1 IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático). 2023. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Equipo principal de redacción: H. Lee y J. Romero (coords.). Ginebra (Suiza), IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647
2 IPBES (Plataforma Intergubernamental Científico-normativa sobre Diversidad Biológica y Servicios de los Ecosistemas). 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Bonn (Alemania). https://doi.org/10.5281/ZENODO.3553579
3 Seymour, F., Wolosin, M. y Gray, E. 2022. Not Just Carbon: Capturing All the Benefits of Forests for Stabilizing the Climate from Local to Global Scales. Washington, D. C., Instituto de Recursos Mundiales. https://doi.org/10.46830/wrirpt.19.00004
4 Vié, J.C., Hilton-Taylor, C. y Stuart, S.N. (coords.). 2009. Wildlife in a Changing World – An analysis of the 2008 IUCN Red List of Threatened Species. Gland (Suiza), UICN (Unión Internacional para la Conservación de la Naturaleza). https://portals.iucn.org/library/efiles/documents/RL-2009-001.pdf
5 FAO. 2022. El estado de los bosques del mundo 2022: Vías forestales hacia la recuperación verde y la creación de economías inclusivas, resilientes y sostenibles. Roma. https://doi.org/10.4060/cb9360es
6 Libert-Amico, A., Duchelle, A.E., Cobb, A., Peccoud, V. y Djoudi, H. 2022. Adaptación basada en los bosques: adaptación transformadora a través de los bosques y los árboles. Roma, FAO. https://doi.org/10.4060/cc2886es
7 FAO. 2019. The State of the World’s Biodiversity for Food and Agriculture. J. Bélanger y D. Pilling (coords.). Comisión de Recursos Genéticos para la Alimentación y la Agricultura. Roma. http://www.fao.org/3/CA3129EN/CA3129EN.pdf
8 Ickowitz, A., McMullin, S., Rosenstock, T., Dawson, I., Rowland, D., Powell, B., Mausch, K. et al. 2022. Transforming food systems with trees and forests. The Lancet Planetary Health, 6(7): e632-e639. https://doi.org/10.1016/S2542-5196(22)00091-2
9 FAO. 2022. Estrategia de la FAO para la ciencia y la innovación. Roma. https://openknowledge.fao.org/server/api/core/bitstreams/b2558ce5-e962-47a3-94a5-e7cc577938eb/content
10 FAO. 2021. Marco estratégico para 2022-2031. Roma. https://www.fao.org/3/cb7099es/cb7099es.pdf
11 FAO. 2022. Informe del 26.o período de sesiones del Comité Forestal. Roma. https://www.fao.org/3/nk728es/nk728es.pdf
12 FAO. 2022. Estrategia de la FAO sobre el cambio climático 2022-2031. Roma. https://openknowledge.fao.org/handle/20.500.14283/cc2274es
13 FAO. 2020. Estrategia de la FAO para la integración de la biodiversidad en los distintos sectores agrícolas. Roma. https://doi.org/10.4060/ca7722es
14 Lippe, R.S., Schweinle, J., Cui, S., Gurbuzer, Y., Katajamäki, W., Villarereal-Fuentes, M. y Walter, S. 2022. Contribution of the forest sector to total employment in national economies – Estimating the number of people employed in the forest sector. Roma y Ginebra (Suiza), FAO y Organización Internacional del Trabajo. https://doi.org/10.4060/cc2438en
15 FAO. 2023. Términos y Definiciones. FRA 2025. Evaluación de los Recursos Forestales. Documento de Trabajo n.o 194. Roma. https://www.fao.org/3/cc4691es/cc4691es.pdf
16 FAO. 2022. FRA 2020 Remote Sensing Survey. Documento forestal de la FAO n.o 186. Roma. https://doi.org/10.4060/cb9970en
17 FAO. 2023. FAOSTAT: Producción y Comercio Forestal. [Consultado el 1 de diciembre de 2023]. https://www.fao.org/faostat/es/#data/FO. Licencia: CC-BY-4.0.
18 FAO. 2020. Evaluación de los recursos forestales mundiales 2020. Informe principal. Roma. https://doi.org/10.4060/ca9825es
19 Ministerio de Medio Ambiente y Bosques, República de Indonesia. 2022. The State of Indonesia’s Forests 2022: Towards FOLU Net Sink 2030. Yakarta. https://phl.menlhk.go.id/static/file/publikasi/1664941652-Digital_SoIFO%202022_09.25.22.pdf
20 Kementerian Lingkungan Hidup dan Kehutanan. 2023. Deforestasi Indonesia Tahun 2021-2022. Yakarta. https://sigap.menlhk.go.id/sigap-admin/files/download/buku-pemantauan-deforestasi-indonesia-tahun-2021-2022_v4-compressed.pdf
21 IBGE (Instituto Brasileño de Geografía y Estadística). Sin fecha. IBGE: Legal Amazon. [Consultado el 20 de febrero de 2024]. https://www.ibge.gov.br/en/geosciences/full-list-geosciences/17927-legal-amazon.html
22 Ministerio de Ciencia, Tecnología e Innovaciones, Brasil. Sin fecha. TerraBrasilis. [Consultado el 20 de febrero de 2024]. https://terrabrasilis.dpi.inpe.br/app/map/deforestation?hl=en
23 JRC (Centro Común de Investigación, Comisión Europea). 2023. EU Observatory on deforestation and forest degradation. En: Comisión Europea. Bélgica. [Consultado el 12 de junio de 2024]. https://forest-observatory.ec.europa.eu
24 FAO. 2023. The world’s mangroves 2000-2020. Roma. https://doi.org/10.4060/cc7044en
25 FAO. 2023. Evaluación de los recursos forestales mundiales 2020. En: FAO. [Consultado el 2 de marzo de 2024]. https://fra-data.fao.org/WO/fra2020/home/
26 Giglio, L., Randerson, J.T., Van Der Werf, G.R., Kasibhatla, P.S., Collatz, G.J., Morton, D. C. y DeFries, R.S. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 7(3): 1171-1186. https://doi.org/10.5194/bg-7-1171-2010
27 Van Lierop, P., Lindquist, E., Sathyapala, S. y Franceschini, G. 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecology and Management, 352: 78-88. https://doi.org/10.1016/j.foreco.2015.06.010
28 GWIS (Sistema Mundial de Información sobre Incendios Forestales). 2023. Portal de estadísticas del GWIS. [Consultado el 20 de febrero de 2024]. https://gwis.jrc.ec.europa.eu/apps/gwis.statistics/
29 Chuvieco, E., Roteta, E., Sali, M., Stroppiana, D., Boettcher, M., Kirches, G., Storm, T. et al. 2022. Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Science of The Total Environment, 845: 157139. https://doi.org/10.1016/j.scitotenv.2022.157139
30 IUFRO (Unión Internacional de Organizaciones de Investigación Forestal). 2018. Global Fire Challenges in a Warming World. F.-N. Robinne, J. Burns, P. Kant, M.D. Flannigan, M. Kleine, B. de Groot y D.M. Wotton (coords.). Documento ocasional n.o 32. Viena. https://www.iufro.org/uploads/media/op32.pdf
31 Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J.G., Chen, Y., Van Der Velde, I.R. et al. 2023. Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635): 912-917. https://doi.org/10.1126/science.ade0805
32 Copernicus. 2023. Record-breaking wildfires throughout the 2023 boreal wildfire season. En: Copernicus. [Consultado el 18 de diciembre de 2023]. https://atmosphere.copernicus.eu/copernicus-record-breaking-wildfires-throughout-2023-boreal-wildfire-season
33 CWFIS (Canadian Wildland Fire Information System). 2023.CWFIS Datamart. [Consultado el 4 de julio de 2024]. https://cwfis.cfs.nrcan.gc.ca/datamart
34 PNUMA (Programa de las Naciones Unidas para el Medio Ambiente). 2022. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. Nairobi. [Consultado el 12 de junio de 2024]. https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires
35 Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Bakker, D.C.E., Hauck, J., Landshützer, P. et al. 2023. Global Carbon Budget 2023. Earth System Science Data, 15(12): 5301-5369. https://doi.org/10.5194/essd-15-5301-2023
36 Secretaría de la CIPF (Convención Internacional de Protección Fitosanitaria). 2021. Revisión científica del impacto del cambio climático en las plagas de las plantas. Roma, FAO en nombre de la Secretaría de la CIPF. https://doi.org/10.4060/cb4769es
37 Liebhold, A.M., Brockerhoff, E.G. y Nuñez, M.A. 2017. Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration. Biological Invasions, 19(11): 3073-3077. https://doi.org/10.1007/s10530-017-1547-5
38 Gómez, D.F., Sathyapala, S. y Hulcr, J. 2020. Towards Sustainable Forest Management in Central America: Review of Southern Pine Beetle (Dendroctonus frontalis Zimmermann) Outbreaks, Their Causes, and Solutions. Forests, 11(2): 173. https://doi.org/10.3390/f11020173
39 FAO. 2023. Repercusiones de los desastres en la agricultura y la seguridad alimentaria 2023: Evitar y reducir las pérdidas mediante la inversión en la resiliencia. Roma. https://doi.org/10.4060/cc7900es
40 Potter, K., Escanferla, M., Jetton, R. y Man, G. 2019. Important Insect and Disease Threats to United States Tree Species and Geographic Patterns of Their Potential Impacts. Forests, 10(4): 304. https://doi.org/10.3390/f10040304
41 Gitz, V., Linhares-Juvenal, T. y Meybeck, A. 2023. Optimizing the role of planted forests in the bioeconomy. Unasylva 74, 74(254): 11-16. https://doi.org/10.4060/cc8584en
42 EUWID Pulp and Paper. 2022. Russia issues export ban for logs and wood residues. En: EUWID Pulp and Paper, 23 de marzo de 2022. [Consultado el 11 de abril de 2024]. https://www.euwid-paper.com/news/markets/russia-issues-export-ban-for-logs-and-wood-residues-230322/
43 AIE (Agencia Internacional de la Energía). 2023. A Vision for Clean Cooking Access for All. [Consultado el 12 de junio de 2024]. París. https://iea.blob.core.windows.net/assets/75f59c60-c383-48ea-a3be-943a964232a0/AVisionforCleanCookingAccessforAll.pdf
44 Shackleton, C.M. y De Vos, A. 2022. How many people globally actually use non-timber forest products? Forest Policy and Economics, 135: 102659. https://doi.org/10.1016/j.forpol.2021.102659
45 IPBES. 2022. Thematic assessment of the sustainable use of wild species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. J.M. Fromentin, M.R. Emery, J. Donaldson, M.C. Danner, A. Hallosserie y D. Kieling (coords.). Bonn (Alemania), Secretaría de la IPBES. https://doi.org/10.5281/ZENODO.8199039
46 FAO. 2023. La situación de las mujeres en los sistemas agroalimentarios: Panorama general. Roma. https://doi.org/10.4060/cc5060es
47 Tribal Co-Operative Marketing Development Federation of India Limited. 2023. Important Minor Forest Produces (MFPs). En: TRIFED – Tribal. [Consultado el 27 de noviembre de 2023]. https://trifed.tribal.gov.in/non/timber/msp-mfp
48 Lovrić, M., Da Re, R., Vidale, E., Prokofieva, I., Wong, J., Pettenella, D., Verkerk, P.J. y Mavsar, R. 2020. Non-wood forest products in Europe – A quantitative overview. Forest Policy and Economics, 116: 102175. https://doi.org/10.1016/j.forpol.2020.102175
49 Hall, C., Macdiarmid, J.I., Matthews, R.B., Smith, P., Hubbard, S.F. y Dawson, T.P. 2019. The relationship between forest cover and diet quality: a case study of rural southern Malawi. Food Security, 11(3): 635-650. https://doi.org/10.1007/s12571-019-00923-0
50 El Bizri, H.R., Morcatty, T.Q., Valsecchi, J., Mayor, P., Ribeiro, J.E.S., Vasconcelos Neto, C.F.A., Oliveira, J.S. et al. 2020. Urban wild meat consumption and trade in central Amazonia. Conservation Biology, 34(2): 438-448. https://doi.org/10.1111/cobi.13420
51 Mayor, P., El Bizri, H.R., Morcatty, T.Q., Moya, K., Bendayán, N., Solis, S., Vasconcelos Neto, C.F.A. et al. 2022. Wild meat trade over the last 45 years in the Peruvian Amazon. Conservation Biology, 36(2): e13801. https://doi.org/10.1111/cobi.13801
52 FAO. 2024. Review of the state of world fishery resources: inland fisheries. Circular de Pesca de la FAO n.o 942, revisión 3. Roma, FAO. https://openknowledge.fao.org/server/api/core/bitstreams/1efc1225-d7da-41fc-b710-47244fe22678/content
53 Rubegeta, E., Makolo, F., Kamatou, G., Enslin, G., Chaudhary, S., Sandasi, M., Cunningham, A.B. y Viljoen, A. 2023. The African cherry: A review of the botany, traditional uses, phytochemistry, and biological activities of Prunus africana (Hook.f.) Kalkman. Journal of Ethnopharmacology, 305: 116004. https://doi.org/10.1016/j.jep.2022.116004
54 Nakicenovic, N., Lempert, R.J. y Janetos, A.C. 2014. A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay: A Forthcoming Special Issue of Climatic Change. Climatic Change, 122(3): 351-361. https://doi.org/10.1007/s10584-013-0982-2
55 Johnston, C.M.T., Guo, J. y Prestemon, J.P. 2023. RPA forest products market data for U.S. RPA Regions and the world, historical (1990-2015), and projected (2020-2070) using the Forest Resource Outlook Model (FORUM). 2.a edición. En: Forest Services Research Data Archive. https://doi.org/10.2737/RDS-2022-0073-2
56 FAO. 2022. Global forest sector outlook 2050: Assessing future demand and sources of timber for a sustainable economy. Roma. https://doi.org/10.4060/cc2265en
57 FAO. 2023. Towards more resilient and diverse planted forests. Unasylva, 254 (74). Roma. https://doi.org/10.4060/cc8584en
58 Hetemäki, L. y Seppälä, J. 2022. Planetary Boundaries and the Role of the Forest-Based Sector. En: L. Hetemäki, J. Kangas y H. Peltola (coords.). Forest Bioeconomy and Climate Change. Págs. 19-31. Vol. 42. Managing Forest Ecosystems. Cham (Alemania), Springer International Publishing. https://doi.org/10.1007/978-3-030-99206-4_2
59 Hetemäki, L., Palahí, M., Adams, J. y White, L. 2021. How to preserve Africa’s forests and build a green economy. 25 de junio de 2021. En: Foro Económico Mundial. Cologny (Suiza), Foro Económico Mundial. [Consultado el 12 de junio de 2024]. https://www.weforum.org/agenda/2021/06/preserve-africa-forests-green-economy/
60 Hetemäki, L., Tegegne, Y.T. y Ochieng, R.M. 2023. Outlook for Sustainable Forest Bioeconomy in Gabon, Kenya, Nigeria, South Africa and Tanzania. Circular Bioeconomy Alliance. https://circularbioeconomyalliance.org/wp-content/uploads/2023/12/CBA_Outlook_Sustainable_Forest_Bioeconomy_2023.pdf
61 FAO, OIMT (Organización Internacional de las Maderas Tropicales) y Naciones Unidas. 2020. Forest product conversion factors. Roma, FAO; OIMT, Yokohama (Japón) y Naciones Unidas (Nueva York). https://doi.org/10.4060/ca7952en
62 Messier, C., Baker, C., Carreiras, J.M.B, Pearson, T.R.H. y Vasconcelos, M.J. 2022. Warning: Natural and Managed Forests are Losing their Capacity to Mitigate Climate Change. The Forestry Chronicle, 98(1): 2-8. https://doi.org/10.5558/tfc2022-007
63 Reich, P.B., Bermúdez, R., Montgomery, R.A., Rich, R.L., Rice, K.E., Hobbie, S.E. y Stefanski, A. 2022. Even modest climate change may lead to major transitions in boreal forests. Nature, 608(7923): 540-545. https://doi.org/10.1038/s41586-022-05076-3
64 Massey, R., Rogers, B.M., Berner, L.T., Cooperdock, S., Mack, M.C., Walker, X.J. y Goetz, S.J. 2023. Forest composition change and biophysical climate feedbacks across boreal North America. Nature Climate Change. https://doi.org/10.1038/s41558-023-01851-w
65 FAO y CEPE (Comisión Económica de las Naciones Unidas para Europa). 2021. Forest Sector Outlook Study 2020-2040. Ginebra (Suiza), CEPE. https://unece.org/sites/default/files/2022-05/unece-fao-sp-51-main-report-forest-sector-outlook_0.pdf
66 Nepal, P., Korhonen, J., Prestemon, J.P. y Cubbage, F.W. 2019. Projecting global planted forest area developments and the associated impacts on global forest product markets. Journal of Environmental Management, 240: 421-430. https://doi.org/10.1016/j.jenvman.2019.03.126
67 Naciones Unidas. 2019. Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development. Nueva York (EE. UU.), Naciones Unidas. [Consultado el 13 de junio de 2024]. https://sdgs.un.org/publications/future-now-science-achieving-sustainable-development-gsdr-2019-24576
68 Granstrand, O. y Holgersson, M. 2020. Innovation ecosystems: A conceptual review and a new definition. Technovation, 90-91: 102098. https://doi.org/10.1016/j.technovation.2019.102098
69 Paasi, J., Wiman, H. Apilo, T. y Valkokari, K. 2023. Modeling the dynamics of innovation ecosystems. International Journal of Innovation Studies, 7(2): 142-158. https://doi.org/10.1016/j.ijis.2022.12.002
70 Hall, A., Dijkman, J., Taylor, B., Williams, L. y Kelly, J. 2017. Synopsis: Towards a Framework for Unlocking Transformative Agricultural Innovation. Agri-food Innovation and Impact Discussion Paper Series. Canberra, CSIRO (Organización de Investigación Científica e Industrial del Commonwealth). En: KISM Food Security Portal. [Consultado el 12 de junio de 2024]. https://www.kismfoodmarkets.org/node/2281
71 Đuric, I. 2020. Digital technology and agricultural markets. Documento de antecedentes para El estado de los mercados de productos básicos agrícolas (SOCO). Roma, FAO. https://doi.org/10.4060/cb0701en
72 Kindt, R. 2023. TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Global Change Biology, 29(22): 6303-6318. https://doi.org/10.1111/gcb.16914
73 Bey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F. et al. 2016. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sensing, 8(10): 807. https://doi.org/10.3390/rs8100807
74 FAO. 2023. SEPAL: Monitoreo de Bosques y Tierras para la Acción Climática. Roma. https://www.fao.org/documents/card/en/c/cc1803es
75 Tzamtzis, I., Federici, S. y Hanle, L. 2019. A Methodological Approach for a Consistent and Accurate Land Representation Using the FAO Open Foris Collect Earth Tool for GHG Inventories. Carbon Management, 10(4): 437-450. https://doi.org/10.1080/17583004.2019.1634934
76 Open Foris. 2023. Open Foris. En: Open Foris. [Consultado el 13 de noviembre de 2023]. https://openforis.org/
77 Open Foris. 2023. SEPAL. En: SEPAL. [Consultado el 27 de noviembre de 2023]. https://sepal.io/
78 FAO. 2023. Improving reporting on forest degradation emissions, 4 de mayo de 2023. En: FAO Forestry Newsroom. [Consultado el 22 de septiembre de 2023]. https://www.fao.org/forestry/newsroom/news-detail/improving-reporting-on-forest-degradation-emissions/en
79 Olofsson, P., Foody, G.M., Stehman, S.V. y Woodcock, C.E. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129: 122-131. https://doi.org/10.1016/j.rse.2012.10.031
80 Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. y Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148: 42-57. https://doi.org/10.1016/j.rse.2014.02.015
81 Stehman, S.V. 2014. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. International Journal of Remote Sensing, 35(13): 4923-4939. https://doi.org/10.1080/01431161.2014.930207
82 GFOI (Iniciativa mundial de observación de los bosques). 2020. Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests. Roma. https://redd.unfccc.int/uploads/2_77_redd_20140218_mgd_report_gfoi.pdf
83 Achard, F. y House, J.I. 2015. Reporting carbon losses from tropical deforestation with Pan-tropical biomass maps. Environmental Research Letters, 10(10): 101002. https://doi.org/10.1088/1748-9326/10/10/101002
84 Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Turubanova, S. y Goetz, S.J. 2015. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environmental Research Letters, 10(7): 074002. https://doi.org/10.1088/1748-9326/10/7/074002
85 Sandker, M., Carrillo, O., Leng, C., Lee, D., d’Annunzio, R. y Fox, J. 2021. The Importance of High-Quality Data for REDD+ and Reporting. Forests, 12(1): 99. https://doi.org/10.1093/biosci/biac031
86 Tewkesbury, A.P., Comber, A.J., Tate, N.J., Lamb, A. y Fisher, P.F. 2015. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment, 160: 1-14. https://doi.org/10.1016/j.rse.2015.01.006
87 FAO. 2018. Fortalecimiento de los Sistemas Nacionales de Monitoreo de los Bosques para REDD+. Documento de trabajo sobre monitoreo y evaluación de los recursos forestales nacionales n.° 47. Roma. [Consultado el 13 de junio de 2024]. https://www.fao.org/documents/card/es/c/CA0525ES
88 Sandker, M., Neeff, T., Todd, K., Poultouchidou, A., Cóndor-Gólec, R., Felicani-Robles, F., Santos Acuña, L. y Duchelle, A. 2022. From reference levels to results: REDD+ reporting by countries – 2022 update. Documento de trabajo forestal n.° 35. Roma. https://doi.org/10.4060/cc2899en
89 CMNUCC (Convención Marco de las Naciones Unidas sobre el Cambio Climático). 2021. Forest reference emission levels. En: REDD+ Web Platform. CMNUCC. [Consultado el 28 de enero de 2022]. https://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html
90 Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D. et al. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160): 850-853. https://doi.org/10.1126/science.1244693
91 Melo, J., Baker, T., Nemitz, D., Quegan, S. y Ziv, G. 2023. Satellite-based global maps are rarely used in forest reference levels submitted to the UNFCCC. Environmental Research Letters, 18(3): 034021. https://doi.org/10.1088/1748-9326/acba31
92 ART (Architecture for REDD+ Transactions). 2021. TREES: The REDD+ Environmental Excellence Standard. En: ART Architecture for REDD+ Transactions. [Consultado el 27 de noviembre de 2023]. https://www.artredd.org/trees/
93 Ojanen, M., Brockhaus, M., Korhonen-Kurki, K. y Petrokofsky, G. 2021. Navigating the science-policy interface: Forest researcher perspectives. Environmental Science & Policy, 118: 10-17. https://doi.org/10.1016/j.envsci.2021.01.002
94 Martin, P., Teles Da Silva, S., Duarte Dos Santos, M. y Dutra, C. 2022. Governance and metagovernance systems for the Amazon. Review of European, Comparative & International Environmental Law, 31(1): 126-139. https://doi.org/10.1111/reel.12425
95 Congo Basin Forest Partnership. 2023. Congo Basin Forest Partnership. [Consultado el 15 de noviembre de 2023]. https://pfbc-cbfp.org/home.html
96 Rantala, S., Swallow, B., Paloniemi, R. y Raitanen, E. 2020. Governance of forests and governance of forest information: Interlinkages in the age of open and digital data. Forest Policy and Economics, 113: 102123. https://doi.org/10.1016/j.forpol.2020.102123
97 Arts, B., Heukels, B. y Turnhout, E. 2021. Tracing timber legality in practice: The case of Ghana and the EU. Forest Policy and Economics, 130: 102532. https://doi.org/10.1016/j.forpol.2021.102532
98 Google. 2022. Google Earth Engine. [Consultado el 15 de noviembre de 2023]. https://earthengine.google.com
99 González, L., Montes, G., Puig, E., Johnson, S., Mengersen, K. y Gaston, K. 2016. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors, 16(1): 97. https://doi.org/10.3390/s16010097
100 Rožman, M., Oreški, D. y Tominc, P. 2023. Artificial-Intelligence-Supported Reduction of Employees’ Workload to Increase the Company’s Performance in Today’s VUCA Environment. Sustainability, 15(6): 5019. https://doi.org/10.3390/su15065019
101 Comisión Europea. 2023. Frequently Asked Questions - Deforestation Regulation. En: European Commission. Bruselas. [Consultado el 9 de octubre de 2023]. https://environment.ec.europa.eu/publications/frequently-asked-questions-deforestation-regulation_en
102 Verkerk, P.J., Hassegawa, M., Van Brusselen, J., Cramm, M., Chen, X., Maximo, Y.I., Koç, M., Lovrić, M. y Tegegne, Y.T. 2022. Forest products in the global bioeconomy – Enabling substitution by wood-based products and contributing to the Sustainable Development Goals. Roma, FAO. https://doi.org/10.4060/cb7274en
103 Teacă, C.-A., Roşu, D., Mustaţă, F., Rusu, T., Roşu, L., Roşca, I. y Varganici, C.-D. 2019. Natural bio-based products for wood coating and protection against degradation: A Review. BioResources, 14(2): 4873-4901. https://doi.org/10.15376/biores.14.2.Teaca
104 Jones, D. y Sandberg, D. 2020. A Review of Wood Modification Globally – Updated Findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment, 1. https://doi.org/10.37947/ipbe.2020.vol1.1
105 Mayes, D., Burton, P., Black, G. y Lake, J. 2023. Next generation Mass Timber from fast rotation pulp logs utilizing Lignor CLST® strand technology. International Panel Products Conference, Llandudno (Gales), octubre de 2023.
106 Ronquillo, G., Hopkin, D. y Spearpoint, M. 2021. Review of large-scale fire tests on cross-laminated timber. Journal of Fire Sciences, 39(5): 327-369. https://doi.org/10.1177/07349041211034460
107 Amidon, T.E., Bujanovic, B., Liu, S. y Howard, J.R. 2011. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery. Forests, 2(4): 929-947. https://doi.org/10.3390/f2040929
108 Kallio, A.M.I. 2021. Wood-based textile fibre market as part of the global forest-based bioeconomy. Forest Policy and Economics, 123: 102364. https://doi.org/10.1016/j.forpol.2020.102364
109 FAO. 2023. FAOSTAT: Producción y Comercio Forestal. [Consultado el 1 de diciembre de 2023]. https://www.fao.org/faostat/es/#data/FO. Licencia: CC-BY-4.0.
110 Northvolt. 2022. Stora Enso and Northvolt partner to develop wood-based battery. En: Northvolt. [Consultado el 16 de noviembre de 2023]. https://northvolt.com/articles/stora-enso-and-northvolt/
111 Ani, P.C., Nzereogu, P.U., Agbogu, A.C., Ezema, F.I. y Nwanya, A.C. 2022. Cellulose from waste materials for electrochemical energy storage applications: A review. Applied Surface Science Advances, 11: 100298. https://doi.org/10.1016/j.apsadv.2022.100298
112 Bergamasco, S., Tamantini, S., Zikeli, F., Vinciguerra, V., Scarascia Mugnozza, G. y Romagnoli, M. 2022. Synthesis and Characterizations of Eco-Friendly Organosolv Lignin-Based Polyurethane Coating Films for the Coating Industry. Polymers, 14(3): 416. https://doi.org/10.3390/polym14030416
113 Henn, K.A., Forsman, N., Zou, T. y Österberg, M. 2021. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Applied Materials and Interfaces, 13(29): 34793-34806. https://doi.org/10.1021/acsami.1c06087
114 Stora Enso. 2023. Neoligno®: A bio-based binder for building materials. Enso. En: StoraEnso. [Consultado el 29 de noviembre de 2023]. https://www.storaenso.com/en/products/bio-based-materials/neoligno-by-stora-enso
115 Ebrahimian, F. y Mohammadi, A. 2023. Assessing the environmental footprints and material flow of 2,3-butanediol production in a wood-based biorefinery. Bioresource Technology, 387: 129642. https://doi.org/10.1016/j.biortech.2023.129642
116 Baydoun, S., Hani, N., Nasser, H., Ulian, T. y Arnold-Apostolides, N. 2023. Wild leafy vegetables: A potential source for a traditional Mediterranean food from Lebanon. Frontiers in Sustainable Food Systems, 6: 991979. https://doi.org/10.3389/fsufs.2022.991979
117 Burlingame, B., Vogliano, C. y Eme, P.E. 2019. Leveraging agricultural biodiversity for sustainable diets, highlighting Pacific Small Island Developing States. Advances in Food Security and Sustainability. 4:133-173. https://doi.org/10.1016/bs.af2s.2019.06.006
118 Durazzo, A., Lucarini, M., Zaccardelli, M. y Santini, A. 2020. Forest, Foods, and Nutrition. Forests, 11(11): 1182. https://doi.org/10.3390/f11111182
119 Vinha, A.F., Barreira, J.C.M., Costa, A.S.G. y Oliveira, M.B.P.P. 2016. A New Age for Quercus spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Comprehensive Reviews in Food Science and Food Safety, 15(6): 947-981. https://doi.org/10.1111/1541-4337.12220
120 FAO. 2021. Utilisation des glands de chêne dans la préparation du couscous bil ballout à Jijel, Algérie. Roma. https://doi.org/10.4060/cb3865fr
121 Bilek, M., Cebula, E., Krupa, K., Lorenc, K., Adamowicz, T. y Sosnowski, S. 2018. New technologies for extending shelf life of birch tree sap. ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes, 7(4): 3-8. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-0f77d11b-1088-44e4-a0f3-1e6922401284
122 Ludvig, A., Tahvanainen, V., Dickson, A., Evard, C., Kurttila, M., Cosovic, M., Chapman, E., Wilding, M. y Weiss, G. 2016. The practice of entrepreneurship in the non-wood forest products sector: Support for innovation on private forest land. Forest Policy and Economics, 66: 31-37. https://doi.org/10.1016/j.forpol.2016.02.007
123 Trivedi, P., Nguyen, N., Hykkerud, A.L., Häggman, H., Martinussen, I., Jaakola, L. y Karppinen, K. 2019. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. Frontiers in Plant Science, 10: 431. https://doi.org/10.3389/fpls.2019.00431
124 Walia, K., Kapoor, A. y Farber, J.M. 2018. Qualitative risk assessment of cricket powder to be used to treat undernutrition in infants and children in Cambodia. Food Control, 92: 169-182. https://doi.org/10.1016/j.foodcont.2018.04.047
125 Tanga, C.M., Egonyu, J.P., Beesigamukama, D., Niassy, S., Emily, K., Magara, H.J., Omuse, E.R., Subramanian, S. y Ekesi, S. 2021. Edible insect farming as an emerging and profitable enterprise in East Africa. Current Opinion in Insect Science, 48: 64-71. https://doi.org/10.1016/j.cois.2021.09.007
126 FAO, OIT y Naciones Unidas. 2023. Occupational safety and health in the future of forestry work. Roma, FAO; Ginebra (Suiza), OIT y Nueva York, Naciones Unidas. https://doi.org/10.4060/cc6723en
127 Legg, B., Dorfner, B., Leavengood, S. y Hansen, E. 2021. Industry 4.0 Implementation in US Primary Wood Products Industry. Drvna industrija, 72(2): 143-153. https://doi.org/10.5552/drvind.2021.2017
128 Landscheidt, S. y Kans, M. 2016. Automation Practices in Wood Product Industries: Lessons learned, current Practices and Future Perspectives. En: The 7th Swedish Production Symposium SPS, 25-27 de octubre de 2016. Lund (Suecia), Lund University, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58199
129 Roshetko, J., Pingault, N., Quang Tan, N., Meybeck, A., Matta, R. y Gitz, V. 2022. Asia-Pacific roadmap for innovative technologies in the forest sector. Documento de trabajo n.° 15. Roma, FAO y Bogor (Indonesia),Centro para la Investigación Forestal Internacional y Centro Mundial de Agrosilvicultura. https://doi.org/10.17528/cifor/008515
130 El-Kassaby, Y.A. y Lstibůrek, M. 2009. Breeding without breeding. Genetics Research, 91(2): 111-120. https://doi.org/10.1017/S001667230900007X
131 Lstibůrek, M., Schueler, S., El-Kassaby, Y.A., Hodge, G.R., Stejskal, J., Korecký, J., Škorpík, P., Konrad, H. y Geburek, T. 2020. In Situ Genetic Evaluation of European Larch Across Climatic Regions Using Marker-Based Pedigree Reconstruction. Frontiers in Genetics, 11: 28. https://doi.org/10.3389/fgene.2020.00028
132 Hohenlohe, P.A., Funk, W.C. y Rajora, O.P. 2021. Population genomics for wildlife conservation and management. Molecular Ecology, 30(1): 62-82. https://doi.org/10.1111/mec.15720
133 Padovezi, A., Secco, L., Adams, C. y Chazdon, R.L. 2022. Bridging Social Innovation with Forest and Landscape Restoration. Environmental Policy and Governance, 32(6): 520-531. https://doi.org/10.1002/eet.2023
134 Nijnik, M., Secco, L., Miller, D. y Melnykovych, M. 2019. Can social innovation make a difference to forest-dependent communities? Forest Policy and Economics, 100: 207-213. https://doi.org/10.1016/j.forpol.2019.01.001
135 Pascual, U., McElwee, P.D., Diamond, S.E., Ngo, H.T., Bai, X., Cheung, W.W., Lim, M., Steiner, N., Agard, J., Donatti, C.I. y Duarte, C.M. 2022. Governing for transformative change across the biodiversity-climate-society nexus. Bioscience, 72(7): 684-704. https://doi.org/10.1093/biosci/biac031
136 Crouzeilles, R., Beyer, H.L., Monteiro, L.M., Feltran-Barbieri, R., Pessôa, A.C.M., Barros, F.S.M., Lindenmayer, D.B. et al. 2020. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conservation Letters, 13(3): e12709. https://doi.org/10.1111/conl.12709
137 Van Noordwijk, M., Pham, T.T., Leimona, B., Duguma, L.A., Baral, H., Khasanah, N., Dewi, S. y Minang, P.A. 2022. Carbon footprints, informed consumer decisions and shifts towards responsible agriculture, forestry, and other land uses? Carbon Footprints, 1(1): 4. https://doi.org/10.20517/cf.2022.02
138 World Agroforestry. Sin fecha. SHARED. Transforming Lives and Landscapes with Trees. En: World Agroforestry [Consultado el 20 de febrero de 2024]. https://www.worldagroforestry.org/shared
139 Andaya, E. 2016. Cambodia: Mondulkiri forest venture. En: Anna Bolin y Duncan Macqueen (coords.). Securing the future – Managing risk and building resilience within locally controlled forest businesses. págs. 19-44. Londres, Instituto Internacional de Medio Ambiente y Desarrollo (IIED). https://www.iied.org/sites/default/files/pdfs/migrate/13587IIED.pdf
140 FAO. 2018. Gestión Social y Ambiental (FAO): Pobreza, Reforestación, Energía y Cambio Climático (PROEZA). FAO y Gobierno del Paraguay. https://proeza.stp.gov.py/cms//uploads/Gestion_Social_y_Ambiental_Espanol_c41830aff2.pdf
141 Lambin, E.F., Meyfroidt, P., Rueda, X., Blackman, A., Börner, J., Cerutti, P.O., Dietsch, T. et al. 2014. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Global Environmental Change, 28: 129-140. https://doi.org/10.1016/j.gloenvcha.2014.06.007
142 Rana, P. y Chhatre, A. 2017. Beyond committees: Hybrid forest governance for equity and sustainability. Forest Policy and Economics, 78: 40-50. https://doi.org/10.1016/j.forpol.2017.01.007
143 Le Coq, J.-F., Froger, G., Pesche, D., Legrand, T. y Saenz, F. 2015. Understanding the governance of the Payment for Environmental Services Programme in Costa Rica: A policy process perspective. Ecosystem Services, 16: 253-265. https://doi.org/10.1016/j.ecoser.2015.10.003
144 Sundstrom, L. y Henry, L. 2017. Private Forest Governance, Public Policy Impacts: The Forest Stewardship Council in Russia and Brazil. Forests, 8(11): 445. https://doi.org/10.3390/f8110445
145 Mansourian, S., Kleymann, H., Passardi, V., Winter, S., Derkyi, M.A.A., Diederichsen, A., Gabay, M. et al. 2022. Governments commit to forest restoration, but what does it take to restore forests? Environmental Conservation, 49(4): 206-214. https://doi.org/10.1017/S0376892922000340
146 OCDE (Organización para la Cooperación y el Desarrollo Económicos) y FAO. 2023. OECD-FAO Business Handbook on Deforestation and Due Diligence in Agricultural Supply Chains. París, OCDE. https://doi.org/10.1787/c0d4bca7-en
147 Macqueen, D., Bolin, A., Greijmans, M., Grouwels, S. y Humphries, S. 2020. Innovations towards prosperity emerging in locally controlled forest business models and prospects for scaling up. World Development, 125: 104382. https://doi.org/10.1016/j.worlddev.2018.08.004
148 Macqueen, D. 2022. The Forest and Farm Facility (FFF) approach: delivering climate-resilient landscapes and improved livelihoods. Londres, IIED. [Consultado el 13 de junio de 2024]. https://www.iied.org/21186iied
149 Usnayo Ramos, R.D. y Fernández, B. 2023. Mobilising internal finance within a forest and farm producer organisation: a case study of Alternative Finance for Development (AFID) of El Ceibo. Londres, IIED. https://www.iied.org/21506g
150 Macqueen, D. 2019. Vietnamese forest and farm producers work towards more resilient livelihoods and landscapes. En: IIED. [Consultado el 15 de noviembre de 2023]. https://www.iied.org/vietnamese-forest-farm-producers-work-towards-more-resilient-livelihoods-landscapes
151 FAO. 2023. Strengthening coherence between forestry and social protection for sustainable agrifood systems transformation: Framework for analysis and action. Roma. https://www.fao.org/3/cc8648en/cc8648en.pdf
152 Tata-Cornell Institute. 2022. Aggregation Models and Small Farm Commercialization: An Annotated Bibliography of Relevant Literature. Ithaca (EE. UU). [Consultado el 13 de junio de 2024]. https://tci.cornell.edu/?publications=aggregation-models-and-small-farm-commercialization-an-annotated-bibliography-of-relevant-literature
153 Humphries, S., Holmes, T., Andrade, D.F.C.D., McGrath, D. y Dantas, J.B. 2020. Searching for win-win forest outcomes: Learning-by-doing, financial viability, and income growth for a community-based forest management cooperative in the Brazilian Amazon. World Development, 125: 104336. https://doi.org/10.1016/j.worlddev.2018.06.005
154 Lemenih, M. e Idris, H. 2015. Ethiopia: Aburo Forest Managing and Utilization Cooperative (Agubela frankincense business group) and Birbirsa Natural Resource Conservation Cooperative (coffee producer group). Non-timber forest product business models in Ethiopia. En: Duncan Macqueen, Anna Bolin y Martin Greijmans (coords.). Democratising Forest Business: A Compendium of Successful Locally Controlled Forest Business Organizations. págs. 133-154. Londres, IIED. https://www.recoftc.org/publications/0000141
155 Macqueen, D. 2016. Community forest business in Myanmar: Pathway to peace and prosperity? Londres, IIED. http://rgdoi.net/10.13140/RG.2.1.2177.9605
156 Elias, M., Grosse, A. y Campbell, N. 2020. Unpacking ‘gender’ in joint forest management: Lessons from two Indian states. Geoforum, 111: 218-228. https://doi.org/10.1016/j.geoforum.2020.02.020
157 Pandey, H.P. y Pokhrel, N.P. 2021. Formation trend analysis and gender inclusion in community forests of Nepal. Trees, Forests and People, 5: 100106. https://doi.org/10.1016/j.tfp.2021.100106
158 ForestLink. 2020. Unlocking the potential of forest guardians. En: ForestLink. [Consultado el 15 de noviembre de 2023]. https://forestlink.org/
159 Mangrove Alliance. 2023. Global Mangrove Watch. En: Global Mangrove Watch. [Consultado el 15 de noviembre de 2023]. http://www.globalmangrovewatch.org/
160 LandMark. 2022. Global Platform of Indigenous and Community Lands. En: LandMark. [Consultado el 15 de noviembre de 2023]. https://www.landmarkmap.org/
161 The Rainforest Foundation. 2020. Mapping for Rights. En: The Rainforest Foundation. [Consultado el 15 de noviembre de 2023]. https://www.mappingforrights.org/
162 PNUMA. 2022. State of Finance for Nature – Time to act: Doubling investment by 2025 and eliminating nature-negative finance flows. Nairobi. [Consultado el 13 de junio de 2024]. https://wedocs.unep.org/20.500.11822/41333
163 Surayya, T. 2012. Innovative Financial Instruments and mechanisms for financing forest restoration and mitigating climate change: select cases from India. European Journal of Sustainable Development, 1(2): 361. https://doi.org/10.14207/ejsd.2012.v1n2p361
164 Louman, B., Meybeck, A., Mulder, G., Brady, M., Fremy, L., Savenije, H., Gitz, V. y Trines, E. 2020. Innovative finance for sustainable landscapes. Working Paper 7. Bogor (Indonesia). Programa de Investigación de CGIAR sobre Bosques, Árboles y Agroforestería.
165 Louman, B., Girolami, E.D., Shames, S., Primo, L.G., Gitz, V., Scherr, S.J., Meybeck, A. y Brady, M. 2022. Access to Landscape Finance for Small-Scale Producers and Local Communities: A Literature Review. Land, 11(9): 1444. https://doi.org/10.3390/land11091444
166 Besacier, C., Garrett, L., Iweins, M. y Shames, S. 2021. Local financing mechanisms for forest and landscape restoration: A review of local-level investment mechanisms. Documento de trabajo forestal n.o 21. Roma, FAO. https://doi.org/10.4060/cb3760en
167 Foro Económico Mundial. 2021. The Global Risks Report 2021. Cologny (Suiza). [Consultado el 13 de junio de 2024]. https://www.weforum.org/publications/the-global-risks-report-2021/
168 Wong, P.C. 2023. New guidance helps financial institutions grapple with deforestation due diligence. En: Global Canopy. [Consultado el 20 de febrero de 2024]. https://globalcanopy.org/insights/insight/new-guidance-helps-financial-institutions-grapple-with-deforestation-due-diligence/
169 Supply Chains Solutions Center. 2019. Soft Commodity Risk Platform (SCRIPT). En: Supply Chain Solutions Center. [Consultado el 20 de febrero de 2024]. https://supplychain.edf.org/resources/soft-commodity-risk-platform-script/
170 Comisión Europea. Sin fecha. EU taxonomy for sustainable activities. [Consultado el 13 de junio de 2024]. Bruselas. https://finance.ec.europa.eu/sustainable-finance/tools-and-standards/eu-taxonomy-sustainable-activities_en
171 Macqueen, D., Benni, N., Boscolo, M. y Zapata, J. 2018. Access to finance for forest and farm producer organisations (FFPOs). Roma, FAO y Londres, IIED. [Consultado el 13 de junio de 2024]. https://www.iied.org/13606iied
172 Boscolo, M., Dijk, K.V. y Savenije, H. 2010. Financing Sustainable Small-Scale Forestry: Lessons from Developing National Forest Financing Strategies in Latin America. Forests, 1(4): 230-249. https://doi.org/10.3390/f1040230
173 Starfinger, M., Tham, L.T. y Tegegne, Y.T. 2023. Tree collateral – A finance blind spot for small-scale forestry? A realist synthesis review. Forest Policy and Economics, 147: 102886. https://doi.org/10.1016/j.forpol.2022.102886
174 Naciones Unidas. 2019. United Nations Innovation Toolkit. [Consultado el 13 de noviembre de 2023]. https://un-innovation.tools/architecture/5c7d4c9971338741c09c6c68
175 Geels, F.W. 2004. From sectoral systems of innovation to socio-technical systems. Research Policy, 33(6-7): 897-920. https://doi.org/10.1016/j.respol.2004.01.015
176 Herrero, M., Thornton, P.K., Mason-D’Croz, D., Palmer, J., Benton, T.G., Bodirsky, B.L., Bogard, J.R. et al. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1(5): 266-272. https://doi.org/10.1038/s43016-020-0074-1
177 Unruh, G.C. 2000. Understanding carbon lock-in. Energy Policy, 28(12): 817-830. https://doi.org/10.1016/S0301-4215(00)00070-7
178 Naciones Unidas. 2019. Create Incentives and Opportunities. En: UN Innovation Toolkit. [Consultado el 13 de noviembre de 2023]. https://un-innovation.tools/culture/5c7d4c9971338741c09c6c6d
179 Naciones Unidas. 2019. Life cycle analysis. En: UN Innovation Toolkit. [Consultado el 13 de noviembre de 2023]. https://un-innovation.tools/evaluation/5c7d4c9971338741c09c6c73
180 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital Technologies in Agriculture and Rural Areas. Documento informativo. Roma, FAO. https://www.fao.org/3/ca4887en/ca4887en.pdf
181 Davis, D. 2021. Katerra’s $2 Billion Legacy. En: Architect. [Consultado el 7de noviembre de 2023]. https://www.architectmagazine.com/technology/katerras-2-billion-legacy_o
182 Hoeben, A.D., Stern, T. y Lloret, F. 2023. A Review of Potential Innovation Pathways to Enhance Resilience in Wood-Based Value Chains. Current Forestry Reports, 9(5): 301-318. https://doi.org/10.1007/s40725-023-00191-4
183 Furszyfer Del Rio, D.D., Lambe, F., Roe, J., Matin, N., Makuch, K.E. y Osborne, M. 2020. Do we need better behaved cooks? Reviewing behavioural change strategies for improving the sustainability and effectiveness of cookstove programs. Energy Research y Social Science, 70: 101788. https://doi.org/10.1016/j.erss.2020.101788
184 Khandelwal, M., Hill, M.E., Greenough, P., Anthony, J., Quill, M., Linderman, M. y Udaykumar, H.S. 2017. Why Have Improved Cook-Stove Initiatives in India Failed? World Development, 92: 13-27. https://doi.org/10.1016/j.worlddev.2016.11.006
185 Vigolo, V., Sallaku, R. y Testa, F. 2018. Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective. Sustainability, 10(11): 4322. https://doi.org/10.3390/su10114322
186 Höhl, M., Ahimbisibwe, V., Stanturf, J.A., Elsasser, P., Kleine, M. y Bolte, A. 2020. Forest Landscape Restoration—What Generates Failure and Success? Forests, 11(9): 938. https://doi.org/10.3390/f11090938
187 Schweizer, D., Van Kuijk, M. y Ghazoul, J. 2021. Perceptions from non-governmental actors on forest and landscape restoration, challenges and strategies for successful implementation across Asia, Africa and Latin America. Journal of Environmental Management, 286: 112251. https://doi.org/10.1016/j.jenvman.2021.112251
188 Delgado, T.S., McCall, M.K. y López-Binqüist, C. 2016. Recognized but not supported: Assessing the incorporation of non-timber forest products into Mexican forest policy. Forest Policy and Economics, 71: 36-42. https://doi.org/10.1016/j.forpol.2016.07.002
189 Samal, R. y Dash, M. 2023. Ecotourism, biodiversity conservation and livelihoods: Understanding the convergence and divergence. International Journal of Geoheritage and Parks, 11(1): 1-20. https://doi.org/10.1016/j.ijgeop.2022.11.001
190 McGowan, K. y Antadze, N. 2023. Recognizing the dark side of sustainability transitions. Journal of Environmental Studies and Sciences, 13(2): 344-349. https://doi.org/10.1007/s13412-023-00813-0
191 Mulgan, G. 2016. Good and bad innovation: what kind of theory and practice do we need to distinguish them?. En: Nesta. [Consultado el 20 de febrero de 2024]. https://www.nesta.org.uk/blog/good-and-bad-innovation-what-kind-of-theory-and-practice-do-we-need-to-distinguish-them/
192 Akenji, L. 2014. Consumer scapegoatism and limits to green consumerism. Journal of Cleaner Production, 63: 13-23. https://doi.org/10.1016/j.jclepro.2013.05.022
193 Von Schomberg, R. 2013. A Vision of Responsible Research and Innovation. R. Owen, J. Bessant y M. Heintz (coords.). Responsible Innovation. Primera edición, págs. 51-74. Wiley. https://doi.org/10.1002/9781118551424.ch3
194 Hansen, E., Conroy, K., Toppinen, A., Bull, L., Kutnar, A. y Panwar, R. 2016. Does gender diversity in forest sector companies matter? Canadian Journal of Forest Research, 46(11): 1255-1263. https://doi.org/10.1139/cjfr-2016-0040
195 Lawrence, D., Coe, M., Walker, W., Verchot, L. y Vandecar, K. 2022. The Unseen Effects of Deforestation: Biophysical Effects on Climate. Frontiers in Forests and Global Change, 5: 756115. https://doi.org/10.3389/ffgc.2022.756115
196 MapBiomas. 2023. Em 38 anos, o Brasil perdeu 15% de suas florestas naturais. En: MapBiomas. [Consultado el 17 de noviembre de 2023]. https://brasil.mapbiomas.org/2023/10/20/em-38-anos-o-brasil-perdeu-15-de-suas-florestas-naturais/
197 IBGE . 2023. Em 2022, Sorriso (MT) manteve a liderança na produção agrícola | Agência de Notícias. En: Agência de Notícias - IBGE. [Consultado el 17 de noviembre de 2023]. https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/37894-em-2022-sorriso-mt-manteve-a-lideranca-na-producao-agricola
198 Rattis, L., Brando, P.M., Macedo, M.N., Spera, S.A., Castanho, A.D.A., Marques, E.Q., Costa, N.Q., Silverio, D.V. y Coe, M.T. 2021. Climatic limit for agriculture in Brazil. Nature Climate Change, 11(12): 1098-1104. https://doi.org/10.1038/s41558-021-01214-3
199 Barichivich, J., Gloor, E., Peylin, P., Brienen, R.J.W., Schöngart, J., Espinoza, J.C. y Pattnayak, K.C. 2018. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9): eaat8785. https://doi.org/10.1126/sciadv.aat8785
200 Pinto, E., Braga, L., Stabile, M., Gomes, J., Gabriela Savian, Mastrangelo, J.P., Pereira, D. et al. 2011. Incentivos econômicos para a adequação ambiental dos imóveis rurais dos estados amazônicos - Sumário executivo. IPAM Amazônia. [Consultado el 17 de noviembre de 2023]. https://ipam.org.br/bibliotecas/__trashed/
201 Fellows, M., Castanho, A., Alencar, A., Andrade, A., Michael Coe, Macedo, M., Pinho, P. et al. 2023. PL 2903 e a tese do Marco Temporal: ameaças aos direitos indígenas e ao clima. En: IPAM Amazônia. [Consultado el 17 de noviembre de 2023]. https://ipam.org.br/bibliotecas/pl-2903-e-a-tese-do-marco-temporal-ameacas-aos-direitos-indigenas-e-ao-clima/
202 May, P.H., Bernasconi, P., Wunder, S. y Lubowski, R. 2015. Environmental reserve quotas in Brazil's new forest legislation - an ex ante appraisal. Bogor, Indonesia, CIFOR. http://www.jstor.org/stable/resrep02238.1
203 FAO. 2023. Monitoreo forestal nacional: AIM4Forests. En: FAO. [Consultado el 13 de noviembre de 2023]. https://www.fao.org/national-forest-monitoring/projects/aim4forests/es/
204 FAO y FILAC (Fondo para el Desarrollo de los Pueblos Indígenas de América Latina y el Caribe). 2021. Los pueblos indígenas y tribales y la gobernanza de los bosques. Una oportunidad para la acción climática en Latina América y el Caribe. Roma, FAO. https://doi.org/10.4060/cb2953es
205 Fa, J.E., Watson, J.E., Leiper, I., Potapov, P., Evans, T.D., Burgess, N.D., Molnár, Z. et al. 2020. Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes. Frontiers in Ecology and the Environment, 18(3): 135-140. https://doi.org/10.1002/fee.2148
206 Iniciativa de Derechos y Recursos. 2023. Who owns the world’s land? Global state of Indigenous, Afro-descendant, and local community land rights recognition from 2015-2020. Washington, D. C. https://doi.org/10.53892/MHZN6595
207 Garnett, S.T., Burgess, N.D., Fa, J.E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C.J., Watson, J.E.M. et al. 2018. A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability, 1(7): 369-374. https://doi.org/10.1038/s41893-018-0100-6
208 IPBES. 2018. The IPBES assessment report on land degradation and restoration. Bonn, Alemania. https://doi.org/10.5281/ZENODO.3237393
209 IPCC (coord.). 2023. Climate Change 2022 - Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Primera edición. Cambridge University Press. https://doi.org/10.1017/9781009157926
210 Udawatta, P.R., Rankoth, L. y Jose, S. 2019. Agroforestry and Biodiversity. Sustainability, 11(10): 2879. https://doi.org/10.3390/su11102879
211 Crumpler, K., Abi Khalil, R., Tanganelli, E., Rai, N., Roffredi, L., Meybeck, A., Umulisa, V., Wolf, J. y Bernoux, M. 2021. 2021 (Interim) Global update report: Agriculture, Forestry and Fisheries in the Nationally Determined Contributions. Medio ambiente y gestión de recursos de trabajo, documento de trabajo n.° 91. Roma, FAO. https://doi.org/10.4060/cb7442en
212 Rosenstock, T.S., Wilkes, A., Jallo, C., Namoi, N., Bulusu, M., Suber, M., Mboi, D. et al. 2019. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agriculture, Ecosystems y Environment, 284: 106569. https://doi.org/10.1016/j.agee.2019.106569
213 IPCC. 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (coords.)]. Cambridge University Press, Cambridge (Reino Unido) y Nueva York (Estados Unidos de América). https://doi.org/10.1017/9781009325844
214 Ahmad, F., Uddin, M.M., Goparaju, L., Talukdar, N.R. y Rizvi, J. 2021. Agroforestry environment, potentiality and risk in India: a remote sensing and GIS understanding. Environment, Development and Sustainability, 23(10): 15183-15203. https://doi.org/10.1007/s10668-021-01292-5
215 Dev, I., Ram, A., Kumar, N., Singh, R., Kumar, D., Uthappa, A.R., Handa, A.K. y Chaturvedi, O.P. 2019. Agroforestry for Climate Resilience and Rural Livelihood. Scientific Publishers. [Consultado el 13 de junio de 2024]. https://www.scientificpubonline.com/bookdetail/agroforestry-climate-resilience-rural-livelihood/9789387307063/26
216 FAO. 2023. Acción Contra la Desertificación. Roma. https://www.fao.org/in-action/action-against-desertification/es/
217 FAO. 2023. Policy Support and Governance: Food Insecurity Experience Scale (FIES). En: FAO. [Consultado el 4 de diciembre de 2023]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1236494/
218 Sacande, M., Parfondry, M., Cicatiello, C., Scarascia-Mugnozza, G., Garba, A., Olorunfemi, P.S., Diagne, M. y Martucci, A. 2021. Socio-economic impacts derived from large scale restoration in three Great Green Wall countries. Journal of Rural Studies, 87: 160-168. https://doi.org/10.1016/j.jrurstud.2021.09.021
219 Sacande, M., Parfondry, M. y Cicatello, C. 2019. Restoration in Action Against Desertification. Roma, FAO. https://doi.org/10.4060/ca6932en
220 Speaker, T., O’Donnell, S., Wittemyer, G., Bruyere, B., Loucks, C., Dancer, A., Carter, M. et al. 2022. A global community-sourced assessment of the state of conservation technology. Conservation Biology, 36(3): e13871. https://doi.org/10.1111/cobi.13871
221 Allan, B.M., Nimmo, D.G., Ierodiaconou, D., VanDerWal, J., Koh, L.P. y Ritchie, E.G. 2018. Futurecasting ecological research: the rise of technoecology. Ecosphere, 9(5): e02163. https://doi.org/10.1002/ecs2.2163
222 Berger-Tal, O. y Lahoz-Monfort, J.J. 2018. Conservation technology: The next generation. Conservation Letters, 11(6): e12458. https://doi.org/10.1111/conl.12458
223 Pimm, S.L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R. y Loarie, S. 2015. Emerging Technologies to Conserve Biodiversity. Trends in Ecology y Evolution, 30(11): 685-696. https://doi.org/10.1016/j.tree.2015.08.008
224 Snaddon, J., Petrokofsky, G., Jepson, P. y Willis, K.J. 2013. Biodiversity technologies: tools as change agents. Biology Letters, 9(1): 20121029. https://doi.org/10.1098/rsbl.2012.1029
225 MADER (Ministerio de Agricultura y Desarrollo Rural de Mozambique). 2021. Inquérito Agrário Integrado 2020. Marco Estatístico. Mozambique. https://www.agricultura.gov.mz/wp-content/uploads/2021/06/MADER_Inquerito_Agrario_2020.pdf
226 Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H. y Clement, J. et al. Informe del PIR (Panel Internacional de Recursos del PNUMA). 2019. Global resources outlook 2019 – Natural Resources for the Future We Want. Nairobi, PNUMA. https://www.resourcepanel.org/reports/global-resources-outlook-2019
227 PNUMA. 2022. 2022 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. Nairobi, PNUMA. [Consultado el 13 de junio de 2024]. https://www.UNEP.org/resources/publication/2022-global-status-report-buildings-and-construction
228 ONU-Hábitat. Sin fecha. Housing. En: ONU-Hábitat. [Consultado el 9 de abril de 2024]. https://unhabitat.org/topic/housing
229 PNUMA y Yale. 2023. Building Materials and the Climate: Constructing a New Future. Nairobi, PNUMA. https://wedocs.UNEP.org/20.500.11822/43293
230 Boudreau, C. 2023. See how Sweden is planning to create a “wooden city” with thousands of homes and offices. En: Business Insider, 16 de julio del 2023. [Consultado el 17 de noviembre de 2023]. https://www.businessinsider.com/stockholm-sweden-wood-city-sustainable-development-photos-2023-7
231 FAO. 2023. Mecanismo para Bosques y Fincas. En: FAO. [Consultado el 14 de noviembre de 2023]. https://www.fao.org/forest-farm-facility/es/
232 Coad, L., Fa, J.E., Abernathy, K., Van Vliet, N., Santamaria, C., Wilkie, D., El Bizri, H.R., Ingram, D.J., Cawthorn, D.M. y Nasi. R. 2019. Toward a sustainable, participatory and inclusive wild meat sector. Bogor (Indonesia), Centro de Investigación Forestal Internacional (CIFOR). https://doi.org/10.17528/cifor/007046
233 FAO. 2021. Technical Brief – what do we mean by community-based sustainable wildlife management? Roma. https://www.fao.org/3/cb6486en/cb6486en.pdf
234 SWM (Programa de gestión sostenible de la fauna silvestre). 2023. Legal hub. En: SWM Programme. [Consultado el 17 de noviembre de 2023]. https://www.swm-programme.info/legalhub
235 FAO. 2023. Servicio de Derecho para el Desarrollo. En: FAO. [Consultado el 14 de noviembre de 2023]. https://www.fao.org/legal-services/about/es/
236 FAO. 2023. Grupo de expertos de alto nivel sobre “Una sola salud”. En: FAO. [Consultado el 14 de noviembre de 2023]. https://www.fao.org/one-health/background/ohhlep/es
237 CPW (Asociación de colaboración sobre manejo sostenible de la fauna silvestre). 2023. Collaborative Partnership on Sustainable Wildlife Management: Policy Support and Governance. En: FAO. [Consultado el 14 de noviembre de 2023]. https://www.fao.org/policy-support/mechanisms/mechanisms-details/en/c/447467/
238 Franzini, F., Toivonen, R. y Toppinen, A. 2018. Why Not Wood? Benefits and Barriers of Wood as a Multistory Construction Material: Perceptions of Municipal Civil Servants from Finland. Buildings, 8(11): 159. https://doi.org/10.3390/buildings8110159
239 SHL (Schmidt Hammer Lassen.). 2023. Boston Commonwealth Pier. En: SHL. [Consultado el 14 de noviembre de 2023]. https://www.shl.dk/work/boston-commonwealth-pier
240 Bilham, R. 2009. The seismic future of cities. Bulletin of Earthquake Engineering, 7(4): 839-887. https://doi.org/10.1007/s10518-009-9147-0
241 He, C., Huang, Q., Bai, X., Robinson, D.T., Shi, P., Dou, Y., Zhao, B. et al. 2021. A Global Analysis of the Relationship Between Urbanization and Fatalities in Earthquake-Prone Areas. International Journal of Disaster Risk Science, 12(6): 805-820. https://doi.org/10.1007/s13753-021-00385-z
242 Spherical Insights. 2023. Global Cross Laminated Timber (CLT) Market Size To Grow USD 5.03 Billion By 2030. En: Spherical Insights. [Consultado el 17 de noviembre de 2023]. https://www.sphericalinsights.com/press-release/cross-laminated-timber-clt-market
243 Ove Arup & Partners Limited. 2023. Buildings y Infrastructure Priority Actions for Sustainability Embodied Carbon Steel Reference: 07762000-RP-SUS-0001. 02. Londres. https://www.istructe.org/IStructE/media/Public/Resources/ARUP-Embodied-carbon-steel_1.pdf
244 Souza, E. 2021. Is Mass Timber a Good Choice for Seismic Zones? En: ArchDaily, 4 de abril de 2023. [Consultado el 13 de junio de 2024]. https://www.archdaily.com/967285/is-mass-timber-a-good-choice-for-seismic-zones#
245 Lehmann, S. y Kremer, P. 2023. Filling the Knowledge Gaps in Mass Timber Construction. Mass Timber Construction Journal, 6(1). [Consultado el 13 de junio de 2024]. https://www.journalmtc.com/index.php/mtcj/article/view/34
246 Bates, J. 2023. Earthquake tests could help wooden structures reach new heights. En: U.S. National Science Foundation. [Consultado el 17 de noviembre de 2023]. https://new.nsf.gov/science-matters/earthquake-tests-could-help-wooden-structures
247 Sustersic, I. y Dujic, B. 2014. Seismic shaking table testing of a reinforced concrete frame with masonry infill strengthened with cross laminated timber panels. World Conference on Timber Engineering, Quebec (Canadá), agosto de 2014. [Consultado el 13 de junio de 2024]. http://schd.ws/hosted_files/wcte2014/d5/ABS642_Sustersic_web.pdf
248 Anderson, J.A. 2022. A Timber Skyscraper on a concrete midrise. Woodrise, Portorož (Eslovenia), septiembre de 2022.
249 Wright, J. 2022. The biggest vertical extension in North America. Woodrise, Portorož (Eslovenia), septiembre de 2022.
250 FAO. 2023. El estado mundial de la agricultura y la alimentación 2023: Revelar el verdadero costo de los alimentos para transformar los sistemas agroalimentarios. Roma, FAO. https://doi.org/10.4060/cc7724es
251 Lowder, S.K., Sánchez, M.V. y Bertini, R. 2021. Which farms feed the world and has farmland become more concentrated? World Development, 142: 105455. https://doi.org/10.1016/j.worlddev.2021.105455
252 FAO. 2019. Farmers taking the lead – Thirty years of farmer field schools [video]. En: FAO. [Consultado el 13 de junio de 2024]. https://www.fao.org/family-farming/detail/en/c/1236143/
253 FAO. 2022. What have we learned from trees? Three decades of farmer field schools on agroforestry and forestry. Roma. https://doi.org/10.4060/cc2258en
254 Van Den Berg, H., Phillips, S., Dicke, M. y Fredrix, M. 2020. Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review. Food Security, 12(6): 1443-1459. https://doi.org/10.1007/s12571-020-01046-7
255 FAO. 2023. Enabling “Response-ability”: A stocktaking of farmer field schools on smallholder forestry and agroforestry. Roma. https://doi.org/10.4060/cc8043en
256 FAO. 2023. Enabling farmer-led ecosystem restoration: Farmer field schools on forestry and agroforestry. Roma. https://doi.org/10.4060/cc6315en
257 CARE International (Cooperativa de Asistencia y Auxilio a Cualquier Parte del Mundo). 2023. Farmer Field and Business Schools (FFBS). En: CARE International. [Consultado el 18 de diciembre de 2023]. https://www.care.org/our-work/food-and-nutrition/agriculture/farmer-field-business-school/
258 Colfer, C.J.P., Sijapati Basnett, B. y Elias, M. 2016. Gender and Forests: Climate Change, Tenure, Value Chains and Emerging Issues. CIFOR-ICRAF. https://www.cifor.org/knowledge/publication/6077/
259 Cooper, K.L. 2020. Lead the Change - The Competitive Advantage of Gender Diversity and Inclusion: The Competitive Advantage of Gender Diversity & Inclusion. Centre for Social Intelligence. [Consultado el 13 de junio de 2024]. https://books.google.it/books?id=-BOczQEACAAJ
260 Pascual, U., Balvanera, P., Anderson, C.B., Chaplin-Kramer, R., Christie, M., González-Jiménez, D., Martin, A. et al. 2023. Diverse values of nature for sustainability. Nature, 620(7975): 813-823. https://doi.org/10.1038/s41586-023-06406-9
261 Irving, K. 2022. Younger scientists are more innovative, study finds. En: The Scientist: exploring life, inspiring innovation. [Consultado el 20 de febrero de 2024]. https://www.the-scientist.com/news-opinion/younger-scientists-are-more-innovative-study-finds-70700
262 Dietershagen, J. y Bammann, H. 2023. Opportunities for youth in the bioeconomy. Estudio técnico de la FAO sobre Economía del Desarrollo Agrícola. Roma, FAO. https://doi.org/10.4060/cc8238en
263 FAO. 2021. Llamamiento a la acción sobre la educación forestal. Roma. https://www.fao.org/3/cb5258es/cb5258es.pdf
264 Dean, D.J. 2023. Soft Skills as a Conscious Choice to Greater Collaboration at Work. En: J. Marques, ed. The Palgrave Handbook of Fulfillment, Wellness, and Personal Growth at Work. págs. 19-32. Cham (Alemania), Springer International Publishing. https://doi.org/10.1007/978-3-031-35494-6_2
265 Fazey, I., Evely, A.C., Reed, M.S., Stringer, L.C., Kruijsen, J., White, P.C.L., Newsham, A. et al. 2013. Knowledge exchange: a review and research agenda for environmental management. Environmental Conservation, 40(1): 19-36. https://doi.org/10.1017/S037689291200029X
266 DAES (Departamento de Asuntos Económicos y Sociales de las Naciones Unidas). 2021. Transformational partnerships and partnership platforms. Policy Brief 103. Roma, DAES. https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-103-transformational-partnerships-and-partnership-platforms/
267 Näyhä, A. 2019. Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. Journal of Cleaner Production, 209: 1294-1306. https://doi.org/10.1016/j.jclepro.2018.10.260
268 FAO. 2022. Presentación de perspectivas de las tecnologías y la innovación en los sistemas agroalimentarios 2022 (ATIO). Roma. https://doi.org/10.4060/cc2506es
269 Rao, G.N., Williams, J.R., Walsh, M. y Moore, J. 2017. America’s Seed Fund: How the SBIR/STTR Programs Help Enable Catalytic Growth and Technological Advances. Technology & Innovation, 18(4): 315-318. https://doi.org/10.21300/18.4.2017.315
270 Cirera, X. y Maloney, W.F. 2017. The Innovation Paradox: Developing-Country Capabilities and the Unrealized Promise of Technological Catch-Up. Washington, D. C.: Banco Mundial. https://doi.org/10.1596/978-1-4648-1160-9
271 Mead, D. 2004. Agroforestry. En: Forests and forest plants. Vol. 1. Encyclopedia of Life Science Systems. Oxford (Reino Unido), EOLSS Publishers.
272 American Wood Council. 2021. What is cross laminated timber (CLT)? En: American Wood Council. [Consultado el 22 de febrero de 2024]. https://awc.org/faq/what-is-cross-laminated-timber-clt/
273 Stanturf, J., Mansourian, S. y Kleine, M. (coords.). 2017. Implementing forest landscape restoration – A practitioner’s guide. Viena, Unión Internacional de Organizaciones de Investigación Forestal. https://www.srs.fs.usda.gov/pubs/books/2017/book_2017_stanturf_001.pdf
274 Millenium Ecosystem Assessment (Program) (coord.). 2005. Ecosystems and Human Well-being: Synthesis. Washington, D. C., Island Press.
275 Martínez Pastur, G., Perera, A.H., Peterson, U. e Iverson, L.R. 2018. Ecosystem Services from Forest Landscapes: An Overview. En: A.H. Perera, U. Peterson, G.M. Pastur y L.R. Iverson, coords. Ecosystem Services from Forest Landscapes. págs. 1-10. Cham (Alemania), Springer International Publishing. https://doi.org/10.1007/978-3-319-74515-2_1
276 FAO. 2014. El estado mundial de la agricultura y la alimentación 2014: La innovación en la agricultura familiar. Roma. https://openknowledge.fao.org/handle/20.500.14283/i4040s
277 FAO. 1999. Towards a harmonized definition of non-wood forest products. Unasylva, 50(198): 63-64.
278 FAO. 2012. Agricultores pequeños y familiares. Roma. https://www.fao.org/3/ar588e/ar588s.pdf
279 UNESCO (Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura). 2017. Guidelines on sustainability science in research and education. París. https://unesdoc.unesco.org/ark:/48223/pf0000260600e