Paper No. 21. Rome, FAO. https://doi.org/10.4060/cb3760en
167 The World Economic Forum. 2021. The Global Risks Report 2021. Cologny, Switzerland. [Cited 13 June 2024]. https://www.weforum.org/publications/the-global-risks-report-2021/
168 Wong, P.C. 2023. New guidance helps financial institutions grapple with deforestation due diligence. Global Canpoy. [Cited 20 February 2024]. https://globalcanopy.org/insights/insight/new-guidance-helps-financial-institutions-grapple-with-deforestation-due-diligence/
169 Supply Chains Solutions Center. 2019. Soft Commodity Risk Platform (SCRIPT). Supply Chain. [Cited 20 February 2024]. https://supplychain.edf.org/resources/soft-commodity-risk-platform-script/
170 European Commission. undated. EU taxonomy for sustainable activities. Brussels. [Cited 13 June 2024]. https://finance.ec.europa.eu/sustainable-finance/tools-and-standards/eu-taxonomy-sustainable-activities_en
171 Macqueen, D., Benni, N., Boscolo, M. & Zapata, J. 2018. Access to finance for forest and farm producer organisations (FFPOs). Rome, FAO and London, IIED. [Cited 13 June 2024].https://www.iied.org/13606iied
172 Boscolo, M., Dijk, K.V. & Savenije, H. 2010. Financing Sustainable Small-Scale Forestry: Lessons from Developing National Forest Financing Strategies in Latin America. Forests, 1(4): 230–249. https://doi.org/10.3390/f1040230
173 Starfinger, M., Tham, L.T. & Tegegne, Y.T. 2023. Tree collateral – A finance blind spot for small-scale forestry? A realist synthesis review. Forest Policy and Economics, 147: 102886. https://doi.org/10.1016/j.forpol.2022.102886
174 United Nations Innovation Toolkit. 2019. Operating model. Operating model. [Cited 13 November 2023]. https://un-innovation.tools/architecture/5c7d4c9971338741c09c6c68
175 Geels, F.W. 2004. From sectoral systems of innovation to socio-technical systems. Research Policy, 33(6–7): 897–920. https://doi.org/10.1016/j.respol.2004.01.015
176 Herrero, M., Thornton, P.K., Mason-D’Croz, D., Palmer, J., Benton, T.G., Bodirsky, B.L., Bogard, J.R. et al. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1(5): 266–272. https://doi.org/10.1038/s43016-020-0074-1
177 Unruh, G.C. 2000. Understanding carbon lock-in. Energy Policy, 28(12): 817–830. https://doi.org/10.1016/S0301-4215(00)00070-7
178 United Nations. 2019. Create Incentives and Opportunities. UN Innovation Toolkit. [Cited 13 November 2023]. https://un-innovation.tools/culture/5c7d4c9971338741c09c6c6d
179 United Nations. 2019. Life cycle analysis. UN Innovation Toolkit. [Cited 13 November 2023]. https://un-innovation.tools/evaluation/5c7d4c9971338741c09c6c73
181 Davis, D. 2021. Katerra’s $2 Billion Legacy. Architect. [Cited 17 November 2023]. https://www.architectmagazine.com/technology/katerras-2-billion-legacy_o
182 Hoeben, A.D., Stern, T. & Lloret, F. 2023. A Review of Potential Innovation Pathways to Enhance Resilience in Wood-Based Value Chains. Current Forestry Reports, 9(5): 301–318. https://doi.org/10.1007/s40725-023-00191-4
183 Furszyfer Del Rio, D.D., Lambe, F., Roe, J., Matin, N., Makuch, K.E. & Osborne, M. 2020. Do we need better behaved cooks? Reviewing behavioural change strategies for improving the sustainability and effectiveness of cookstove programs. Energy Research & Social Science, 70: 101788. https://doi.org/10.1016/j.erss.2020.101788
184 Khandelwal, M., Hill, M.E., Greenough, P., Anthony, J., Quill, M., Linderman, M. & Udaykumar, H.S. 2017. Why Have Improved Cook-Stove Initiatives in India Failed? World Development, 92: 13–27. https://doi.org/10.1016/j.worlddev.2016.11.006
185 Vigolo, V., Sallaku, R. & Testa, F. 2018. Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective. Sustainability, 10(11): 4322. https://doi.org/10.3390/su10114322
186 Höhl, M., Ahimbisibwe, V., Stanturf, J.A., Elsasser, P., Kleine, M. & Bolte, A. 2020. Forest Landscape Restoration—What Generates Failure and Success? Forests, 11(9): 938. https://doi.org/10.3390/f11090938
187 Schweizer, D., Van Kuijk, M. & Ghazoul, J. 2021. Perceptions from non-governmental actors on forest and landscape restoration, challenges and strategies for successful implementation across Asia, Africa and Latin America. Journal of Environmental Management, 286: 112251. https://doi.org/10.1016/j.jenvman.2021.112251
188 Delgado, T.S., McCall, M.K. & López-Binqüist, C. 2016. Recognized but not supported: Assessing the incorporation of non-timber forest products into Mexican forest policy. Forest Policy and Economics, 71: 36–42. https://doi.org/10.1016/j.forpol.2016.07.002
189 Samal, R. & Dash, M. 2023. Ecotourism, biodiversity conservation and livelihoods: Understanding the convergence and divergence. International Journal of Geoheritage and Parks, 11(1): 1–20. https://doi.org/10.1016/j.ijgeop.2022.11.001
190 McGowan, K. & Antadze, N. 2023. Recognizing the dark side of sustainability transitions. Journal of Environmental Studies and Sciences, 13(2): 344–349. https://doi.org/10.1007/s13412-023-00813-0
191 Mulgan, G. 2016. Good and bad innovation: what kind of theory and practice do we need to distinguish them? Nesta. [Cited 20 February 2024]. https://www.nesta.org.uk/blog/good-and-bad-innovation-what-kind-of-theory-and-practice-do-we-need-to-distinguish-them/
192 Akenji, L. 2014. Consumer scapegoatism and limits to green consumerism. Journal of Cleaner Production, 63: 13–23. https://doi.org/10.1016/j.jclepro.2013.05.022
193 Von Schomberg, R. 2013. A Vision of Responsible Research and Innovation. In: R. Owen, J. Bessant & M. Heintz, eds. Responsible Innovation. First edition, pp. 51–74. Wiley. https://doi.org/10.1002/9781118551424.ch3
194 Hansen, E., Conroy, K., Toppinen, A., Bull, L., Kutnar, A. & Panwar, R. 2016. Does gender diversity in forest sector companies matter? Canadian Journal of Forest Research, 46(11): 1255–1263. https://doi.org/10.1139/cjfr-2016-0040
195 Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. 2022. The Unseen Effects of Deforestation: Biophysical Effects on Climate. Frontiers in Forests and Global Change, 5: 756115. https://doi.org/10.3389/ffgc.2022.756115
196 MapBiomas. 2023. Em 38 anos, o Brasil perdeu 15% de suas florestas naturais. MapBiomas. [Cited 17 November 2023]. https://brasil.mapbiomas.org/2023/10/20/em-38-anos-o-brasil-perdeu-15-de-suas-florestas-naturais/
197 IBGE (Brazilian Institute of Geography and Statistics). 2023. Em 2022, Sorriso (MT) manteve a liderança na produção agrícola | Agência de Notícias. Agência de Notícias - IBGE. [Cited 17 November 2023]. https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/37894-em-2022-sorriso-mt-manteve-a-lideranca-na-producao-agricola
198 Rattis, L., Brando, P.M., Macedo, M.N., Spera, S.A., Castanho, A.D.A., Marques, E.Q., Costa, N.Q., Silverio, D.V. & Coe, M.T. 2021. Climatic limit for agriculture in Brazil. Nature Climate Change, 11(12): 1098–1104. https://doi.org/10.1038/s41558-021-01214-3
199 Barichivich, J., Gloor, E., Peylin, P., Brienen, R.J.W., Schöngart, J., Espinoza, J.C. & Pattnayak, K.C. 2018. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9): eaat8785. https://doi.org/10.1126/sciadv.aat8785
200 Pinto, E., Braga, L., Stabile, M., Gomes, J., Gabriela Savian, Mastrangelo, J.P., Pereira, D. et al. 2011. Incentivos econômicos para a adequação ambiental dos imóveis rurais dos estados amazônicos - Sumário executivo. IPAM Amazônia. [Cited 17 November 2023]. https://ipam.org.br/bibliotecas/__trashed/
201 Fellows, M., Castanho, A., Alencar, A., Andrade, A., Michael Coe, Macedo, M., Pinho, P. et al. 2023. PL 2903 e a tese do Marco Temporal: ameaças aos direitos indígenas e ao clima. IPAM Amazônia. [Cited 17 November 2023]. https://ipam.org.br/bibliotecas/pl-2903-e-a-tese-do-marco-temporal-ameacas-aos-direitos-indigenas-e-ao-clima/
202 May, P.H., Bernasconi, P., Wunder, S. & Lubowski, R. 2015. Environmental reserve quotas in Brazil's new forest legislation - an ex ante appraisal. Bogor, Indonesia, Center for International Forestry Research. http://www.jstor.org/stable/resrep02238.1
203 FAO. 2023. National Forests Monitoring: AIM4Forests. FAO. [Cited 13 November 2023]. https://www.fao.org/national-forest-monitoring/projects/aim4forests/en/
204 FAO & FILAC (Fund for the Indigenous Peoples of Latin America and the Caribbean). 2021. Forest governance by indigenous and tribal peoples. An opportunity for climate action in Latin America and the Caribbean. Rome, FAO. https://doi.org/10.4060/cb2953en
205 Fa, J.E., Watson, J.E., Leiper, I., Potapov, P., Evans, T.D., Burgess, N.D., Molnár, Z. et al. 2020. Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes. Frontiers in Ecology and the Environment, 18(3): 135–140. https://doi.org/10.1002/fee.2148
206 Rights and Resources Initiative. 2023. Who owns the world’s land? Global state of Indigenous, Afro-descendant, and local community land rights recognition from 2015–2020. Washington, DC. https://rightsandresources.org/publication/who-owns-the-worlds-land-2nd-ed/
207 Garnett, S.T., Burgess, N.D., Fa, J.E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C.J., Watson, J.E.M. et al. 2018. A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability, 1(7): 369–374. https://doi.org/10.1038/s41893-018-0100-6
208 IPBES. 2018. The IPBES assessment report on land degradation and restoration. Bonn, Germany. https://doi.org/10.5281/ZENODO.3237393
209 IPCC. 2023. Climate Change 2022 - Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. First edition. Cambridge University Press. https://doi.org/10.1017/9781009157926
210 P. Udawatta, R., Rankoth, L. & Jose, S. 2019. Agroforestry and Biodiversity. Sustainability, 11(10): 2879. https://doi.org/10.3390/su11102879
211 Crumpler, K., Abi Khalil, R., Tanganelli, E., Rai, N., Roffredi, L., Meybeck, A., Umulisa, V., Wolf, J. & Bernoux, M. 2021. 2021 (Interim) Global update report: Agriculture, Forestry and Fisheries in the Nationally Determined Contributions. Rome, FAO. https://doi.org/10.4060/cb7442en
212 Rosenstock, T.S., Wilkes, A., Jallo, C., Namoi, N., Bulusu, M., Suber, M., Mboi, D. et al. 2019. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agriculture, Ecosystems & Environment, 284: 106569. https://doi.org/10.1016/j.agee.2019.106569
213 IPCC. 2023. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. First edition. Cambridge University Press. https://doi.org/10.1017/9781009325844
214 Ahmad, F., Uddin, M.M., Goparaju, L., Talukdar, N.R. & Rizvi, J. 2021. Agroforestry environment, potentiality and risk in India: a remote sensing and GIS understanding. Environment, Development and Sustainability, 23(10): 15183–15203. https://doi.org/10.1007/s10668-021-01292-5
215 Dev, I., Ram, A., Kumar, N., Singh, R., Kumar, D., Uthappa, A.R., Handa, A.K. & Chaturvedi, O.P. 2019. Agroforestry for Climate Resilience and Rural Livelihood. Scientific Publishers. [Cited 13 June 2024]. https://www.scientificpubonline.com/bookdetail/agroforestry-climate-resilience-rurallivelihood/9789387307063/26
216 FAO. 2023. Action Against Desertification. Rome. https://www.fao.org/in-action/action-against-desertification/en/
217 FAO. 2023. Policy Support and Governance: Food Insecurity Experience Scale (FIES). FAO. [Cited 4 December 2023]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1236494/
218 Sacande, M., Parfondry, M., Cicatiello, C., Scarascia-Mugnozza, G., Garba, A., Olorunfemi, P.S., Diagne, M. & Martucci, A. 2021. Socio-economic impacts derived from large scale restoration in three Great Green Wall countries. Journal of Rural Studies, 87: 160–168. https://doi.org/10.1016/j.jrurstud.2021.09.021
219 Sacande, M., Parfondry, M. & C Cicatiello. 2019. Restoration in Action Against Desertification. FAO. https://doi.org/10.4060/ca6932en
220 Speaker, T., O’Donnell, S., Wittemyer, G., Bruyere, B., Loucks, C., Dancer, A., Carter, M. et al. 2022. A global community–sourced assessment of the state of conservation technology. Conservation Biology, 36(3): e13871. https://doi.org/10.1111/cobi.13871
221 Allan, B.M., Nimmo, D.G., Ierodiaconou, D., VanDerWal, J., Koh, L.P. & Ritchie, E.G. 2018. Futurecasting ecological research: the rise of technoecology. Ecosphere, 9(5): e02163. https://doi.org/10.1002/ecs2.2163
222 Berger-Tal, O. & Lahoz-Monfort, J.J. 2018. Conservation technology: The next generation. Conservation Letters, 11(6): e12458. https://doi.org/10.1111/conl.12458
223 Pimm, S.L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R. & Loarie, S. 2015. Emerging Technologies to Conserve Biodiversity. Trends in Ecology & Evolution, 30(11): 685–696. https://doi.org/10.1016/j.tree.2015.08.008
224 Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K.J. 2013. Biodiversity technologies: tools as change agents. Biology Letters, 9(1): 20121029. https://doi.org/10.1098/rsbl.2012.1029
225 MADER (Minstério Da Agricultura e Desenvolvimento Rural). 2021. Inquérito Agrário Integrado 2020. Marco Estatístico. Mozambique. https://www.agricultura.gov.mz/wp-content/uploads/2021/06/MADER_Inquerito_Agrario_2020.pdf
226 Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H. & Clement, J. 2019. Global resources outlook 2019 – Natural Resources for the Future We Want. Nairobi, UNEP.
228 UN-Habitat. undated. Housing. UN-Habitat. [Cited 9 April 2024]. https://unhabitat.org/topic/housing
229 UNEP & Yale. 2023. Building Materials and the Climate: Constructing a New Future. Nairobi, UNEP. https://wedocs.unep.org/20.500.11822/43293
230 Boudreau, C. 2023. See how Sweden is planning to create a “wooden city” with thousands of homes and offices. Business Insider. [Cited 17 November 2023]. https://www.businessinsider.com/stockholm-sweden-wood-city-sustainable-development-photos-2023-7
232 Coad, L., Fa, J.E., Abernethy, K., Van Vliet, N., Santamaria, C., Wilkie, D., El Bizri, H.R., Ingram, D.J., Cawthorn, D-M. & Nasi, R. 2019. Toward a sustainable, participatory and inclusive wild meat sector. Bogor, Indonesia, Center for International Forestry Research (CIFOR). https://doi.org/10.17528/cifor/007046
233 FAO. 2021. Technical Brief - what do we mean by community-based sustainable wildlife management? Rome. https://www.fao.org/3/cb6486en/cb6486en.pdf
234 Sustainable Wildlife Management Programme. 2023. Legal hub. SWM Programme. [Cited 17 November 2023]. https://www.swm-programme.info
235 FAO. 2023. The Development Law Service. FAO. [Cited 14 November 2023]. https://www.fao.org/legal-services/about/en/
237 CPW (Collaborative Partnership on Sustainable Wildlife Management). 2023. Collaborative Partnership on Sustainable Wildlife Management: Policy Support and Governance. FAO. [Cited 14 November 2023]. https://www.fao.org/policy-support/mechanisms/mechanisms-details/en/c/447467/
238 Franzini, F., Toivonen, R. & Toppinen, A. 2018. Why Not Wood? Benefits and Barriers of Wood as a Multistory Construction Material: Perceptions of Municipal Civil Servants from Finland. Buildings, 8(11): 159. https://doi.org/10.3390/buildings8110159
239 SHL (Schmidt Hammer Lassen). 2023. Boston Commonwealth Pier. SHL. [Cited 14 November 2023]. https://www.shl.dk/work/boston-commonwealth-pier
240 Bilham, R. 2009. The seismic future of cities. Bulletin of Earthquake Engineering, 7(4): 839–887. https://doi.org/10.1007/s10518-009-9147-0
241 He, C., Huang, Q., Bai, X., Robinson, D.T., Shi, P., Dou, Y., Zhao, B. et al. 2021. A Global Analysis of the Relationship Between Urbanization and Fatalities in Earthquake-Prone Areas. International Journal of Disaster Risk Science, 12(6): 805–820. https://doi.org/10.1007/s13753-021-00385-z
242 Spherical Insights. 2023. Global Cross Laminated Timber (CLT) Market Size To Grow USD 5.03 Billion By 2030. Spherical Insights. [Cited 17 November 2023]. https://www.sphericalinsights.com/press-release/cross-laminated-timber-clt-market
243 Ove Arup & Partners Limited. 2023. Buildings & Infrastructure Priority Actions for Sustainability Embodied Carbon Steel Reference: 07762000-RP-SUS-0001. 02. London. https://www.istructe.org/IStructE/media/Public/Resources/ARUP-Embodied-carbon-steel_1.pdf
244 Souza, E. 2021. Is Mass Timber a Good Choice for Seismic Zones? ArchDaily. [Cited 17 November 2023]. https://www.archdaily.com/967285/is-mass-timber-a-good-choice-for-seismic-zones#
245 Lehmann, S. & Kremer, P. 2023. Filling the Knowledge Gaps in Mass Timber Construction. Mass Timber Construction Journal, 6(1). https://www.journalmtc.com/index.php/mtcj/article/view/34
246 Bates, J. 2023. Earthquake tests could help wooden structures reach new heights. National Science Foundation. [Cited 17 November 2023]. https://new.nsf.gov/science-matters/earthquake-tests-could-help-wooden-structures
247 Sustersic, I. & Dujic, B. 2014. Seismic shaking table testing of a reinforced concrete frame with masonry infill strengthened with cross laminated timber panels. World Conference on Timber Engineering, Quebec City, Canada, August 2014. https://www.researchgate.net/publication/272293490_Seismic_shaking_table_testing_of_a_reinforced_concrete_frame_with_masonry_infill_strengthened_with_cross_laminated_timber_panels
248 Anderson, J.A. 2022. A Timber Sky scraper on a concrete midrise. Woodrise, Portorož, Slovenia, September 2022.
249 Wright, J. 2022. The biggest vertical extension in North America. Woodrise, Portorož, Slovenia, September 2022.
251 Lowder, S.K., Sánchez, M.V. & Bertini, R. 2021. Which farms feed the world and has farmland become more concentrated? World Development, 142: 105455. https://doi.org/10.1016/j.worlddev.2021.105455
252 FAO. 2019. Farmers taking the lead – 30 years of farmer field schools. [video]. In: FAO. [Cited 13 June 2024].https://www.fao.org/family-farming/detail/en/c/1236143/
253 FAO. 2022. What have we learned from trees? Three decades of farmer field schools on agroforestry and forestry. Rome. https://doi.org/10.4060/cc2258en
254 Van Den Berg, H., Phillips, S., Dicke, M. & Fredrix, M. 2020. Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review. Food Security, 12(6): 1443–1459. https://doi.org/10.1007/s12571-020-01046-7
255 FAO. 2023. Enabling “Response-ability”: A stocktaking of farmer field schools on smallholder forestry and agroforestry. Rome. https://doi.org/10.4060/cc8043en
256 FAO. 2023. Enabling farmer-led ecosystem restoration: Farmer field schools on forestry and agroforestry. Rome. https://doi.org/10.4060/cc6315en
257 CARE International. 2023. Farmer Field and Business Schools (FFBS). CARE International. [Cited 18 December 2023]. https://www.care.org/our-work/food-and-nutrition/agriculture/ffbs/
258 Colfer, C.J.P., Sijapati Basnett, B. & Elias, M. 2016. Gender and Forests: Climate Change, Tenure, Value Chains and Emerging Issues. CIFOR–ICRAF. https:/www.cifor.org/knowledge/publication/6077/
259 Cooper, K.L. 2020. Lead the Change - The Competitive Advantage of Gender Diversity and Inclusion: The Competitive Advantage of Gender Diversity & Inclusion. Centre for Social Intelligence. https://books.google.it/books?id=-BOczQEACAAJ
260 Pascual, U., Balvanera, P., Anderson, C.B., Chaplin-Kramer, R., Christie, M., González-Jiménez, D., Martin, A. et al. 2023. Diverse values of nature for sustainability. Nature, 620(7975): 813–823. https://doi.org/10.1038/s41586-023-06406-9
261 Irving, K. 2022. Younger scientists are more innovative, study finds. The Scientist: exploring life, inspiring innovation. [Cited 20 February 2024]. https://www.the-scientist.com/news-opinion/younger-scientists-are-more-innovative-study-finds-70700
262 Dietershagen, J. & Bammann, H. 2023. Opportunities for youth in the bioeconomy. FAO Agricultural Development Economics Technical Study. Rome, FAO. https://doi.org/10.4060/cc8238en
263 FAO. 2021. Call to action on forest education. Rome. https://www.fao.org/3/cb5258en/cb5258en.pdf
264 Dean, D.J. 2023. Soft Skills as a Conscious Choice to Greater Collaboration at Work. In: J. Marques, ed. The Palgrave Handbook of Fulfillment, Wellness, and Personal Growth at Work. pp. 19–32. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-031-35494-6_2
265 Fazey, I., Evely, A.C., Reed, M.S., Stringer, L.C., Kruijsen, J., White, P.C.L., Newsham, A. et al. 2013. Knowledge exchange: a review and research agenda for environmental management. Environmental Conservation, 40(1): 19–36. https://doi.org/10.1017/S037689291200029X
266 UN/DESA (United Nations Department of Economic and Social Affairs). 2021. UN/DESA Policy Brief #103: Transformational partnerships and partnership platforms. Rome, UN/DESA. [Cited 13 June 2024]. https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-103-transformational-partnerships-and-partnership-platforms/
267 Näyhä, A. 2019. Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. Journal of Cleaner Production, 209: 1294–1306. https://doi.org/10.1016/j.jclepro.2018.10.260
269 Rao, G.N., Williams, J.R., Walsh, M. & Moore, J. 2017. America’s Seed Fund: How the SBIR/STTR Programs Help Enable Catalytic Growth and Technological Advances. Technology & Innovation, 18(4): 315–318. https://doi.org/10.21300/18.4.2017.315
270 Cirera, X. & Maloney, W.F. 2017. The Innovation Paradox: Developing-Country Capabilities and the Unrealized Promise of Technological Catch-Up. Washington, DC., World Bank. https://doi.org/10.1596/978-1-4648-1160-9
271 Mead, D. 2004. Agroforestry. In: Forests and forest plants. Vol. 1. Encyclopedia of Life Science Systems. Oxford, UK., EOLSS Publishers.
272 American Wood Council. 2021. What is cross laminated timber (CLT)? American Wood Council. [Cited 22 February 2024]. https://awc.org/faq/what-is-cross-laminated-timber-clt/
273 Stanturf, J., Mansourian, S. & Kleine, M., eds. 2017. Implementing forest landscape restoration - A practitioner’s guide. Vienna, International Union of Forest Research Organizations.
274 Millenium Ecosystem Assessment (Program), ed. 2005. Ecosystems and Human Well-being: Synthesis. Washington, DC., Island Press.
275 Martínez Pastur, G., Perera, A.H., Peterson, U. & Iverson, L.R. 2018. Ecosystem Services from Forest Landscapes: An Overview. In: A.H. Perera, U. Peterson, G.M. Pastur & L.R. Iverson, eds. Ecosystem Services from Forest Landscapes. pp. 1–10. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-74515-2_1
277 FAO. 1999. Towards a harmonized definition of non-wood forest products. Unasylva, 50(198): 63–64.
278 FAO. 2012. Smallholders and family farmers. Rome. https://www.fao.org/3/ar588e/ar588e.pdf