1 GIEC (Groupe intergouvernemental d’experts sur l’évolution du climat). 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Sous la direction principale de Lee, H. et Romero, J. Genève (Suisse), GIEC. https://doi.org/10.59327/IPCC/AR6-9789291691647
2 IPBES (Plateforme intergouvernementale scientifique et politique sur la biodiversité et les services écosystémiques). 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Bonn (Allemagne). https://doi.org/10.5281/ZENODO.3553579
3 Seymour, F., Wolosin, M. et Gray, E. 2022. Not Just Carbon: Capturing All the Benefits of Forests for Stabilizing the Climate from Local to Global Scales. Washington, WRI (Institut des ressources mondiales). 10.46830/wrirpt.19.00004
4 Vié, J. C., Hilton-Taylor, C. et Stuart, S. N (sous la direction de). 2009. Wildlife in a Changing World: An analysis of the 2008 IUCN Red List of Threatened Species. Gland (Suisse), UICN (Union internationale pour la conservation de la nature).
https://portals.iucn.org/library/efiles/documents/RL-2009-001.pdf
5 FAO. 2022. La Situation des forêts du monde 2022. Des solutions forestières pour une relance verte et des économies inclusives, résilientes et durables. Rome. https://doi.org/10.4060/cb9360fr
6 Libert-Amico, A., Duchelle, A.E., Cobb, A., Peccoud, V. et Djoudi, H. 2022. Forest-based adaptation: transformational adaptation through forests and trees. Rome, FAO. https://doi.org/10.4060/cc2886en
7 FAO. 2019. The State of the World’s Biodiversity for Food and Agriculture. Bélanger, J. et Pilling, D. (sous la direction de). Rome, Commission des ressources génétiques pour l’alimentation et l’agriculture. http://www.fao.org/3/CA3129EN/CA3129EN.pdf
8 Ickowitz, A., McMullin, S., Rosenstock, T., Dawson, I., Rowland, D., Powell, B., Mausch, K. et al. 2022. Transforming food systems with trees and forests. The Lancet Planetary Health, 6(7): e632-e639. https://doi.org/10.1016/S2542-5196(22)00091-2
9 FAO. 2022. Stratégie de la FAO en matière de science et d’innovation. Rome. https://openknowledge.fao.org/server/api/core/bitstreams/f586ea9e-3405-44fc-ba1b-1f7b80235508/content
10 FAO. 2021. Cadre stratégique 2022-2031. Rome. https://www.fao.org/3/cb7099fr/cb7099fr.pdf
11 FAO. 2023. Rapport de la vingt-sixième session du Comité des forêts. Rome. https://www.fao.org/3/nk728fr/nk728fr.pdf
12 FAO. 2024. Stratégie de la FAO relative au changement climatique 2022–2031. Rome. https://openknowledge.fao.org/handle/20.500.14283/cc2274fr
13 FAO. 2020. Stratégie de la FAO relative à l’intégration de la biodiversité dans tous les secteurs de l’agriculture. Rome. https://doi.org/10.4060/ca7722fr
14 Lippe, R. S., Schweinle, J., Cui, S., Gurbuzer, Y., Katajamäki, W., Villarereal-Fuentes, M. et Walter, S. 2022. Contribution of the forest sector to total employment in national economies – Estimating the number of people employed in the forest sector. Rome et Genève (Suisse), FAO et OIT (Organisation internationale du Travail). https://doi.org/10.4060/cc2438en
15 FAO. 2023. Termes et définitions – FRA 2025. Évaluation des ressources forestières, document de travail n° 194. Rome. https://www.fao.org/3/cc4691fr/cc4691fr.pdf
16 FAO. 2022. FRA 2020 Remote Sensing Survey. FAO Forêts document n° 186. Rome. https://doi.org/10.4060/cb9970en
17 FAO. 2023. Forêts Production et Commerce. Dans: FAOSTAT [Consulté le 1er décembre 2023]. https://www.fao.org/faostat/fr/#data/FO. Licence: CC-BY-4.0.
18 FAO. 2020. Évaluation des ressources forestières mondiales 2020: Rapport principal. Rome. https://doi.org/10.4060/ca9825fr
19 Ministère de l’environnement et des forêts (République d’Indonésie). 2022. The State of Indonesia’s Forests 2022: Towards FOLU Net Sink 2030. Jakarta. [Consulté le 12 juin 2024]. https://phl.menlhk.go.id/static/file/publikasi/1664941652-Digital_SoIFO%202022_09.25.22.pdf
20 Ministère de l’environnement et des forêts (République d’Indonésie). 2023. Deforestasi Indonesia Tahun 2021-2022. Jakarta. https://sigap.menlhk.go.id/sigap-admin/files/download/buku-pemantauan-deforestasi-indonesia-tahun-2021-2022_v4-compressed.pdf
21 IBGE (Institut brésilien de géographie et de statistique). Non daté. IBGE: Legal Amazon. [Consulté le 20 février 2024]. https://www.ibge.gov.br/en/geosciences/full-list-geosciences/17927-legal-amazon.html
22 Ministère de la science, de la technologie et de l’innovation (Brésil). Non daté. Dans: TerraBrasilis. [Consulté le 20 février 2024]. https://terrabrasilis.dpi.inpe.br/app/map/deforestation?hl=en
23 Centre commun de recherche de la Commission européenne. 2023. EU Observatory on deforestation and forest degradation. Dans: Commission européenne. Belgique. [Consulté le 12 juin 2024]. https://forest-observatory.ec.europa.eu
24 FAO. 2023. The world’s mangroves 2000-2020. Rome. https://doi.org/10.4060/cc7044en
25 FAO. 2023. Évaluation des ressources forestières mondiales 2020. Dans: FAO. [Consulté le 2 mars 2024]. https://fra-data.fao.org/WO/fra2020/home/
26 Giglio, L., Randerson, J. T., Van Der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C. et DeFries, R. S. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 7(3): 1171-1186. https://doi.org/10.5194/bg-7-1171-2010
27 Van Lierop, P., Lindquist, E., Sathyapala, S. et Franceschini, G. 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecology and Management, 352: 78-88. https://doi.org/10.1016/j.foreco.2015.06.010
28 Global Wildfire Information System. 2023. GWIS Statistical Portal [Consulté le 20 février 2024]. https://gwis.jrc.ec.europa.eu/apps/gwis.statistics/
29 Chuvieco, E., Roteta, E., Sali, M., Stroppiana, D., Boettcher, M., Kirches, G., Storm, T. et al. 2022. Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Science of The Total Environment, 845: 157139. https://doi.org/10.1016/j.scitotenv.2022.157139
30 Union internationale des instituts de recherche forestière. 2018. Global Fire Challenges in a Warming World. F-N. Robinne, J. Burns, P. Kant, M.D. Flannigan, M. Kleine, B. de Groot et D.M. Wotton (sous la direction de). Occasional Paper No. 32. Vienne.
31 Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J.G., Chen, Y., Van Der Velde, I. R. et al. 2023. Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635): 912-917. https://doi.org/10.1126/science.ade0805
32 Copernicus. 2023. Record-breaking wildfires throughout the 2023 boreal wildfire season. Dans: Copernicus. [Consulté le 18 décembre 2023]. https://atmosphere.copernicus.eu/copernicus-record-breaking-wildfires-throughout-2023-boreal-wildfire-season
33 CWFIS (Canadian Wildland Fire Information System). 2023. CWFIS Datamart. [Consulté le 4 juillet 2024]. https://cwfis.cfs.nrcan.gc.ca/datamart
34 PNUE (Programme des Nations Unies pour l’environnement). 2022. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. Nairobi. [Consulté le 12 juin 2024]. https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires
35 Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landshützer, P. et al. 2023. Global Carbon Budget 2023. Earth System Science Data, 15(12): 5301-5369. https://doi.org/10.18160/GCP-2023
36 Secrétariat de la CIPV (Convention internationale pour la protection des végétaux). 2021. Examen scientifique des effets des changements climatiques sur les organismes nuisibles aux végétaux. FAO pour le compte du Secrétariat de la CIPV. https://doi.org/10.4060/cb4769fr
37 Liebhold, A. M., Brockerhoff, E. G. et Nuñez, M. A. 2017. Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration. Biological Invasions, 19(11): 3073-3077. https://doi.org/10.1007/s10530-017-1547-5
38 Gomez, D. F., Sathyapala, S. et Hulcr, J. 2020. Towards Sustainable Forest Management in Central America: Review of Southern Pine Beetle (Dendroctonus frontalis Zimmermann) Outbreaks, Their Causes, and Solutions. Forests, 11(2): 173. https://doi.org/10.3390/f11020173
39 FAO. 2023. L’Impact des catastrophes sur l’agriculture et la sécurité alimentaire 2023 – Prévenir et réduire les pertes en investissant dans la résilience. Rome. https://doi.org/10.4060/cc7900fr
40 Potter, K., Escanferla, M., Jetton, R. et Man, G. 2019. Important Insect and Disease Threats to United States Tree Species and Geographic Patterns of Their Potential Impacts. Forests, 10(4): 304. https://doi.org/10.3390/f10040304
41 Gitz, V., Linhares-Juvenal, T. et Meybeck, A. 2023. Optimizing the role of planted forests in the bioeconomy. Unasylva 74, 74(254): 11-16. https://doi.org/10.4060/cc8584en
42 EUWID Pulp and Paper. 2022. Russia issues export ban for logs and wood residues. Dans: EUWID Pulp and Paper, 23 mars 2022. [Consulté le 11 avril 2024]. https://www.euwid-paper.com/news/markets/russia-issues-export-ban-for-logs-and-wood-residues-230322/
43 AIE (Agence internationale de l’énergie). 2023. A Vision for Clean Cooking Access for All. Paris. [Consulté le 12 juin 2024]. https://iea.blob.core.windows.net/assets/75f59c60-c383-48ea-a3be-943a964232a0/AVisionforCleanCookingAccessforAll.pdf
44 Shackleton, C. M. et De Vos, A. 2022. How many people globally actually use non-timber forest products? Forest Policy and Economics, 135: 102659. https://doi.org/10.1016/j.forpol.2021.102659
45 IPBES (Plateforme intergouvernementale scientifique et politique sur la biodiversité et les services écosystémiques). 2022. Thematic assessment of the sustainable use of wild species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. J.M. Fromentin, M.R. Emery, J. Donaldson, M.C. Danner, A. Hallosserie A. et D. Kieling (sous la direction de). Bonn (Allemagne), Secrétariat de l’IPBES. https://doi.org/10.5281/ZENODO.8199039
46 FAO. 2023. La situation des femmes dans les systèmes agroalimentaires – Résumé. Rome. https://doi.org/10.4060/cc5060fr
47 Tribal Co-Operative Marketing Development Federation of India Limited. 2023. Important Minor Forest Produces (MFPs). Dans: TRIFED – Tribal. [Consulté le 27 novembre 2023]. https://trifed.tribal.gov.in/non/timber/msp-mfp
48 Lovrić, M., Da Re, R., Vidale, E., Prokofieva, I., Wong, J., Pettenella, D., Verkerk, P. J. et Mavsar, R. 2020. Non-wood forest products in Europe – A quantitative overview. Forest Policy and Economics, 116: 102175. https://doi.org/10.1016/j.forpol.2020.102175
49 Hall, C., Macdiarmid, J. I., Matthews, R. B., Smith, P., Hubbard, S. F. et Dawson, T. P. 2019. The relationship between forest cover and diet quality: a case study of rural southern Malawi. Food Security, 11(3): 635-650. https://doi.org/10.1007/s12571-019-00923-0
50 El Bizri, H. R., Morcatty, T. Q., Valsecchi, J., Mayor, P., Ribeiro, J. E. S., Vasconcelos Neto, C. F. A., Oliveira, J. S. et al. 2020. Urban wild meat consumption and trade in central Amazonia. Conservation Biology, 34(2): 438-448. https://doi.org/10.1111/cobi.13420
51 Mayor, P., El Bizri, H. R., Morcatty, T. Q., Moya, K., Bendayán, N., Solis, S., Vasconcelos Neto, C. F. A. et al. 2022. Wild meat trade over the last 45 years in the Peruvian Amazon. Conservation Biology, 36(2): e13801. https://doi.org/10.1111/cobi.13801
52 FAO. 2024. Review of the state of world fishery resources: inland fisheries. Circulaire sur les pêches et l’aquaculture. Rome. https://openknowledge.fao.org/server/api/core/bitstreams/1efc1225-d7da-41fc-b710-47244fe22678/content
53 Rubegeta, E., Makolo, F., Kamatou, G., Enslin, G., Chaudhary, S., Sandasi, M., Cunningham, A. B. et Viljoen, A. 2023. The African cherry: A review of the botany, traditional uses, phytochemistry, and biological activities of Prunus africana (Hook.f.) Kalkman. Journal of Ethnopharmacology, 305: 116004. https://doi.org/10.1016/j.jep.2022.116004
54 Nakicenovic, N., Lempert, R. J. et Janetos, A. C. 2014. A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay: A Forthcoming Special Issue of Climatic Change. Climatic Change, 122(3): 351-361. https://doi.org/10.1007/s10584-013-0982-2
55 Johnston, C. M. T., Guo, J. et Prestemon, J. P. 2023. RPA forest products market data for U.S. RPA Regions and the world, historical (1990-2015), and projected (2020-2070) using the Forest Resource Outlook Model (FOROM). Deuxième édition. Dans: Forest Services Research Data Archive. https://doi.org/10.2737/RDS-2022-0073-2
56 FAO. 2022. Global forest sector outlook 2050: Assessing future demand and sources of timber for a sustainable economy. Rome. https://doi.org/10.4060/cc2265en
57 FAO. 2023. Towards more resilient and diverse planted forests. Unasylva, 254 (74). Rome. https://doi.org/10.4060/cc8584en
58 Hetemäki, L. et Seppälä, J. 2022. Planetary Boundaries and the Role of the Forest-Based Sector. Dans: L. Hetemäki, J. Kangas et H. Peltola (sous la direction de). Forest Bioeconomy and Climate Change. p. 19-31. Vol. 42. Managing Forest Ecosystems. Cham (Suisse), Springer International Publishing. https://doi.org/10.1007/978-3-030-99206-4_2
59 Hetemäki, L., Palahí, M., Adams, J. et White, L. 2021. How to preserve Africa’s forests and build a green economy, 25 juin 2021. Dans: World Economic Forum. Cologny (Suisse), Forum économique mondial. [Consulté le 12 juin 2024]. https://www.weforum.org/agenda/2021/06/preserve-africa-forests-green-economy/
60 Hetemäki, L., Tegegne, Y. T. et Ochieng, R. M. 2023. Outlook for Sustainable Forest Bioeconomy in Gabon, Kenya, Nigeria, South Africa and Tanzania. Circular Bioeconomy Alliance. https://circularbioeconomyalliance.org/wp-content/uploads/2023/12/CBA_Outlook_Sustainable_Forest_Bioeconomy_2023.pdf
61 FAO, OIBT (Organisation internationale des bois tropicaux) et ONU (Organisation des Nations Unies). 2020. Forest product conversion factors. Rome, FAO, Yokohama (Japon), OIBT et New York (États-Unis), ONU. https://doi.org/10.4060/ca7952en
62 Messier, C., Baker, C., Carreiras, J. M. B, Pearson, T. R. H. et Vasconcelos, M. J. 2022. Warning: Natural and Managed Forests are Losing their Capacity to Mitigate Climate Change. The Forestry Chronicle, 98(1): 2-8. https://doi.org/10.5558/tfc2022-007
63 Reich, P. B., Bermudez, R., Montgomery, R. A., Rich, R. L., Rice, K. E., Hobbie, S. E. et Stefanski, A. 2022. Even modest climate change may lead to major transitions in boreal forests. Nature, 608(7923): 540-545. https://doi.org/10.1038/s41586-022-05076-3
64 Massey, R., Rogers, B. M., Berner, L. T., Cooperdock, S., Mack, M. C., Walker, X. J. et Goetz, S. J. 2023. Forest composition change and biophysical climate feedbacks across boreal North America. Nature Climate Change. https://doi.org/10.1038/s41558-023-01851-w
65 FAO et CEE (Commission économique des Nations Unies pour l’Europe). 2021. Forest Sector Outlook Study 2020-2040. Genève (Suisse), CEE. https://unece.org/sites/default/files/2022-05/unece-fao-sp-51-main-report-forest-sector-outlook_0.pdf
66 Nepal, P., Korhonen, J., Prestemon, J. P. et Cubbage, F. W. 2019. Projecting global planted forest area developments and the associated impacts on global forest product markets. Journal of Environmental Management, 240: 421-430. https://doi.org/10.1016/j.jenvman.2019.03.126
67 ONU. 2019. Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development. New York (États-Unis). [Consulté le 13 juin 2024]. https://sdgs.un.org/publications/future-now-science-achieving-sustainable-development-gsdr-2019-24576
68 Granstrand, O. et Holgersson, M. 2020. Innovation ecosystems: A conceptual review and a new definition. Technovation, 90-91: 102098. https://doi.org/10.1016/j.technovation.2019.102098
69 Paasi, J., Wiman, H., Apilo, T. et Valkokari, K. 2023. Modeling the dynamics of innovation ecosystems. International Journal of Innovation Studies, 7(2): 142-158. https://doi.org/10.1016/j.ijis.2022.12.002
70 Hall, A., Dijkman, J., Taylor, B., Williams, L. et Kelly, J. 2017. Synopsis: Towards a Framework for Unlocking Transformative Agricultural Innovation. Agri-food Innovation and Impact Discussion Paper Series. Canberra, CSIRO (Organisation de la recherche scientifique et industrielle du Commonwealth). Dans: KISM Food Security Portal. [Consulté le 12 juin 2024]. https://www.kismfoodmarkets.org/node/2281
71 Đuric, I. 2020. Digital technology and agricultural markets – Background paper for The State of Agricultural Commodity Markets (SOCO) 2020. Rome, FAO. https://doi.org/10.4060/cb0701en
72 Kindt, R. 2023. TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Global Change Biology, 29(22): 6303-6318. https://doi.org/10.1111/gcb.16914
73 Bey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F. et al. 2016. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sensing, 8(10): 807. https://doi.org/10.3390/rs8100807
74 FAO. 2022. SEPAL – Surveillance des forêts et des terres pour l’action climatique. Rome. https://openknowledge.fao.org/handle/20.500.14283/cc1803fr
75 Tzamtzis, I., Federici, S. et Hanle, L. 2019. A Methodological Approach for a Consistent and Accurate Land Representation Using the FAO Open Foris Collect Earth Tool for GHG Inventories. Carbon Management, 10(4): 437-450. https://doi.org/10.1080/17583004.2019.1634934
76 Open Foris. 2023. Open Foris. [Consulté le 13 novembre 2023]. https://openforis.org/
77 Open Foris. 2023. SEPAL. [Consulté le 27 novembre 2023]. https://sepal.io/
78 FAO. 2023. Improving reporting on forest degradation emissions, 4 mai 2023. Dans: FAO Forestry Newsroom. [Consulté le 22 septembre 2023]. https://www.fao.org/forestry/newsroom/news-detail/improving-reporting-on-forest-degradation-emissions/en
79 Olofsson, P., Foody, G. M., Stehman, S. V. et Woodcock, C. E. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129: 122-131. https://doi.org/10.1016/j.rse.2012.10.031
80 Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E. et Wulder, M. A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148: 42-57. https://doi.org/10.1016/j.rse.2014.02.015
81 Stehman, S. V. 2014. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. International Journal of Remote Sensing, 35(13): 4923-4939. https://doi.org/10.1080/01431161.2014.930207
82 GFOI (Initiative mondiale pour l’observation des forêts). 2020. Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests. Rome.
83 Achard, F. et House, J. I. 2015. Reporting carbon losses from tropical deforestation with Pan-tropical biomass maps. Environmental Research Letters, 10(10): 101002. https://doi.org/10.1088/1748-9326/10/10/101002
84 Tyukavina, A., Baccini, A., Hansen, M. C., Potapov, P. V., Stehman, S. V., Houghton, R. A., Krylov, A. M., Turubanova, S. et Goetz, S. J. 2015. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environmental Research Letters, 10(7): 074002. https://doi.org/10.1088/1748-9326/10/7/074002
85 Sandker, M., Carrillo, O., Leng, C., Lee, D., d’Annunzio, R. et Fox, J. 2021. The Importance of High-Quality Data for REDD+ Monitoring and Reporting. Forests, 12(1): 99. https://doi.org/10.3390/f12010099
86 Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A. et Fisher, P. F. 2015. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment, 160: 1-14. https://doi.org/10.1016/j.rse.2015.01.006
87 FAO. 2018. Strengthening National Forest Monitoring Systems for REDD+. National Forest Monitoring and Assessment Working Paper No. 47. Rome. [Consulté le 13 juin 2024]. https://openknowledge.fao.org/handle/20.500.14283/ca0525en
88 Sandker, M., Neeff, T., Todd, K., Poultouchidou, A., Cóndor-Gólec, R., Felicani-Robles, F., SantosAcuña, L. et Duchelle, A. 2022. From reference levels to results: REDD+ reporting by countries – 2022 update. Forestry Working Paper No. 35. Rome, FAO. https://doi.org/10.4060/cc2899en
89 CCNUCC (Convention-cadre des Nations Unies sur les changements climatiques). 2021. Forest reference emission levels. Dans: REDD+ Web Platform. UNFCC. [Consulté le 28 janvier 2022]. https://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html
90 Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D. et al. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160): 850-853. https://doi.org/10.1126/science.1244693
91 Melo, J., Baker, T., Nemitz, D., Quegan, S. et Ziv, G. 2023. Satellite-based global maps are rarely used in forest reference levels submitted to the UNFCCC. Environmental Research Letters, 18(3): 034021. https://doi.org/10.1088/1748-9326/acba31
92 ART (Architecture for REDD+ Transactions). 2021. TREES: The REDD+ Environmental Excellence Standard. In: ART. [Consulté le 27 novembre 2023]. https://www.artredd.org/trees/
93 Ojanen, M., Brockhaus, M., Korhonen-Kurki, K. et Petrokofsky, G. 2021. Navigating the science-policy interface: Forest researcher perspectives. Environmental Science et Policy, 118: 10–17. https://doi.org/10.1016/j.envsci.2021.01.002
94 Martin, P., Teles Da Silva, S., Duarte Dos Santos, M. et Dutra, C. 2022. Governance and metagovernance systems for the Amazon. Review of European, Comparative et International Environmental Law, 31(1): 126-139. https://doi.org/10.1111/reel.12425
95 Congo Basin Forest Partnership. 2023. Congo Basin Forest Partnership. [Consulté le 15 novembre 2023]. https://pfbc-cbfp.org/home.html
96 Rantala, S., Swallow, B., Paloniemi, R. et Raitanen, E. 2020. Governance of forests and governance of forest information: Interlinkages in the age of open and digital data. Forest Policy and Economics, 113: 102123. https://doi.org/10.1016/j.forpol.2020.102123
97 Arts, B., Heukels, B. et Turnhout, E. 2021. Tracing timber legality in practice: The case of Ghana and the EU. Forest Policy and Economics, 130: 102532. https://doi.org/10.1016/j.forpol.2021.102532
98 Google. 2022. Google Earth Engine. [Consulté le 15 novembre 2023]. https://earthengine.google.com
99 Gonzalez, L., Montes, G., Puig, E., Johnson, S., Mengersen, K. et Gaston, K. 2016. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors, 16(1): 97. https://doi.org/10.3390/s16010097
100 Rožman, M., Oreški, D. et Tominc, P. 2023. Artificial-Intelligence-Supported Reduction of Employees’ Workload to Increase the Company’s Performance in Today’s VUCA Environment. Sustainability, 15(6): 5019. https://doi.org/10.3390/su15065019
101 Commission européenne. 2023. Frequently Asked Questions – Deforestation Regulation. Dans: Commission européenne. [Consulté le 9 octobre 2023]. https://environment.ec.europa.eu/publications/frequently-asked-questions-deforestation-regulation_en
102 Verkerk, P. J., Hassegawa, M., Van Brusselen, J., Cramm, M., Chen, X., Maximo, Y. I., Koç, M., Lovrić, M. et Tegegne, Y. T. 2022. Forest products in the global bioeconomy – Enabling substitution by wood-based products and contributing to the Sustainable Development Goals. Rome, FAO. https://doi.org/10.4060/cb7274en
103 Teacă, C.-A., Roşu, D., Mustaţă, F., Rusu, T., Roşu, L., Roşca, I. et Varganici, C.-D. 2019. Natural bio-based products for wood coating and protection against degradation: A Review. BioResources, 14(2): 4873-4901. https://doi.org/10.15376/biores.14.2.Teaca
104 Jones, D. et Sandberg, D. 2020. A Review of Wood Modification Globally – Updated Findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment, 1. https://doi.org/10.37947/ipbe.2020.vol1.1
105 Mayes, D., Burton, P., Black, G. et Lake, J. 2023. «Next generation Mass Timber from fast rotation pulp logs utilizing Lignor CLST® strand technology». Exposé présenté lors de l’International Panel Products Conference, Llandudno (Pays de Galles), 3-4 octobre 2023.
106 Ronquillo, G., Hopkin, D. et Spearpoint, M. 2021. Review of large-scale fire tests on cross-laminated timber. Journal of Fire Sciences, 39(5): 327-369. https://doi.org/10.1177/
07349041211034460
107 Amidon, T. E., Bujanovic, B., Liu, S. et Howard, J. R. 2011. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery. Forests, 2(4): 929-947. https://doi.org/10.3390/f2040929
108 Kallio, A. M. I. 2021. Wood-based textile fibre market as part of the global forest-based bioeconomy. Forest Policy and Economics, 123: 102364. https://doi.org/10.1016/j.forpol.2020.102364
109 FAO. 2023. Forêts Production et Commerce. Dans: FAOSTAT. [Consulté le 1er décembre 2023]. https://www.fao.org/faostat/fr/#data/FO. Licence: CC-BY-4.0.
110 Northvolt. 2022. Stora Enso et Northvolt partner to develop wood-based battery. Dans: Northvolt. [Consulté le 16 novembre 2023]. https://northvolt.com/articles/stora-enso-and-northvolt/
111 Ani, P. C., Nzereogu, P. U., Agbogu, A. C., Ezema, F. I. et Nwanya, A. C. 2022. Cellulose from waste materials for electrochemical energy storage applications: A review. Applied Surface Science Advances, 11: 100298. https://doi.org/10.1016/j.apsadv.2022.100298
112 Bergamasco, S., Tamantini, S., Zikeli, F., Vinciguerra, V., Scarascia Mugnozza, G. et Romagnoli, M. 2022. Synthesis and Characterizations of Eco-Friendly Organosolv Lignin-Based Polyurethane Coating Films for the Coating Industry. Polymers, 14(3): 416. https://doi.org/10.3390/polym14030416
113 Henn, K. A., Forsman, N., Zou, T. et Österberg, M. 2021. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Applied Materials et Interfaces, 13(29): 34793-34806. https://doi.org/10.1021/acsami.1c06087
114 Stora Enso. 2023. NeoLigno®: A bio-based binder for building materials. Dans: StoraEnso. [Consulté le 29 novembre 2023]. https://www.storaenso.com/en/products/bio-based-materials/neoligno-by-stora-enso
115 Ebrahimian, F. et Mohammadi, A. 2023. Assessing the environmental footprints and material flow of 2,3-butanediol production in a wood-based biorefinery. Bioresource Technology, 387: 129642. https://doi.org/10.1016/j.biortech.2023.129642
116 Baydoun, S., Hani, N., Nasser, H., Ulian, T. et Arnold-Apostolides, N. 2023. Wild leafy vegetables: A potential source for a traditional Mediterranean food from Lebanon. Frontiers in Sustainable Food Systems, 6: 991979. https://doi.org/10.3389/fsufs.2022.991979
117 Burlingame, B., Vogliano, C. et Eme, P. E. 2019. Leveraging agricultural biodiversity for sustainable diets, highlighting Pacific Small Island Developing States. Advances in Food Security and Sustainability, 4: 133-173. https://doi.org/10.1016/bs.af2s.2019.06.006
118 Durazzo, A., Lucarini, M., Zaccardelli, M. et Santini, A. 2020. Forest, Foods, and Nutrition. Forests, 11(11): 1182. https://doi.org/10.3390/f11111182
119 Vinha, A. F., Barreira, J. C. M., Costa, A. S. G. et Oliveira, M. B. P. P. 2016. A New Age for Quercus spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Comprehensive Reviews in Food Science and Food Safety, 15(6): 947-981. https://doi.org/10.1111/1541-4337.12220
120 FAO. 2021. Utilisation des glands de chêne dans la préparation du couscous bil ballout à Jijel, Algérie. Rome. https://doi.org/10.4060/cb3865fr
121 Bilek, M., Cebula, E., Krupa, K., Lorenc, K., Adamowicz, T. et Sosnowski, S. 2018. New technologies for extending shelf life of birch tree sap. ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes, 7(4): 3-8. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-0f77d11b-1088-44e4-a0f3-1e6922401284
122 Ludvig, A., Tahvanainen, V., Dickson, A., Evard, C., Kurttila, M., Cosovic, M., Chapman, E., Wilding, M. et Weiss, G. 2016. The practice of entrepreneurship in the non-wood forest products sector: Support for innovation on private forest land. Forest Policy and Economics, 66: 31-37. https://doi.org/10.1016/j.forpol.2016.02.007
123 Trivedi, P., Nguyen, N., Hykkerud, A. L., Häggman, H., Martinussen, I., Jaakola, L. et Karppinen, K. 2019. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. Frontiers in Plant Science, 10: 431. https://doi.org/10.3389/fpls.2019.00431
124 Walia, K., Kapoor, A. et Farber, J. M. 2018. Qualitative risk assessment of cricket powder to be used to treat undernutrition in infants and children in Cambodia. Food Control, 92: 169-182. https://doi.org/10.1016/j.foodcont.2018.04.047
125 Tanga, C. M., Egonyu, J. P., Beesigamukama, D., Niassy, S., Emily, K., Magara, H. J., Omuse, E. R., Subramanian, S. et Ekesi, S. 2021. Edible insect farming as an emerging and profitable enterprise in East Africa. Current Opinion in Insect Science, 48: 64-71. https://doi.org/10.1016/j.cois.2021.09.007
126 FAO, OIT et ONU. 2023. Occupational safety and health in the future of forestry work. Forestry Working Paper No. 37. Rome, FAO, Genève (Suisse), OIT et New York, ONU. https://doi.org/10.4060/cc6723en
127 Legg, B., Dorfner, B., Leavengood, S. et Hansen, E. 2021. Industry 4.0 Implementation in US Primary Wood Products Industry. Drvna industrija, 72(2): 143-153. https://doi.org/10.5552/drvind.2021.2017
128 Landscheidt, S. et Kans, M. 2016. «Automation Practices in Wood Product Industries : Lessons learned, current Practices and Future Perspectives». Exposé présenté lors de la 7e édition du Swedish Production Symposium (SPS), 25-27 octobre 2016. Lund (Suède), Université de Lund, 2016. https://lnu.diva-portal.org/smash/get/diva2:1047705/FULLTEXT01.pdf
129 Roshetko, J., Pingault, P., Quang Tan, N., Meybeck, A., Matta, R. et Gitz, V. 2022. Asia-Pacific roadmap for innovative technologies in the forest sector. Working Paper 15. Rome, FAO, Bogor (Indonésie), CIFOR (Centre de recherche forestière internationale) et CGIAR. https://doi.org/10.17528/cifor/008515
130 El-Kassaby, Y. A. et Lstibůrek, M. 2009. Breeding without breeding. Genetics Research, 91(2): 111-120. https://doi.org/10.1017/S001667230900007X
131 Lstibůrek, M., Schueler, S., El-Kassaby, Y. A., Hodge, G. R., Stejskal, J., Korecký, J., Škorpík, P., Konrad, H. et Geburek, T. 2020. In Situ Genetic Evaluation of European Larch Across Climatic Regions Using Marker-Based Pedigree Reconstruction. Frontiers in Genetics, 11: 28. https://doi.org/10.3389/fgene.2020.00028
132 Hohenlohe, P. A., Funk, W. C. et Rajora, O. P. 2021. Population genomics for wildlife conservation and management. Molecular Ecology, 30(1): 62-82. https://doi.org/10.1111/mec.15720
133 Padovezi, A., Secco, L., Adams, C. et Chazdon, R. L. 2022. Bridging Social Innovation with Forest and Landscape Restoration. Environmental Policy and Governance, 32(6): 520-531. https://doi.org/10.1002/eet.2023
134 Nijnik, M., Secco, L., Miller, D. et Melnykovych, M. 2019. Can social innovation make a difference to forest-dependent communities? Forest Policy and Economics, 100: 207-213. https://doi.org/10.1016/j.forpol.2019.01.001
135 Pascual, U., McElwee, P. D., Diamond, S. E., Ngo, H. T., Bai, X., Cheung, W. W., Lim, M., Steiner, N., Agard, J., Donatti, C. I. et Duarte, C. M. 2022. Governing for transformative change across the biodiversity-climate-society nexus. Bioscience, 72(7): 684-704. https://doi.org/10.1093/biosci/biac031
136 Crouzeilles, R., Beyer, H. L., Monteiro, L. M., Feltran-Barbieri, R., Pessôa, A. C. M., Barros, F. S. M., Lindenmayer, D. B. et al. 2020. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conservation Letters, 13(3): e12709. https://doi.org/10.1111/conl.12709
137 Van Noordwijk, M., Pham, T. T., Leimona, B., Duguma, L. A., Baral, H., Khasanah, N., Dewi, S. et Minang, P. A. 2022. Carbon footprints, informed consumer decisions and shifts towards responsible agriculture, forestry, and other land uses? Carbon Footprints, 1(1): 4. https://doi.org/10.20517/cf.2022.02
138 Centre mondial d'agroforesterie (ICRAF). Non daté. SHARED. Transforming Lives and Landscapes with Trees. Dans: World Agroforestry [Consulté le 20 février 2024]. https://www.worldagroforestry.org/shared
139 Andaya, E. 2016. Cambodia: Mondulkiri forest venture. Dans: A. Bolin et D. Macqueen (sous la direction de). Securing the future – Managing risk and building resilience within locally controlled forest businesses. p. 19-44. Londres, IIED (Institut international pour l’environnement et le développement). https://www.iied.org/sites/default/files/pdfs/migrate/13587IIED.pdf
140 FAO. Non daté. Environment and Social Management (FAO): Poverty, Reforestation, Energy and Climate Change. Rome, FAO et Asunción, Gouvernement du Paraguay. https://www.fao.org/fileadmin/templates/FCIT/documents/PROEZA_ESMF.pdf
141 Lambin, E. F., Meyfroidt, P., Rueda, X., Blackman, A., Börner, J., Cerutti, P. O., Dietsch, T. et al. 2014. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Global Environmental Change, 28: 129-140. https://doi.org/10.1016/j.gloenvcha.2014.06.007
142 Rana, P. et Chhatre, A. 2017. Beyond committees: Hybrid forest governance for equity and sustainability. Forest Policy and Economics, 78: 40-50. https://doi.org/10.1016/j.forpol.2017.01.007
143 Le Coq, J.-F., Froger, G., Pesche, D., Legrand, T. et Saenz, F. 2015. Understanding the governance of the Payment for Environmental Services Programme in Costa Rica: A policy process perspective. Ecosystem Services, 16: 253-265. https://doi.org/10.1016/j.ecoser.2015.10.003
144 Sundstrom, L. et Henry, L. 2017. Private Forest Governance, Public Policy Impacts: The Forest Stewardship Council in Russia and Brazil. Forests, 8(11): 445. https://doi.org/10.3390/f8110445
145 Mansourian, S., Kleymann, H., Passardi, V., Winter, S., Derkyi, M. A. A., Diederichsen, A., Gabay, M. et al. 2022. Governments commit to forest restoration, but what does it take to restore forests? Environmental Conservation, 49(4): 206-214. https://doi.org/10.1017/S0376892922000340
146 OCDE (Organisation de coopération et de développement économiques) et FAO. 2023. OECD-FAO Business Handbook on Deforestation and Due Diligence in Agricultural Supply Chains. Paris, OCDE. https://doi.org/10.1787/c0d4bca7-en
147 Macqueen, D., Bolin, A., Greijmans, M., Grouwels, S. et Humphries, S. 2020. Innovations towards prosperity emerging in locally controlled forest business models and prospects for scaling up. World Development, 125: 104382. https://doi.org/10.1016/j.worlddev.2018.08.004
148 Macqueen, D. 2022. The Forest and Farm Facility (FFF) approach: delivering climate-resilient landscapes and improved livelihoods. Londres, IIED. [Consulté le 13 juin 2024]. https://www.iied.org/21186iied
149 Usnayo Ramos, R.D. et Fernández, B. 2023. Mobilising internal finance within a forest and farm producer organisation: a case study of Alternative Finance for Development (AFID) of El Ceibo. Londres, IIED. [Consulté le 13 juin 2024]. https://www.iied.org/21506g
150 Macqueen, D. 2019. Vietnamese forest and farm producers work towards more resilient livelihoods and landscapes. Dans: IIED. [Consulté le 15 novembre 2023]. https://www.iied.org/vietnamese-forest-farm-producers-work-towards-more-resilient-livelihoods-landscapes
151 FAO. 2023. Strengthening coherence between forestry and social protection for sustainable agrifood systems transformation: Framework for analysis and action. Rome. https://www.fao.org/3/cc8648en/cc8648en.pdf
152 Tata-Cornell Institute. 2022. Aggregation Models and Small Farm Commercialization: An Annotated Bibliography of Relevant Literature. Ithaca (États-Unis). [Consulté le 13 juin 2024]. https://tci.cornell.edu/?publications=aggregation-models-and-small-farm-commercialization-an-annotated-bibliography-of-relevant-literature
153 Humphries, S., Holmes, T., Andrade, D. F. C. D., McGrath, D. et Dantas, J. B. 2020. Searching for win-win forest outcomes: Learning-by-doing, financial viability, and income growth for a community-based forest management cooperative in the Brazilian Amazon. World Development, 125: 104336. https://doi.org/10.1016/j.worlddev.2018.06.005
154 Lemenih, M. et Idris, H. 2015. Ethiopia: Aburo Forest Managing and Utilization Cooperative (Agubela frankincense business group) and Birbirsa Natural Resource Conservation Cooperative (coffee producer group) Non-timber forest product business models in Ethiopia. Dans: D. Macqueen, A. Bolin et M. Greijmans (sous la direction de). Democratising Forest Business: A Compendium of Successful Locally Controlled Forest Business Organizations. p. 133-154. Londres, IIED. [Consulté le 13 juin 2024]. https://www.recoftc.org/publications/0000141
155 Macqueen, D. 2016. Community forest business in Myanmar: Pathway to peace and prosperity? Londres, IIED. http://rgdoi.net/10.13140/RG.2.1.2177.9605
156 Elias, M., Grosse, A. et Campbell, N. 2020. Unpacking ‘gender’ in joint forest management: Lessons from two Indian states. Geoforum, 111: 218-228. https://doi.org/10.1016/j.geoforum.2020.02.020
157 Pandey, H. P. et Pokhrel, N. P. 2021. Formation trend analysis and gender inclusion in community forests of Nepal. Trees, Forests and People, 5: 100106. https://doi.org/10.1016/j.tfp.2021.100106
158 ForestLink. 2020. Unlocking the potential of forest guardians. Dans: ForestLink. [Consulté le 15 novembre 2023]. https://forestlink.org/
159 Mangrove Alliance. 2023. Global Mangrove Watch. Dans: Global Mangrove Watch. [Consulté le 15 novembre 2023]. http://www.globalmangrovewatch.org/
160 LandMark. 2022. Global Platform of Indigenous and Community Lands. Dans: LandMark. [Consulté le 15 novembre 2023]. https://www.landmarkmap.org/
161 The Rainforest Foundation. 2020. Mapping for Rights. Dans: The Rainforest Foundation. [Consulté le 15 novembre 2023]. https://www.mappingforrights.org/
162 PNUE (Programme des Nations Unies pour l’environnement). 2022. State of Finance for Nature – Time to act: Doubling investment by 2025 and eliminating nature-negative finance flows. Nairobi. [Consulté le 13 juin 2024]. https://wedocs.unep.org/20.500.11822/41333
163 Surayya, T. 2012. Innovative Financial Instruments and mechanisms for financing forest restoration and mitigating climate change: select cases from India. European Journal of Sustainable Development, 1(2): 361. https://doi.org/10.14207/ejsd.2012.v1n2p361
164 Louman, B., Meybeck, A., Mulder, G., Brady, M., Fremy, L., Savenije, H., Gitz, V. et Trines, E. 2020. Innovative finance for sustainable landscapes. Working Paper 7. Bogor (Indonésie), Programme de recherche du CGIAR sur les forêts, les arbres et l’agroforesterie (FTA). https://www.cifor-icraf.org/publications/pdf_files/FTA/WPapers/FTA-WP-7.pdf
165 Louman, B., Girolami, E. D., Shames, S., Primo, L. G., Gitz, V., Scherr, S. J., Meybeck, A. et Brady, M. 2022. Access to Landscape Finance for Small-Scale Producers and Local Communities: A Literature Review. Land, 11(9): 1444. https://doi.org/10.3390/land11091444
166 Besacier, C., Garrett, L., Iweins, M. et Shames, S. 2021. Mécanismes de financement local de la restauration des forêts et des paysages: Revue des différents mécanismes d’investissement au niveau local. Document de travail forestier n° 21. Rome, FAO. https://doi.org/10.4060/cb3760fr
167 Forum économique mondial. 2021. The Global Risks Report 2021. Cologny (Suisse). [Consulté le 13 juin 2024]. https://www.weforum.org/publications/the-global-risks-report-2021/
168 Wong, P. C. 2023. New guidance helps financial institutions grapple with deforestation due diligence. Dans: Global Canpoy. [Consulté le 20 février 2024]. https://globalcanopy.org/insights/insight/new-guidance-helps-financial-institutions-grapple-with-deforestation-due-diligence/
169 Supply Chains Solutions Center. 2019. Soft Commodity Risk Platform (SCRIPT). Dans: Supply Chain Solutions Center. [Consulté le 20 février 2024]. https://supplychain.edf.org/resources/soft-commodity-risk-platform-script/
170 Commission européenne. Non daté. EU taxonomy for sustainable activities. Dans: Commission européenne. [Consulté le 13 juin 2024]. https://finance.ec.europa.eu/sustainable-finance/tools-and-standards/eu-taxonomy-sustainable-activities_en
171 Macqueen, D., Benni, N., Boscolo, M. et Zapata, J. 2018. Access to finance for forest and farm producer organisations (FFPOs). Rome, FAO et Londres, IIED. [Consulté le 13 juin 2024]. https://www.iied.org/13606iied
172 Boscolo, M., Dijk, K. V. et Savenije, H. 2010. Financing Sustainable Small-Scale Forestry: Lessons from Developing National Forest Financing Strategies in Latin America. Forests, 1(4): 230-249. https://doi.org/10.3390/f1040230
173 Starfinger, M., Tham, L. T. et Tegegne, Y. T. 2023. Tree collateral – A finance blind spot for small-scale forestry? A realist synthesis review. Forest Policy and Economics, 147: 102886. https://doi.org/10.1016/j.forpol.2022.102886
174 ONU. 2019. United Nations Innovation Toolkit. [Consulté le 13 novembre 2023]. https://un-innovation.tools/architecture/5c7d4c9971338741c09c6c68
175 Geels, F. W. 2004. From sectoral systems of innovation to socio-technical systems. Research Policy, 33(6-7): 897-920. https://doi.org/10.1016/j.respol.2004.01.015
176 Herrero, M., Thornton, P. K., Mason-D’Croz, D., Palmer, J., Benton, T. G., Bodirsky, B. L., Bogard, J. R. et al. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1(5): 266-272. https://doi.org/10.1038/s43016-020-0074-1
177 Unruh, G. C. 2000. Understanding carbon lock-in. Energy Policy, 28(12): 817-830. https://doi.org/10.1016/S0301-4215(00)00070-7
178 ONU. 2019. Create Incentives and Opportunities. UN Innovation Toolkit. [Consulté le 13 novembre 2023]. https://un-innovation.tools/culture/5c7d4c9971338741c09c6c6d
179 ONU. 2019. Life cycle analysis. UN Innovation Toolkit. [Consulté le 13 novembre 2023]. https://un-innovation.tools/evaluation/5c7d4c9971338741c09c6c73
180 Trendov, N. M., Varas, S. et Zeng, M. 2019. Technologies numériques dans le secteur agricole et dans les zones rurales. Rome, FAO. https://www.fao.org/3/ca4887fr/ca4887fr.pdf
181 Davis, D. 2021. Katerra’s $2 Billion Legacy. Dans: Architect. [Consulté le 17 novembre 2023]. https://www.architectmagazine.com/technology/katerras-2-billion-legacy_o
182 Hoeben, A. D., Stern, T. et Lloret, F. 2023. A Review of Potential Innovation Pathways to Enhance Resilience in Wood-Based Value Chains. Current Forestry Reports, 9(5): 301-318. https://doi.org/10.1007/s40725-023-00191-4
183 Furszyfer Del Rio, D. D., Lambe, F., Roe, J., Matin, N., Makuch, K. E. et Osborne, M. 2020. Do we need better behaved cooks? Reviewing behavioural change strategies for improving the sustainability and effectiveness of cookstove programs. Energy Research et Social Science, 70: 101788. https://doi.org/10.1016/j.erss.2020.101788
184 Khandelwal, M., Hill, M. E., Greenough, P., Anthony, J., Quill, M., Linderman, M. et Udaykumar, H. S. 2017. Why Have Improved Cook-Stove Initiatives in India Failed? World Development, 92: 13-27. https://doi.org/10.1016/j.worlddev.2016.11.006
185 Vigolo, V., Sallaku, R. et Testa, F. 2018. Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective. Sustainability, 10(11): 4322. https://doi.org/10.3390/su10114322
186 Höhl, M., Ahimbisibwe, V., Stanturf, J. A., Elsasser, P., Kleine, M. et Bolte, A. 2020. Forest Landscape Restoration – What Generates Failure and Success? Forests, 11(9): 938. https://doi.org/10.3390/f11090938
187 Schweizer, D., Van Kuijk, M. et Ghazoul, J. 2021. Perceptions from non-governmental actors on forest and landscape restoration, challenges and strategies for successful implementation across Asia, Africa and Latin America. Journal of Environmental Management, 286: 112251. https://doi.org/10.1016/j.jenvman.2021.112251
188 Delgado, T. S., McCall, M. K. et López-Binqüist, C. 2016. Recognized but not supported: Assessing the incorporation of non-timber forest products into Mexican forest policy. Forest Policy and Economics, 71: 36-42. https://doi.org/10.1016/j.forpol.2016.07.002
189 Samal, R. et Dash, M. 2023. Ecotourism, biodiversity conservation and livelihoods: Understanding the convergence and divergence. International Journal of Geoheritage and Parks, 11(1): 1–20. https://doi.org/10.1016/j.ijgeop.2022.11.001
190 McGowan, K. et Antadze, N. 2023. Recognizing the dark side of sustainability transitions. Journal of Environmental Studies and Sciences, 13(2): 344-349. https://doi.org/10.1007/s13412-023-00813-0
191 Mulgan, G. 2016. Good and bad innovation: what kind of theory and practice do we need to distinguish them? Dans: Nesta. [Consulté le 20 février 2024]. https://www.nesta.org.uk/blog/good-and-bad-innovation-what-kind-of-theory-and-practice-do-we-need-to-distinguish-them/
192 Akenji, L. 2014. Consumer scapegoatism and limits to green consumerism. Journal of Cleaner Production, 63: 13-23. https://doi.org/10.1016/j.jclepro.2013.05.022
193 Von Schomberg, R. 2013. A Vision of Responsible Research and Innovation. Dans: R. Owen, J. Bessant et M. Heintz (sous la direction de). Responsible Innovation. Première édition, p. 51-74. Wiley. https://doi.org/10.1002/9781118551424.ch3
194 Hansen, E., Conroy, K., Toppinen, A., Bull, L., Kutnar, A. et Panwar, R. 2016. Does gender diversity in forest sector companies matter? Canadian Journal of Forest Research, 46(11): 1255-1263. https://doi.org/10.1139/cjfr-2016-0040
195 Lawrence, D., Coe, M., Walker, W., Verchot, L. et Vandecar, K. 2022. The Unseen Effects of Deforestation: Biophysical Effects on Climate. Frontiers in Forests and Global Change, 5: 756115. https://doi.org/10.3389/ffgc.2022.756115
196 MapBiomas. 2023. Em 38 anos, o Brasil perdeu 15% de suas florestas naturais. Dans: MapBiomas. [Consulté le 17 novembre 2023]. https://brasil.mapbiomas.org/2023/10/20/em-38-anos-o-brasil-perdeu-15-de-suas-florestas-naturais/
197 IBGE. 2023. Em 2022, Sorriso (MT) manteve a liderança na produção agrícola | Agência de Notícias. Dans: Agência de Notícias - IBGE. [Consulté le 17 novembre 2023]. https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/37894-em-2022-sorriso-mt-manteve-a-lideranca-na-producao-agricola
198 Rattis, L., Brando, P. M., Macedo, M. N., Spera, S. A., Castanho, A. D. A., Marques, E. Q., Costa, N. Q., Silverio, D. V. et Coe, M. T. 2021. Climatic limit for agriculture in Brazil. Nature Climate Change, 11(12): 1098-1104. https://doi.org/10.1038/s41558-021-01214-3
199 Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C. et Pattnayak, K. C. 2018. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9): eaat8785. https://doi.org/10.1126/sciadv.aat8785
200 Pinto, E., Braga, L., Stabile, M., Gomes, J., Gabriela Savian, Mastrangelo, J. P., Pereira, D. et al. 2011. Incentivos econômicos para a adequação ambiental dos imóveis rurais dos estados amazônicos – Sumário executivo. Dans: IPAM Amazônia. [Consulté le 17 novembre 2023]. https://ipam.org.br/bibliotecas/__trashed/
201 Fellows, M., Castanho, A., Alencar, A., Andrade, A., Michael Coe, Macedo, M., Pinho, P. et al. 2023. PL 2903 e a tese do Marco Temporal: ameaças aos direitos indígenas e ao clima. Dans: IPAM Amazônia. [Consulté le 17 novembre 2023]. https://ipam.org.br/bibliotecas/pl-2903-e-a-tese-do-marco-temporal-ameacas-aos-direitos-indigenas-e-ao-clima/
202 May, P. H., Bernasconi, P., Wunder, S. et Lubowski, R. 2015. Environmental reserve quotas in Brazil's new forest legislation - an ex ante appraisal. Bogor (Indonésie), CIFOR. http://www.jstor.org/stable/resrep02238.1
203 FAO. 2023. National Forests Monitoring: AIM4Forests. Dans: FAO. [Consulté le 13 novembre 2023]. https://www.fao.org/national-forest-monitoring/projects/aim4forests/en/
204 FAO et FILAC (Fonds de développement pour les peuples autochtones d’Amérique latine et des Caraïbes). 2021. Forest governance by indigenous and tribal peoples. An opportunity for climate action in Latin America and the Caribbean. Rome, FAO. https://doi.org/10.4060/cb2953en
205 Fa, J. E., Watson, J. E., Leiper, I., Potapov, P., Evans, T. D., Burgess, N. D., Molnár, Z. et al. 2020. Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes. Frontiers in Ecology and the Environment, 18(3): 135-140. https://doi.org/10.1002/fee.2148
206 Initiative des droits et ressources. 2023. Who owns the world’s land? Global state of Indigenous, Afro-descendant, and local community land rights recognition from 2015-2020. Washington. https://doi.org/10.53892/MHZN6595
207 Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C. J., Watson, J. E. M. et al. 2018. A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability, 1(7): 369-374. https://doi.org/10.1038/s41893-018-0100-6
208 IPBES. 2018. The IPBES assessment report on land degradation and restoration. Bonn (Allemagne). https://doi.org/10.5281/ZENODO.3237393
209 GIEC (sous la direction de). 2023. Climate Change 2022 – Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Première édition. Cambridge University Press. https://doi.org/10.1017/9781009157926
210 Udawatta, R.P., Rankoth, L. et Jose, S. 2019. Agroforestry and Biodiversity. Sustainability, 11(10): 2879. https://doi.org/10.3390/su11102879
211 Crumpler, K., Abi Khalil, R., Tanganelli, E., Rai, N., Roffredi, L., Meybeck, A., Umulisa, V., Wolf, J. et Bernoux, M. 2021. 2021 (Interim) Global update report: Agriculture, Forestry and Fisheries in the Nationally Determined Contributions. Environment and Natural Resources Management Working Paper No. 91. Rome, FAO. https://doi.org/10.4060/cb7442en
212 Rosenstock, T. S., Wilkes, A., Jallo, C., Namoi, N., Bulusu, M., Suber, M., Mboi, D. et al. 2019. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agriculture, Ecosystems & Environment, 284: 106569. https://doi.org/10.1016/j.agee.2019.106569
213 GIEC. 2023. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Première édition. Cambridge University Press. https://doi.org/10.1017/9781009325844
214 Ahmad, F., Uddin, M. M., Goparaju, L., Talukdar, N. R. et Rizvi, J. 2021. Agroforestry environment, potentiality and risk in India: a remote sensing and GIS understanding. Environment, Development and Sustainability, 23(10): 15183-15203. https://doi.org/10.1007/s10668-021-01292-5
215 Dev, I., Ram, A., Kumar, N., Singh, R., Kumar, D., Uthappa, A. R., Handa, A. K. et Chaturvedi, O. P. 2019. Agroforestry for Climate Resilience and Rural Livelihood. Scientific Publishers. [Consulté le 13 juin 2024]. https://www.scientificpubonline.com/bookdetail/agroforestry-climate-resilience-rural-livelihood/9789387307063/26
216 FAO. 2023. Action contre la désertification. Dans: FAO. [Consulté le 13 juin 2024]. https://www.fao.org/in-action/action-against-desertification/fr/
217 FAO. 2023. Policy Support and Governance: Food Insecurity Experience Scale (FIES). Dans: FAO. [Consulté le 4 décembre 2023]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1236494/
218 Sacande, M., Parfondry, M., Cicatiello, C., Scarascia-Mugnozza, G., Garba, A., Olorunfemi, P. S., Diagne, M. et Martucci, A. 2021. Socio-economic impacts derived from large scale restoration in three Great Green Wall countries. Journal of Rural Studies, 87: 160-168. https://doi.org/10.1016/j.jrurstud.2021.09.021
219 Sacande, M., Parfondry, M. et Cicatiello, C. 2019. Restoration in Action Against Desertification. Rome, FAO. https://doi.org/10.4060/ca6932en
220 Speaker, T., O’Donnell, S., Wittemyer, G., Bruyere, B., Loucks, C., Dancer, A., Carter, M. et al. 2022. A global community-sourced assessment of the state of conservation technology. Conservation Biology, 36(3): e13871. https://doi.org/10.1111/cobi.13871
221 Allan, B. M., Nimmo, D. G., Ierodiaconou, D., VanDerWal, J., Koh, L. P. et Ritchie, E. G. 2018. Futurecasting ecological research: the rise of technoecology. Ecosphere, 9(5): e02163. https://doi.org/10.1002/ecs2.2163
222 Berger-Tal, O. et Lahoz-Monfort, J. J. 2018. Conservation technology: The next generation. Conservation Letters, 11(6): e12458. https://doi.org/10.1111/conl.12458
223 Pimm, S. L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R. et Loarie, S. 2015. Emerging Technologies to Conserve Biodiversity. Trends in Ecology & Evolution, 30(11): 685-696. https://doi.org/10.1016/j.tree.2015.08.008
224 Snaddon, J., Petrokofsky, G., Jepson, P. et Willis, K. J. 2013. Biodiversity technologies: tools as change agents. Biology Letters, 9(1): 20121029. https://doi.org/10.1098/rsbl.2012.1029
225 Ministère de l’agriculture et du développement rural (Mozambique). 2021. Inquérito Agrário Integrado 2020. Marco Estatístico. Mozambique. https://www.agricultura.gov.mz/wp-content/uploads/2021/06/MADER_Inquerito_Agrario_2020.pdf
226 Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H. et Clement, J. 2019. Global resources outlook 2019 – Natural Resources for the Future We Want. Nairobi, PNUE.
227 PNUE. 2022. 2022 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. Nairobi, PNUE. [Consulté le 13 juin 2024]. https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
228 ONU-Habitat (Programme des Nations Unies pour les établissements humains). Non daté. Housing. Dans: UN-Habitat. [Consulté le 9 avril 2024]. https://unhabitat.org/topic/housing
229 PNUE et Yale. 2023. Building Materials and the Climate: Constructing a New Future. Nairobi, PNUE. [Consulté le 13 juin 2024]. https://wedocs.unep.org/20.500.11822/43293
230 Boudreau, C. 2023. See how Sweden is planning to create a “wooden city” with thousands of homes and offices. Business Insider, 16 juillet 2023. [Consulté le 17 novembre 2023]. https://www.businessinsider.com/stockholm-sweden-wood-city-sustainable-development-photos-2023-7
231 FAO. 2023. Mécanisme forêts et paysans. Dans: FAO. [Consulté le 14 novembre 2023]. https://www.fao.org/forest-farm-facility/fr/
232 Coad, L., Fa, J. E., Abernathy, K., Van Vliet, N., Santamaria, C., Wilkie, D., El Bizri, H. R., Ingram, D. J., Cawthorn, D.-M. et Nasi. R. 2019. Toward a sustainable, participatory and inclusive wild meat sector. Bogor (Indonésie), CIFOR. https://doi.org/10.17528/cifor/007046
233 FAO. 2021. Technical Brief – what do we mean by community-based sustainable wildlife management? Rome. https://www.fao.org/3/cb6486en/cb6486en.pdf
234 Programme de gestion durable de la faune sauvage. 2023. Legal hub. Dans: SWM Programme. [Consulté le 17 novembre 2023]. https://www.swm-programme.info
235 FAO. 2023. Service du droit pour le développement. Dans: FAO. [Consulté le 14 novembre 2023]. https://www.fao.org/legal-services/about/fr/
236 FAO. 2023. Groupe d’experts de haut niveau pour l’approche «Une seule santé». Dans: FAO. [Consulté le 14 novembre 2023]. https://www.fao.org/one-health/background/ohhlep/fr
237 CPW (Partenariat de collaboration sur la gestion durable de la faune sauvage). 2023. Collaborative Partnership on Sustainable Wildlife Management: Portail de l’appui aux politiques et de la gouvernance. Dans: FAO. [Consulté le 14 novembre 2023]. https://www.fao.org/policy-support/mechanisms/mechanisms-details/fr/c/447467/
238 Franzini, F., Toivonen, R. et Toppinen, A. 2018. Why Not Wood? Benefits and Barriers of Wood as a Multistory Construction Material: Perceptions of Municipal Civil Servants from Finland. Buildings, 8(11): 159. https://doi.org/10.3390/buildings8110159
239 Schmidt Hammer Lassen. 2023. Boston Commonwealth Pier. Dans: SHL. [Consulté le 14 novembre 2023]. https://www.shl.dk/work/boston-commonwealth-pier
240 Bilham, R. 2009. The seismic future of cities. Bulletin of Earthquake Engineering, 7(4): 839-887. https://doi.org/10.1007/s10518-009-9147-0
241 He, C., Huang, Q., Bai, X., Robinson, D. T., Shi, P., Dou, Y., Zhao, B. et al. 2021. A Global Analysis of the Relationship Between Urbanization and Fatalities in Earthquake-Prone Areas. International Journal of Disaster Risk Science, 12(6): 805-820. https://doi.org/10.1007/s13753-021-00385-z
242 Spherical Insights. 2023. Global Cross Laminated Timber (CLT) Market Size To Grow USD 5.03 Billion By 2030. Dans: Spherical Insights. [Consulté le 17 novembre 2023]. https://www.sphericalinsights.com/press-release/cross-laminated-timber-clt-market
243 Ove Arup & Partners Limited. 2023. Buildings & Infrastructure Priority Actions for Sustainability Embodied Carbon Steel Reference: 07762000-RP-SUS-0001. 02. Londres. https://www.istructe.org/IStructE/media/Public/Resources/ARUP-Embodied-carbon-steel_1.pdf
244 Souza, E. 2021. Is Mass Timber a Good Choice for Seismic Zones? Dans: ArchDaily. [Consulté le 13 juin 2023]. https://www.archdaily.com/967285/is-mass-timber-a-good-choice-for-seismic-zones#
245 Lehmann, S. et Kremer, P. 2023. Filling the Knowledge Gaps in Mass Timber Construction. Mass Timber Construction Journal, 6(1). [Consulté le 13 juin 2023]. https://www.journalmtc.com/index.php/mtcj/article/view/34
246 Bates, J. 2023. Earthquake tests could help wooden structures reach new heights. Dans: National Science Foundation. [Consulté le 17 novembre 2023]. https://new.nsf.gov/science-matters/earthquake-tests-could-help-wooden-structures
247 Sustersic, I. et Dujic, B. 2014. «Seismic shaking table testing of a reinforced concrete frame with masonry infill strengthened with cross laminated timber panels». Exposé présenté lors de la Conférence mondiale sur l’ingénierie du bois (WCTE), Ville de Québec (Canada), août 2014. [Consulté le 13 juin 2024]. https://www.researchgate.net/publication/
272293490_Seismic_shaking_table_testing_of_a_reinforced_concrete_frame_with_masonry_infill_strengthened_with_cross_laminated_timber_panels
248 Anderson, J. A. 2022. A Timber Sky scraper on a concrete midrise. Conférence Woodrise sur le thème «Rénovation, restauration, réhabilitation», Portorož (Slovénie), 6-9 septembre 2022.
249 Wright, J. 2022. The biggest vertical extension in North America. Conférence Woodrise sur le thème «Rénovation, restauration, réhabilitation», Portorož (Slovénie), 6-9 septembre 2022.
250 FAO. 2023. La Situation mondiale de l’alimentation et de l’agriculture 2023. Pour une transformation des systèmes agroalimentaires: connaître le coût véritable des aliments. Rome. https://doi.org/10.4060/cc7724fr
251 Lowder, S. K., Sánchez, M. V. et Bertini, R. 2021. Which farms feed the world and has farmland become more concentrated? World Development, 142: 105455. https://doi.org/10.1016/j.worlddev.2021.105455
252 FAO. 2019. Farmers taking the lead – 30 years of Farmer Field Schools [video]. Dans: FAO. [Consulté le 13 juin 2024]. https://www.fao.org/family-farming/detail/en/c/1236143/
253 FAO. 2022. What have we learned from trees? Three decades of farmer field schools on agroforestry and forestry. Rome. https://doi.org/10.4060/cc2258en
254 Van Den Berg, H., Phillips, S., Dicke, M. et Fredrix, M. 2020. Impacts of farmer field schools in the human, social, natural and financial domain: a qualitative review. Food Security, 12(6): 1443-1459. https://doi.org/10.1007/s12571-020-01046-7
255 FAO. 2023. Enabling “Response-ability”: A stocktaking of farmer field schools on smallholder forestry and agroforestry. Rome. https://doi.org/10.4060/cc8043en
256 FAO. 2023. Enabling farmer-led ecosystem restoration: Farmer field schools on forestry and agroforestry. Rome. https://doi.org/10.4060/cc6315en
257 CARE international. 2023. Farmer Field and Business Schools (FFBS). Dans: CARE International. [Consulté le 18 décembre 2023]. https://www.care.org/our-work/food-and-nutrition/agriculture/ffbs/
258 Colfer, C. J. P., Sijapati Basnett, B. et Elias, M. 2016. Gender and Forests: Climate Change, Tenure, Value Chains and Emerging Issues. CIFOR-ICRAF (Centre international pour la recherche en agroforesterie – Centre mondial d'agroforesterie). https://wedocs.unep.org/20.500.11822/43293
259 Cooper, K. L. 2020. Lead the Change – The Competitive Advantage of Gender Diversity and Inclusion: The Competitive Advantage of Gender Diversity et Inclusion. Centre for Social Intelligence. [Consulté le 13 juin 2024]. https://books.google.it/books?id=-BOczQEACAAJ
260 Pascual, U., Balvanera, P., Anderson, C.B., Chaplin-Kramer, R., Christie, M., González-Jiménez, D., Martin, A. et al. 2023. Diverse values of nature for sustainability. Nature, 620(7975): 813-823. https://doi.org/10.1038/s41586-023-06406-9
261 Irving, K. 2022. Younger scientists are more innovative, study finds. Dans: The Scientist: exploring life, inspiring innovation, 28 octobre 2022. [Consulté le 20 février 2024]. https://www.the-scientist.com/news-opinion/younger-scientists-are-more-innovative-study-finds-70700
262 Dietershagen, J. et Bammann, H. 2023. Opportunities for youth in the bioeconomy: Opportunities and barriers for youth employment and entrepreneurship in the emerging bioeconomy sectors. FAO Agricultural Development Economics Technical Study. Rome, FAO. https://doi.org/10.4060/cc8238en
263 FAO. 2021. Call to action on forest education. Rome. https://www.fao.org/3/cb5258fr/cb5258fr.pdf
264 Dean, D. J. 2023. Soft Skills as a Conscious Choice to Greater Collaboration at Work. Dans: J. Marques, (sous la direction de). The Palgrave Handbook of Fulfillment, Wellness, and Personal Growth at Work. p. 19-32. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-031-35494-6_2
265 Fazey, I., Evely, A. C., Reed, M. S., Stringer, L. C., Kruijsen, J., White, P. C. L., Newsham, A. et al. 2013. Knowledge exchange: a review and research agenda for environmental management. Environmental Conservation, 40(1): 19-36. https://doi.org/10.1017/S037689291200029X
266 ONU/DESA (Département des affaires économiques et sociales). 2021. Transformational partnerships and partnership platforms. Policy Brief 103. Rome, ONU/DESA. [Consulté le 13 juin 2024]. https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-103-transformational-partnerships-and-partnership-platforms/
267 Näyhä, A. 2019. Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. Journal of Cleaner Production, 209: 1294-1306. https://doi.org/10.1016/j.jclepro.2018.10.260
268 FAO. 2022. Perspectives sur les technologies et l’innovation dans le domaine des systèmes agroalimentaires. Rome. https://doi.org/10.4060/cc2506fr
269 Rao, G. N., Williams, J. R., Walsh, M. et Moore, J. 2017. America’s Seed Fund: How the SBIR/STTR Programs Help Enable Catalytic Growth and Technological Advances. Technology & Innovation, 18(4): 315-318. https://doi.org/10.21300/18.4.2017.315
270 Cirera, X. et Maloney, W. F. 2017. The Innovation Paradox: Developing-Country Capabilities and the Unrealized Promise of Technological Catch-Up. Washington, Banque mondiale. https://doi.org/10.1596/978-1-4648-1160-9
271 Mead, D. 2004. Agroforestry. Forests and forest plants. Encyclopedia of Life Science Systems, 1. Oxford (Royaume-Uni), EOLSS Publishers.
272 American Wood Council. 2021. What is cross laminated timber (CLT)? Dans: American Wood Council. [Consulté le 22 février 2024]. https://awc.org/faq/what-is-cross-laminated-timber-clt/
273 Stanturf, J., Mansourian, S. et Kleine, M. (sous la direction de). 2017. Implementing forest landscape restoration – A practitioner’s guide. Vienne, Union internationale des instituts de recherche forestière.
274 Évaluation des écosystèmes pour le millénaire (sous la direction de). 2005. Les écosystèmes et le bien-être de l’Homme: un cadre d’évaluation. Résumé. Washington, Island Press.
275 Martínez Pastur, G., Perera, A. H., Peterson, U. et Iverson, L. R. 2018. Ecosystem Services from Forest Landscapes: An Overview. Dans: A. H. Perera, U. Peterson, G. M. Pastur et L. R. Iverson (sous la direction de). Ecosystem Services from Forest Landscapes. p. 1-10. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-74515-2_1
276 FAO. 2014. La situation mondiale de l’alimentation et de l’agriculture – Ouvrir l’agriculture familiale à l’innovation. Rome. https://www.fao.org/3/i4040f/i4040f.pdf
277 FAO. 1999. Towards a harmonized definition of non-wood forest products. Unasylva, 50(198): 63-64.
278 FAO. 2012. Smallholders and family farmers. Rome. https://www.fao.org/3/ar588e/ar588e.pdf
279 UNESCO (Organisation des Nations Unies pour l’éducation, la science et la culture). 2017. Guidelines on sustainability science in research and education. Paris. [Consulté le 13 juin 2023] https://unesdoc.unesco.org/ark