GLOSARIO
1 Klerkx, L., Jakku, E. y Labarthe, P. 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90–91: 100315. https://doi.org/10.1016/j.njas.2019.100315
2 Schroeder, K., Lampietti, J. y Elabed, G. 2021. What’s cooking: Digital transformation of the agrifood system. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/35216
3 Birner, R., Daum, T. y Pray, C. 2021. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Applied Economic Perspectives and Policy, 43(4): 1260–1285. https://doi.org/10.1002/aepp.13145
4 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf
5 FAO. 2016. Sustainable agricultural mechanization. Nota informativa. Roma. www.fao.org/3/i6167e/i6167e.pdf
6 FAO y Comisión de la Unión Africana (CUA). 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf
7 FAO. 2021. El estado mundial de la agricultura y la alimentación 2021. Lograr que los sistemas agroalimentarios sean más resilientes a las perturbaciones y tensiones. Roma. https://doi.org/10.4060/cb4476es
8 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
9 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.
10 FAO. 2017. Conservation agriculture. Hoja de datos. Roma. www.fao.org/3/i7480en/I7480EN.pdf
11 Sociedad internacional de agricultura de precisión (ISPA). 2021. Precision Ag Definition. En: ISPA. Monticello, IL (Estados Unidos). [Consultado el 20 de diciembre de 2021]. www.ispag.org/about/definition
12 Lowenberg-DeBoer, J., Huang, I.Y., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5
13 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.
14 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.
Capítulo 1
1 ISPA. 2021. Precision Ag Definition. En: ISPA. Monticello, IL (Estados Unidos). [Consultado el 20 de diciembre de 2021]. www.ispag.org/about/definition
2 Mazoyer, M. y Roudart, L. 2006. A history of world agriculture: From the Neolithic Age to the current crisis. Nueva York, NYU Press.
3 Pingali, P. 2007. Chapter 54 Agricultural mechanization: Adoption patterns and economic impact. En: R. Evenson y P. Pingali, (coords.). Handbook of agricultural economics, págs. 2779-2805. Amsterdam, Elsevier. https://doi.org/10.1016/S1574-0072(06)03054-4
4 Hurt, R.D. 1982. American farm tools: From hand power to steam power. Sunflower University Press. Manhattan, KS (Estados Unidos).
5 Daum, T., Huffman, W. y Birner, R. 2018. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Economics Working Paper. Ames (Estados Unidos), Department of Economics, Iowa State University. https://lib.dr.iastate.edu/econ_workingpapers/47
6 Johnson, D.G. 2000. Population, food, and knowledge. The American Economic Review, 90(1): 1–14. www.jstor.org/stable/117278
7 Michaels, G., Rauch, F. y Redding, S.J. 2012. Urbanization and structural transformation. The Quarterly Journal of Economics, 127(2): 535–586. www.jstor.org/stable/23251993
8 Gollin, D., Parente, S. y Rogerson, R. 2002. The role of agriculture in development. The American Economic Review, 92(2): 160–164. www.jstor.org/stable/3083394
9 Lewis, W.A. 1954. Economic development with unlimited supplies of labour. The Manchester School, 22(2): 139–191. https://doi.org/10.1111/j.1467-9957.1954.tb00021.x
10 USDA Economic Research Service. 2021. Agriculture and its related industries provide 10.3 percent of U.S. employment. En: USDA. Washington D. C. [Consultado el 22 de abril de 2022]. www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58282
11 Lowenberg-DeBoer, J. y Erickson, B. 2019. Setting the record straight on precision agriculture adoption. Agronomy Journal, 111(4): 1552–1569. https://doi.org/10.2134/agronj2018.12.0779
12 Kumar, P., Lorek, T., Olsson, T.C., Sackley, N., Schmalzer, S. y Laveaga, G.S. 2017. Roundtable: New Narratives of the Green Revolution. Agricultural History, 91(3): 397–422. https://www.academia.edu/36689104/Roundtable_New_Narratives_of_the_Green_Revolution_Agricultural_History_91_3_Summer_2017_pp_397_422
13 Shiva, V. 1991. The violence of the green revolution: Third World agriculture, ecology and politics. Londres, Zed Books.
14 FAO. 2016. Sustainable agricultural mechanization. Hoja de datos. Roma. www.fao.org/3/i6167e/i6167e.pdf
15 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf
16 Gan, H. y Lee, W.S. 2018. Development of a navigation system for a smart farm. IFAC-PapersOnLine, 51(17): 1–4. https://doi.org/10.1016/j.ifacol.2018.08.051
17 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5
18 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital technologies in agriculture and rural areas – Status report. Roma, FAO. www.fao.org/3/ca4985en/CA4985EN.pdf
19 FAO. 2022. FAOSTAT: Indicadores de empleo: Agricultura. En: FAO. Roma. [Consultado el 6 de febrero de 2022]. https://www.fao.org/faostat/es/#data/OEA
20 Charlton, D., Hill, A.E. y Taylor, E.J. 2022. Automation and social impacts: winners and losers. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-09 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
21 Silva, J.V., Baudron, F., Reidsma, P. y Giller, K.E. 2019. Is labour a major determinant of yield gaps in sub-Saharan Africa? A study of cereal-based production systems in Southern Ethiopia. Agricultural Systems, 174: 39–51. https://doi.org/10.1016/j.agsy.2019.04.009
22 Baudron, F., Misiko, M., Getnet, B., Nazare, R., Sariah, J. y Kaumbutho, P. 2019. A farm-level assessment of labor and mechanization in Eastern and Southern Africa. Agronomy for Sustainable Development, 39(2): 17. https://doi.org/10.1007/s13593-019-0563-5
23 Diao, X., Cossar, F., Houssou, N. y Kolavalli, S. 2014. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy, 48: 168–181. https://doi.org/10.1016/j.foodpol.2014.05.013
24 Fuglie, K., Gautam, M., Goyal, A. y Maloney, W.F. 2019. Harvesting prosperity: Technology and productivity growth in agriculture. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/32350
25 Lowder, S.K., Sánchez, M.V. y Bertini, R. 2019. Farms, family farms, farmland distribution and farm labour: What do we know today? Documento de trabajo n.º 19-08 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO. www.fao.org/3/ca7036en/ca7036en.pdf
26 Takeshima, H. y Vos, R. 2022. Agricultural mechanisation and child labour in developing countries. Estudio de antecedentes. Roma, FAO. www.fao.org/3/cb8550en/cb8550en.pdf
27 Johnston, D., Stevano, S., Malapit, H.J., Hull, E. y Kadiyala, S. 2018. Review: Time use as an explanation for the agri-nutrition disconnect: Evidence from rural areas in low and middle-income countries. Food Policy, 76: 8–18. https://doi.org/10.1016/j.foodpol.2017.12.011
28 Daum, T. y Birner, R. 2021. The forgotten agriculture-nutrition link: farm technologies and human energy requirements. Food Security. https://doi.org/10.1007/s12571-021-01240-1
29 Ogwuike, P., Rodenburg, J., Diagne, A., Agboh-Noameshie, A.R. y Amovin-Assagba, E. 2014. Weed management in upland rice in sub-Saharan Africa: impact on labor and crop productivity. Food Security, 6(3): 327–337. https://doi.org/10.1007/s12571-014-0351-7
30 Castro, Á., Pereira, J.M., Amiama, C. y Bueno, J. 2015. Typologies of dairy farms with automatic milking system in northwest Spain and farmers’ satisfaction. Italian Journal of Animal Science, 14(2): 3559. https://doi.org/10.4081/ijas.2015.3559
31 Hansen, B.G. y Stræte, E.P. 2020. Dairy farmers’ job satisfaction and the influence of automatic milking systems. NJAS - Wageningen Journal of Life Sciences, 92(1): 1–13. https://doi.org/10.1016/j.njas.2020.100328
32 Taylor, J.E. y Charlton, D. 2018. The farm labor problem: A global perspective. Amsterdam, Elsevier Academic Press.
33 Daum, T. y Kirui, O. 2021. Mechanization along the value chain. En: J. von Braun, A. Admassie, S. Hendriks, G. Tadesse y H. Baumüller, (coords.). From potentials to reality: Transforming Africa’s food production. Peter Lang, Berna.
34 Maucorps, A., Münch, A., Brkanovic, S., Schuh, B., Dwyer, J., Vigani, M., Khafagy, A. et al. 2019. Research for AGRI committee - The EU farming employment: current challenges and future prospects. Estudio y Anexo. En: Think Tank – European Parliament. [Consultado el 17 de febrero de 2022]. www.europarl.europa.eu/thinktank/en/document/IPOL_STU(2019)629209
35 National Farmers’ Union. 2019. The future of food 2040. Stoneleigh (Reino Unido). www.nfuonline.com/archive?treeid=116020
36 Charlton, D., Taylor, J.E., Vougioukas, S. y Rutledge, Z. 2019. Can wages rise quickly enough to keep workers in the fields? Choices, 34(2): 1–7. www.choicesmagazine.org/choices-magazine/submitted-articles/can-wages-rise-quickly-enough-to-keep-workers-in-the-fields
37 Ali, I., Nagalingam, S. y Gurd, B. 2017. Building resilience in SMEs of perishable product supply chains: enablers, barriers and risks. Production Planning & Control, 28(15): 1236–1250. https://doi.org/10.1080/09537287.2017.1362487
38 Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D. y Fotopoulos, C. 2014. Firm size and sustainable performance in food supply chains: Insights from Greek SMEs. International Journal of Production Economics, 152: 112–130. https://doi.org/10.1016/j.ijpe.2013.12.029
39 Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L. y Daszak, P. 2008. Global trends in emerging infectious diseases. Nature, 451: 990–993. https://doi.org/10.1038/nature06536
40 Centro para la Mecanización Agrícola Sostenible (CSAM) y Comisión Económica y Social para Asia y el Pacífico (CESPAP). 2020. Mechanization solutions for improved livestock management and prevention & control of zoonotic diseases. Beijing. www.un-csam.org/sites/default/files/2021-01/ENG.pdf
41 Ali, I. y Aboelmaged, M.G.S. 2021. Implementation of supply chain 4.0 in the food and beverage industry: perceived drivers and barriers. International Journal of Productivity and Performance Management.
42 Daum, T. 2021. Farm robots: ecological utopia or dystopia? Trends in Ecology & Evolution, 36(9): 774–777. https://doi.org/10.1016/j.tree.2021.06.002
43 Streed, A., Tomlinson, B., Kantar, M. y Raghavan, B. 2021. How sustainable is the smart farm? Paper presented at LIMITS 2021, 14-15 de junio de 2021. https://computingwithinlimits.org/2021/papers/limits21-streed.pdf
44 Schillings, J., Bennett, R. y Rose, D.C. 2021. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Frontiers in Animal Science, 2: 639678. https://doi.org/10.3389/fanim.2021.639678
45 Berckmans, D. 2014. Precision livestock farming technologies for welfare management in intensive livestock systems. Scientific and Technical Review – OIE, 33(1): 189–196.
46 Werkheiser, I. 2018. Precision livestock farming and farmers’ duties to livestock. Journal of Agricultural and Environmental Ethics, 31: 181–195. https://doi.org/10.1007/s10806-018-9720-0
47 Bos, J.M., Bovenkerk, B., Feindt, P.H. y van Dam, Y.K. 2018. The quantified animal: Precision livestock farming and the ethical implications of objectification. Food Ethics, 2(1): 77–92. https://doi.org/10.1007/s41055-018-00029-x
48 Miles, C. 2019. The combine will tell the truth: On precision agriculture and algorithmic rationality. Big Data & Society, 6(1): 2053951719849444.
49 Duncan, E., Glaros, A., Ross, D.Z. y Nost, E. 2021. New but for whom? Discourses of innovation in precision agriculture. Agriculture and Human Values, 38: 1181–1199. https://doi.org/10.1007/s10460-021-10244-8
50 Wiseman, L., Sanderson, J., Zhang, A. y Jakku, E. 2019. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS - Wageningen Journal of Life Sciences, 90–91: 100301. https://doi.org/10.1016/j.njas.2019.04.007
51 Murray, U., Gebremedhin, Z., Brychkova, G. y Spillane, C. 2016. Smallholder farmers and climate smart agriculture: Technology and labor-productivity constraints amongst women smallholders in Malawi. Gender, Technology and Development, 20(2): 117–148. https://doi.org/10.1177/0971852416640639
52 Conferencia de las Naciones Unidas sobre Comercio y Desarrollo (UNCTAD). 2020. Teaching Material on Trade and Gender Linkages: The Gender Impact of Technological Upgrading in Agriculture. Nueva York, Naciones Unidas. https://unctad.org/system/files/official-document/ditc2020d1.pdf
53 FAO. 2019. Youth employment: Youth agri-food policy assistance. Roma. www.fao.org/3/ca3854en/ca3854en.pdf
54 Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P. y Dewhurst, M. 2017. A future that works: automation, employment, and productivity. Nueva York, McKinsey Global Institute. www.mckinsey.com/~/media/mckinsey/featured%20insights/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Executive-summary.ashx
55 Autor, D.H. 2015. Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3): 3–30. www.aeaweb.org/articles?id=10.1257/jep.29.3.3
56 Organización Internacional del Trabajo (OIT). 2022. Agriculture; plantations; other rural sectors. En: OIT. Ginebra. [Consultado el 14 de febrero de 2022]. www.ilo.org/global/industries-and-sectors/agriculture-plantations-other-rural-sectors/lang--en/index.htm
57 Christiaensen, L., Rutledge, Z. y Taylor, J.E. 2021. Viewpoint: The future of work in agri-food. Food Policy, 99: 101963.
58 Daum, T. y Birner, R. 2020. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26: 100393. https://doi.org/10.1016/j.gfs.2020.100393
59 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf
60 Clarke, C. 2017. Farmers in Myanmar are using 3D printing to improve farming production. En: 3D Printing Industry. [Consultado el 24 de julio de 2022]. https://3dprintingindustry.com/?s=myanmar
61 Fielke, S.J., Botha, N., Reid, J., Gray, D., Blackett, P., Park, N. y Williams, T. 2018. Lessons for co-innovation in agricultural innovation systems: a multiple case study analysis and a conceptual model. The Journal of Agricultural Education and Extension, 24(1): 9–27. https://doi.org/10.1080/1389224X.2017.1394885
62 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.
63 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.
64 Daum, T. 2022. Agricultural mechanization and sustainable agri-food system transformation in the Global South. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-11 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
65 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
66 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.
Capítulo 2
1 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.
2 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.
3 White, W.J. 2001. An unsung hero: the farm tractor’s contribution to twentieth-century United States economic growth. The Journal of Economic History, 61(2): 493–496. https://EconPapers.repec.org/RePEc:cup:jechis:v:61:y:2001:i:02:p:493-496_23
4 Binswanger, H. 1986. Agricultural mechanization: a comparative historical perspective. The World Bank Research Observer, 1(1): 27–56. https://doi.org/10.1093/wbro/1.1.27
5 Mrema, G., Soni, P. y Rolle, R.S. 2015. A Regional Strategy for Sustainable Agricultural Mechanization. Sustainable Mechanization across Agri-Food Chains in Asia and the Pacific region. RAP Publication n.º 2014/24. Roma FAO. www.fao.org/documents/card/en/c/78c1b49f-b5c2-43b5-abdf-e63bb6955f4f
6 Diao, X., Takeshima, H. y Zhang, X. 2020. An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? Washington D. C., IFPRI (Instituto Internacional de Investigación sobre Políticas Alimentarias). https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134095
7 Daum, T. y Birner, R. 2020. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26: 100393. https://doi.org/10.1016/j.gfs.2020.100393
8 Kirui, O. 2019. The agricultural mechanization in Africa: Micro-level analysis of state drivers and effects. ZEF-Discussion Papers on Development Policy n.º 272. Universidad de Bonn. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3368103
9 FAO. 2021. FAOSTAT: Series de datos y archivos suspendidos: Maquinaria. En: FAO. Roma. [Consultado el 1 de diciembre de 2021]. https://www.fao.org/faostat/es/#data/RM
10 Comisión Económica para América Latina y el Caribe (CEPAL), FAO e Instituto Interamericano de Cooperación para la Agricultura (IICA). 2017. Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, IICA. https://www.fao.org/3/i8048es/I8048ES.pdf
11 Elverdin, P., Piñeiro, V. y Robles, M. 2018. Agricultural mechanization in Latin America. Documento de debate del IFPRI n.º 1740. Washington D. C., IFPRI.
12 Cramb, R. y Thepent, V. 2020. Evolution of agricultural mechanization in Thailand. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 165-201. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134091/filename/134311.pdf
13 Justice, S. y Biggs, S. 2020. The spread of smaller engines and markets in machinery services in rural areas of South Asia. Journal of Rural Studies, 73: 10–20. https://doi.org/10.1016/j.jrurstud.2019.11.013
14 Belton, B., Win, M.T., Zhang, X. y Filipski, M. 2021. The rapid rise of agricultural mechanization in Myanmar. Food Policy, 101: 102095. https://doi.org/10.1016/j.foodpol.2021.102095
15 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf
16 Pingali, P. 2007. Chapter 54 Agricultural mechanization: Adoption patterns and economic impact. En: R. Evenson y P. Pingali, (coords.). Handbook of agricultural economics, págs. 2779-2805. Amsterdam, Elsevier. https://doi.org/10.1016/S1574-0072(06)03054-4
17 Banco Mundial. 2022. Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). En: El Banco Mundial. Washington D. C. [Consultado el 5 de enero de 2022]. https://www.worldbank.org/en/programs/lsms/initiatives/lsms-ISA
18 Abeyratne, F. y Takeshima, H. 2020. The evolution of agricultural mechanization in Sri Lanka. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 139-163. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_04
19 Ahmed, M. y Takeshima, H. 2020. Evolution of agricultural mechanization in Bangladesh: The case of tractors for land preparation. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 235-261. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_07
20 Win, M.T., Belton, B. y Zhang, X. 2020. Myanmar’s rapid agricultural mechanization: Demand and supply evidence. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 263-284. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_08
21 Bhattarai, M., Singh, G., Takeshima, H. y Shekhawat, R.S. 2020. Farm machinery use and the agricultural machinery industries in India. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 97-138. Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134090
22 Antle, J.M. y Ray, S. 2020. Sustainable agricultural development: An economic perspective. Palgrave Studies in Agricultural Economics and Food Policy. Cham, Springer International Publishing. http://link.springer.com/10.1007/978-3-030-34599-0
23 Veimar da Silva, A., Michelle da Silva, C., Wagner, Soares Pessoa, W.R.L, Almeida Vaz, M., Matos de Oliveira, K. y Ribeiro dos Santos, F.S. 2018. Agricultural mechanization in small rural properties in the State of Piauí, Brazil. African Journal of Agricultural Research, 13(33): 1698–1707. https://academicjournals.org/journal/AJAR/article-full-text-pdf/7E9E9CA58112
24 Mrema, G.C., Kahan, D.G. y Agyei-Holmes, A. 2020. Agricultural mechanization in Tanzania. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 457-496. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_14
25 Takeshima, H. y Lawal, A. 2020. Evolution of agricultural mechanization in Nigeria. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 423-456. Washington D. C., IFPRI.
26 Herrero, M., Thornton, P.K., Mason-D’Croz, D., Palmer, J., Benton, T.G., Bodirsky, B.L., Bogard, J.R. et al. 2020. Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1: 266–272. https://doi.org/10.1038/s43016-020-0074-1
27 Ehlers, M.-H., Finger, R., El Benni, N., Gocht, A., Sørensen, C.A.G., Gusset, M., Pfeifer et al. 2022. Scenarios for European agricultural policymaking in the era of digitalisation. Agricultural Systems, 196: 103318. https://doi.org/10.1016/j.agsy.2021.103318
28 Fleming, A., Jakku, E., Lim-Camacho, L., Taylor, B. y Thorburn, P. 2018. Is big data for big farming or for everyone? Perceptions in the Australian grains industry. Agronomy for Sustainable Development, 38: 24. https://doi.org/10.1007/s13593-018-0501-y
29 Sistema Mundial de Comunicaciones Móviles (GSM). 2020. The mobile economy 2020. www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
30 Onukwue, A. 2022. Google’s subsea cable for Africa is making its first landing in Togo. En: Quartz Africa. Nueva York. [Consultado el 24 de julio de 2022]. https://qz.com/africa/2143897/googles-equiano-cable-is-making-its-first-landing-in-togo
31 Steinke, J., Ortiz-Crespo, B., van Etten, J. y Müller, A. 2022. Participatory design of digital innovation in agricultural research-for-development: insights from practice. Agricultural Systems, 195: 103313. https://doi.org/10.1016/j.agsy.2021.103313
32 McCampell, M. 2021. More than what meets the eye: Factors and processes that shape the design and use of digital agricultural advisory and decision support in Africa. Universidad de Wageningen, (Países Bajos). https://research.wur.nl/en/publications/388eb987-15f2-4fb0-b9c1-f0f6ff342e98
33 Tsan, M., Totapally, S., Hailu, M. y Addom, B. 2019. The digitalisation of African agriculture report 2018-2019. Wageninghen (Países Bajos). CTA (Centro Técnico de Cooperación Agrícola y Rural). www.cta.int/en/digitalisation-agriculture-africa
34 FAO y Unión Internacional de Telecomunicaciones (UIT). 2022. Status of digital agriculture in 47 sub-Saharan African countries. Roma. www.fao.org/3/cb7943en/cb7943en.pdf
35 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital technologies in agriculture and rural areas – Status report. Roma, FAO. www.fao.org/3/ca4985en/CA4985EN.pdf
36 Viet Nam News. 2021. Hà Nội aims to develop smart agriculture. En: Viêt Nam News. Hanói. [Consultado el 1 de mayo de 2022]. https://vietnamnews.vn/economy/1082482/ha-noi-aims-to-develop-smart-agriculture.html
37 Musoni, M. 2020. Smart farming in Rwanda – How farmers can increase crop yields through an IoT-based irrigation system. En: Digital Transformation Center. Kigali. [Consultado el 1 de mayo de 2022]. https://digicenter.rw/smart-farming-in-rwanda-with-an-iot-based-irrigation-system
38 GSMA. 2020. Digital agriculture maps: 2020 state of the sector in low and middle-income countries. Londres. www.gsma.com/r/wp-content/uploads/2020/09/GSMA-Agritech-Digital-Agriculture-Maps.pdf
39 FAO y Academia China de Agronomía (CAAS). 2021. Carbon neutral tea production in China – Three pilot case studies. Roma, FAO. www.fao.org/documents/card/en/c/cb4580en
40 Nyaga, J.M., Onyango, C.M., Wetterlind, J. y Söderström, M. 2021. Precision agriculture research in sub-Saharan Africa countries: a systematic map. Precision Agriculture, 22: 1217–1236. https://doi.org/10.1007/s11119-020-09780-w
41 Onyango, C.M., Nyaga, J.M., Wetterlind, J., Söderström, M. y Piikki, K. 2021. Precision agriculture for resource use efficiency in smallholder farming systems in sub-Saharan Africa: A systematic review. Sustainability, 13(3): 1158. https://doi.org/10.3390/su13031158
42 Instituto Africano de Nutrición Vegetal (APNI). 2020. Proceedings for the 1st African Conference on Precision Agriculture, Benguérir (Marruecos), 8–10 de diciembre de 2020. En: APNI. www.apni.net/2021/03/18/new-publication-proceedings-for-1st-african-conference-on-precision-agriculture
43 Witt, C. y Dobermann, A. 2002. A site-specific nutrient management approach for irrigated, lowland rice in Asia. Better Crops International, 16(1): 20–24. https://www.researchgate.net/publication/237258623_A_Site-Specific_Nutrient_Management_Approach_for_Irrigated_Lowland_Rice_in_Asia
44 Agrocares. 2022. Manage soil fertility: Informed fertilization decisions in the field. En: Agrocares. [Consultado el 24 de julio de 2022]. www.agrocares.com/soilcares
45 Lowenberg-DeBoer, J. y Erickson, B. 2019. Setting the record straight on precision agriculture adoption. Agronomy Journal, 111(4): 1552–1569. https://doi.org/10.2134/agronj2018.12.0779
46 Van Beek, C. 2020. Adoption level is the most underestimated factor in fertiliser recommendations. En: Agrocares. [Consultado el 24 de julio de 2022]. www.agrocares.com/wp-content/uploads/2020/10/whitepaper-christy-van-beek-1.pdf
47 GoMicro. 2022. Phone QC. En: GoMicro. Singapur. [Consultado el 1 de mayo de 2022]. www.gomicro.co
48 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
49 UIT. 2020. Measuring digital development: Facts and figures 2020. Ginebra, UIT. www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf
50 Hanton, J.P. y Leach, H.A. 1974. Electronic livestock identification system. Patente estadounidense 4,262,632. https://patentimages.storage.googleapis.com/6c/49/f1/e746f5f7bca33e/US4262632.pdf
51 Brustein, J. 2014. GPS as we know it happened because of Ronald Reagan. En: Bloomberg News. [Consultado el 24 de julio de 2022]. www.bloomberg.com/news/articles/2014-12-04/gps-as-we-know-it-happened-because-of-ronald-reagan
52 Rip, M.R. y Hasik, J.M. 2002. The precision revolution: GPS and the future of aerial warfare. Annapolis, MD (Estados Unidos), Naval Institute Press.
53 Sheets, K.D. 2018. The Japanese impact on global drone policy and law: Why a laggard United States and other nations should look to Japan in the context of drone usage. Indiana Journal of Global Legal Studies, 25(1): 513–537. www.repository.law.indiana.edu/ijgls/vol25/iss1/20
54 Mulla, D. y Khosla, R. 2016. Historical evolution and recent advances in precision farming. En: R. Lal y B.A. Stewart, (coords.) Soil-specific farming – Precision farming. Boca Ratón, FL (Estados Unidos), CRC Press.
55 Lely. 2022. Our history. En: Lely. Maassluis (Países Bajos). [Consultado el 1 de marzo de 2022]. www.lely.com/gb/about-lely/our-company/history
56 Sharipov, D.R., Yakimov, O.A., Gainullina, M.K., Kashaeva, A.R. y Kamaldinov, I.N. 2021. Development of automatic milking systems and their classification. IOP Conference Series: Earth and Environmental Science, 659: 012080. https://iopscience.iop.org/article/10.1088/1755-1315/659/1/012080
57 Rural Retailer. 2002. Arro TM targets growing need for Steering Assist®. In: Rural Retailer. [Consultado el 24 de julio de 2022]. www.ccimarketing.com/farmsupplier_com/pages/html1.asp
58 Reusch, S. 1997. Entwicklung eines reflexionsoptischen Sensors zur Erfassung der Stickstoffversorgung landwirtschaftlicher Kulturpflanzen [Desarrollo de un sensor óptico de reflexión para registrar el suministro de nitrógeno en los cultivos agrícolas]. Tesis doctoral. Arbeitskreis Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI [Grupo de trabajo de investigación y docencia de la Sociedad Max Eyth de Ingeniería Agrícola en la VDI].
59 Trimble. 2006. Trimble combines GPS guidance and rate control to automate agricultural spraying operations. En: Trimble. [Consultado el 24 de julio de 2022]. https://investor.trimble.com/news-releases/news-release-details/trimble-combines-gps-guidance-and-rate-control-automate
60 Ag Leader. 2022. History timeline. En: Ag Leader. [Consultado el 24 de julio de 2022]. www.agleader.com/our-history
61 Ecorobotix. 2022. A bit of history. En: Ecorobotix. [Consultado el 1 de marzo de 2022]. https://ecorobotix.com/en/a-bit-of-history
62 Naïo Technologies. 2022. Naïo Technologies, agricultural robotics pioneers. En: Naïo Technologies. [Consultado el 1 de marzo de 2022]. http://www.naio-technologies.com/en/naio-technologies/#:~:text=Founded%20in%202011%2C%20Na%C3%AFo%20Technologies,use%20of%20chemical%20weed%20killers
63 Claas. 2022. Product history. The combine harvester. En: Claas. [Consultado el 1 de marzo de 2022]. www.claas.co.uk/company/history/products/combines/lexion
64 Hands Free Hectare. 2018. Timeline. En: Hands Free Hectare. [Consultado el 1 de marzo de 2022]. https://www.handsfreehectare.co.uk/timeline.html
65 Smart Ag. 2018. Smart Ag unveils autocart driverless tractor technology at 2018 Farm Progress Show. En: OEM Off-highway. [Consultado el 1 de marzo de 2022]. www.oemoffhighway.com/trends/gps-automation/news/21020794/smart-ag-unveils-autocart-driverless-tractor-technology-at-2018-farm-progress-show
66 John Deere. 2022. John Deere reveals fully autonomous tractor at CES 2022. En: John Deere. [Consultado el 1 de marzo de 2022]. www.deere.com/en/news/all-news/autonomous-tractor-reveal
67 Birner, R., Daum, T. y Pray, C. 2021. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Applied Economic Perspectives and Policy, 43(4): 1260–1285. https://doi.org/10.1002/aepp.13145
68 Knight, C.H. 2020. Review: Sensor techniques in ruminants: more than fitness trackers. Animal, 14: s187–s195. https://doi.org/10.1017/S1751731119003276
69 Eastwood, C.R. y Renwick, A. 2020. Innovation uncertainty impacts the adoption of smarter farming approaches. Frontiers in Sustainable Food Systems, 4: 24. www.readcube.com/articles/10.3389%2Ffsufs.2020.00024
70 Hansen, B.G. 2015. Robotic milking-farmer experiences and adoption rate in Jæren, Norway. Journal of Rural Studies, 41: 109–117. https://doi.org/10.1016/j.jrurstud.2015.08.004
71 Steeneveld, W., Tauer, L.W., Hogeveen, H. y Oude Lansink, A.G.J.M. 2012. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. Journal of Dairy Science, 95(12): 7391–7398. https://doi.org/10.3168/jds.2012-5482
72 Drach, U., Halachmi, I., Pnini, T., Izhaki, I. y Degani, A. 2017. Automatic herding reduces labour and increases milking frequency in robotic milking. Biosystems Engineering, 155: 134–141.
73 Verified Market Research. 2020. Global milking robots market size by type, by herd size, by geographic scope and forecast. En: Verified Market Research. [Consultado el 24 de julio de 2022]. www.verifiedmarketresearch.com/product/milking-robots-market
74 Markets and Markets. 2018. Milking robots market by offering (hardware, software, service), milking robots system type (single-stall unit, multi-stall unit, automated milking rotary), herd size (below 100, between 100 and 1,000 and above 1,000), geography - Global forecast to 2023. En: Markets and Markets. [Consultado el 24 de julio de 2022]. www.marketsandmarkets.com/Market-Reports/milking-robots-market-170643611.html
75 Rodenburg, J. 2017. Robotic milking: Technology, farm design, and effects on work flow. Journal of Dairy Science, 100(9): 7729–7738. https://doi.org/10.3168/jds.2016-11715
76 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.
77 Ordolff, D. 2001. Introduction of electronics into milking technology. Computers and Electronics in Agriculture, 30: 125–149.
78 Banhazi, T.M., Lehr, H., Black, J.L., Crabtree, H., Schofield, P., Tscharke, M. y Berckmans, D. 2012. Precision Livestock Farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, 5(3): 1–9.
79 Lowenberg-DeBoer, J. 2018. The economics of precision agriculture. In J. Stafford, ed. Precision agriculture for sustainability, págs. 461–494. Londres, Burleigh Dodds Science Publishing. https://doi.org/10.1201/9781351114592
80 Colaço, A.F. y Bramley, R.G.V. 2018. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research, 218: 126–140. https://doi.org/10.1016/j.fcr.2018.01.007
81 Lachia, N., Pichon, L. y Tisseyre, B. 2019. A collective framework to assess the adoption of precision agriculture in France: description and preliminary results after two years. En: J.V. Stafford, ed. Precision agriculture ’19. págs. 851–857. https://doi.org/10.3920/978-90-8686-888-9_105
82 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5
83 Lowenberg-DeBoer, J., Behrendt, K., Ehlers, M.-H., Dillon, C., Gabriel, A., Huang, I.Y., Kumwenda, I. et al. 2021. Lessons to be learned in adoption of autonomous equipment for field crops. Applied Economic Perspectives and Policy, 44(2): 848–864. https://doi.org/10.1002/aepp.13177
84 Elias, M., Lowenberg-DeBoer, J., Behrendt, K. y Franklin, K. (en prensa). Economically optimal farmer supervision of crop robots.
85 Shockley, J., Dillon, C., Lowenberg-DeBoer, J. y Mark, T. 2021. How will regulation influence commercial viability of autonomous equipment in US production agriculture? Applied Economics Perspectives and Policy, 44(2): 865–878. https://doi.org/10.1002/aepp.13178
86 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf
87 Tarannum, N., Rhaman, Md.K., Khan, S.A. y Shakil, S.R. 2015. A brief overview and systematic approach for using agricultural robot in developing countries. Journal of Modern Science and Technology, 3(1): 88–101. https://zantworldpress.com/wp-content/uploads/2019/12/Paper-8.pdf
88 Reddy, N., Reddy, A.V., Pranavadithya, S. y Kumar, J. 2016. A critical review on agricultural robots. International Journal of Mechanical Engineering and Technology, 7(4): 183–188. https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_7_ISSUE_4/IJMET_07_04_018.pdf
89 Autor, D.H. 2015. Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3): 3–30. www.aeaweb.org/articles?id=10.1257/jep.29.3.3
90 Carvalho, F.K., Chechetto, R.G., Mota, A.A.B. y Antuniassi, U.R. 2020. Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2): 83–88. http://dx.doi.org/10.1564/v31_apr_07
91 Wang, C., Herbst, A., Zeng, A., Wongsuk, S., Qiao, B., Qi, P., Bonds, J. et al. 2021. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Science of The Total Environment, 777: 146181. https://doi.org/10.1016/j.scitotenv.2021.146181
92 Erickson, B. y Lowenberg-DeBoer, J. 2021. 2021 precision agriculture dealership survey confirms a data driven market for retailers. En: CropLife. [Consultado el 24 de julio de 2022]. www.croplife.com/precision/2021-precision-agriculture-dealership-survey-confirms-a-data-driven-market-for-retailers/#slide=87709-87729-3).
93 Kendall, H., Clark, B., Li, W., Jin, S., Jones, G.D., Chen, J., Taylor, J., Li, Z. y Frewer, Lynn, J. 2022. Precision agriculture technology adoption: a qualitative study of small-scale commercial “family farms” located in the North China Plain. Precision Agriculture, 23: 319–351. https://doi.org/10.1007/s11119-021-09839-2
94 Kumar, G., Engle, C. y Tucker, C. 2018. Factors driving aquaculture technology adoption. Journal of the World Aquaculture Society, 49(3): 447–476. https://doi.org/10.1111/jwas.12514
95 FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. https://doi.org/10.4060/ca9229es
96 Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T., Eguiraun, H. et al. 2018. Precision fish farming: A new framework to improve production in aquaculture. Biosystems Engineering, 173: 176–193. https://doi.org/10.1016/j.biosystemseng.2017.10.014
97 Shrimpbox. 2021. The Shrimpbox launch: The world’s first robotic shrimp farm. En: Atarraya. Ciudad de México. [Consultado el 24 de julio de 2022]. https://atarraya.ai/assets/pdf/ShrimpboxENG.pdf
98 Bergerman, M., Billingsley, J., Reid, J. y van Henten, E. 2016. Robotics in agriculture and forestry. SpringerLink. [Consultado el 8 de diciembre de 2021]. https://link.springer.com/chapter/10.1007/978-3-319-32552-1_56
99 Nitoslawski, S.A., Wong-Stevens, K., Steenberg, J.W.N., Witherspoon, K., Nesbitt, L. y Konijnendijk van den Bosch, C.C. 2021. The digital forest: Mapping a decade of knowledge on technological applications for forest ecosystems. Earth’s Future, 9(8): e2021EF002123. https://doi.org/10.1029/2021EF002123
100 Boitsov, A., Vagizov, M., Istomin, E., Aksenova, A. y Pavlov, V. 2021. Robotic systems in forestry. IOP Conference Series: Earth and Environmental Science, 806: 012034.
101 Allott, J., O’Kelly, G. y Pendergraph, S. 2020. Data: The next wave in forestry productivity. En: McKinsey & Company. [Consultado el 5 de enero de 2022]. www.mckinsey.com/industries/paper-forest-products-and-packaging/our-insights/data-the-next-wave-in-forestry-productivity
102 Hellström, T., Lärkeryd, P., Nordfjell, T. y Ringdahl, O. 2009. Autonomous forest vehicles: Historic, envisioned, and state-of-the-art. International Journal of Forest Engineering, 20(1): 31–38. https://doi.org/10.1080/14942119.2009.10702573
103 Visser, R. y Obi, O.F. 2021. Automation and robotics in forest harvesting operations: Identifying near-term opportunities. Croatian Journal of Forest Engineering, 42(1): 13–24.
104 Parker, R., Bayne, K. y Clinton, P.W. 2016. Robotics in forestry. New Zealand Journal of Forestry, 60(4): 8–14.
105 Finer, M. y Mamani, N. 2020. MAAP #31: Power of free high-resolution satellite imagery from Norway Agreement. En: Monitoring of the Amazon Andean Project. [Consultado el 24 de junio de 2022]. www.maaproject.org/2021/norway-agreement
106 Shamshiri, R., Kalantari, F., Ting, K.C., Thorp, K.R., Hameed, I.A., Weltzien, C., Ahmad, D. y Shad, Z.M. 2018. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering, 11: 1. https://ijabe.org/index.php/ijabe/article/view/3210
107 Mrema, G.C., Baker, D. y Kahan, D. 2008. Agricultural mechanization in sub-Saharan Africa: time for a new look. Agricultural Management, Marketing and Finance Occasional Paper n.º 22. Roma, FAO. www.fao.org/3/i0219e/i0219e00.pdf
108 Berhane, G., Dereje, M., Minten, B. y Tamru, S. 2017. The rapid – but from a low base – uptake of agricultural mechanization in Ethiopia: Patterns, implications and challenges. Documento de trabajo del ESSP n.º 105. Washington D. C., IFPRI y Addis Abeba, EDRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/131146
109 Kansanga, M., Andersen, P., Kpienbaareh, D., Mason-Renton, S., Atuoye, K., Sano, Y., Antabe, R. y Luginaah, I. 2019. Traditional agriculture in transition: examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. International Journal of Sustainable Development and World Ecology, 26(1): 11–24.
110 Keller, T., Sandin, M., Colombi, T., Horn, R. y Or, D. 2019. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 194: 104293. https://doi.org/10.1016/j.still.2019.104293
111 Wang, X., Yamauchi, F., Otsuka, K. y Huang, J. 2016. Wage growth, landholding, and mechanization in Chinese agriculture. World Development, 86: 30–45. https://doi.org/10.1016/j.worlddev.2016.05.002
112 Yamauchi, F. 2016. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Policy, 58(5): 62–69.
113 Daum, T., Adegbola, Y.P., Kamau, G., Kergna, A.O., Daudu, C., Zossou, R.C., Crinot, G.F. et al. 2020. Perceived effects of farm tractors in four African countries, highlighted by participatory impact diagrams. Agronomy for Sustainable Development, 40: 47. https://doi.org/10.1007/s13593-020-00651-2
114 Kansanga, M.M., Mkandawire, P., Kuuire, V. y Luginaah, I. 2020. Agricultural mechanization, environmental degradation, and gendered livelihood implications in northern Ghana. Land Degradation and Development, 31(11): 1422–1440. https://doi.org/10.1002/ldr.3490
115 Torero, M. 2019. Robotics and AI in food security and innovation: Why they matter and how to harness their power. En: J. von Braun, M.S. Archer, G.M. Reichberg y M. Sánchez Sorondo, (coords.). Robotics, AI, and humanity: Science, ethics, and policy, págs. 99-107. Springer.
Capítulo 3
1 Pingali, P. 2007. Chapter 54 Agricultural mechanization: Adoption patterns and economic impact. En: R. Evenson y P. Pingali, (coords.). Handbook of agricultural economics, págs. 2779-2805. Amsterdam, Elsevier. https://doi.org/10.1016/S1574-0072(06)03054-4
2 Bhattarai, M., Singh, G., Takeshima, H. y Shekhawat, R.S. 2020. Farm machinery use and the agricultural machinery industries in India. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 97-138. Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134090
3 Kirui, O. 2019. The agricultural mechanization in Africa: Micro-level analysis of state drivers and effects. ZEF-Discussion Papers on Development Policy n.º 272. Universidad de Bonn. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3368103
4 Berhane, G., Dereje, M., Minten, B. y Tamru, S. 2017. The rapid – but from a low base – uptake of agricultural mechanization in Ethiopia: Patterns, implications and challenges. Documento de trabajo del ESSP n.º 105. Washington D. C., IFPRI y Addis Abeba, EDRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/131146
5 Houssou, N. y Chapoto, A. 2014. The changing landscape of agriculture in Ghana: Drivers of farm mechanization and its impacts on cropland expansion and intensification. Documento de debate del IFPRI n.º 1392. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/128706/filename/128917.pdf
6 Adu-Baffour, F., Daum, T. y Birner, R. 2019. Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia. Food Policy, 84: 133–145. https://doi.org/10.1016/j.foodpol.2019.03.007
7 Kansanga, M.M., Mkandawire, P., Kuuire, V. y Luginaah, I. 2020. Agricultural mechanization, environmental degradation, and gendered livelihood implications in northern Ghana. Land Degradation and Development, 31(11): 1422–1440. https://doi.org/10.1002/ldr.3490
8 Ma, W., Renwick, A. y Grafton, Q. 2018. Farm machinery use, off-farm employment and farm performance in China. Australian Journal of Agricultural and Resource Economics, 62(2): 279–298. https://doi.org/10.1111/1467-8489.12249
9 Daum, T., Capezzone, F. y Birner, R. 2021. Using smartphone app collected data to explore the link between mechanization and intra-household allocation of time in Zambia. Agriculture and Human Values, 38: 411–429. https://doi.org/10.1007/s10460-020-10160-3
10 Haggblade, S., Hazell, P. y Reardon, T. 2010. The rural non-farm economy: prospects for growth and poverty reduction. World Development, 38(10): 1429–1441. https://doi.org/10.1016/j.worlddev.2009.06.008
11 Christiaensen, L., Demery, L. y Kuhl, J. 2011. The (evolving) role of agriculture in poverty reduction—An empirical perspective. Journal of Development Economics, 96(2): 239–254. https://doi.org/10.1016/j.jdeveco.2010.10.006
12 Salvatierra-Rojas, A., Nagle, M., Gummert, M., de Bruin, T. y Müller, T. 2017. Development of an inflatable solar dryer for improved postharvest handling of paddy rice in humid climates. International Journal of Agricultural and Biological Engineering, 10(3): 269–282. https://ijabe.org/index.php/ijabe/article/view/2444
13 Elbehri, A. y Sadiddin, A. 2016. Climate change adaptation solutions for the green sectors of selected zones in the MENA region. Future of Food: Journal on Food, Agriculture and Society, 4(3): 39–54. www.thefutureoffoodjournal.com/index.php/FOFJ/article/view/79
14 Jayne, T.S., Mather, D. y Mghenyi, E. 2010. Principal challenges confronting smallholder agriculture in sub-Saharan Africa. World Development, 38(10): 1384–1398. https://doi.org/10.1016/j.worlddev.2010.06.002
15 Yahaya, R. (en prensa). Market analysis for agricultural mechanisation in Ethiopia. Addis Abeba, CIMMYT.
16 FAO. 2022. Technical support for sustainable agricultural mechanization of smallholder farms for enhancing agricultural productivity and production, and reducing drudgery of women and young farmers. Proyecto de la FAO n.º TCP/NEP/3703. Roma. Documento interno.
17 FAO. 2022. Thinking about the future of food safety – A foresight report. Roma. https://doi.org/10.4060/cb8667en
18 Daum, T., Seidel, A., Getnet, B. y Birner, R. 2022. Animal traction, two-wheel tractors, or four-wheel tractors? A best-fit approach to guide farm mechanization in Africa. Hohenheim Working Papers on Social and Institutional Change in Agricultural Development. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4092687
19 Diao, X., Takeshima, H. y Zhang, X. 2020. An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134095
20 Win, M.T., Belton, B. y Zhang, X. 2020. Myanmar’s rapid agricultural mechanization: Demand and supply evidence. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 263-284. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_08
21 Baudron, F., Sims, B., Justice, S., Kahan, D.G., Rose, R., Mkomwa, S., Kaumbutho, P. et al. 2015. Re-examining appropriate mechanization in Eastern and Southern Africa: two-wheel tractors, conservation agriculture, and private sector involvement. Food Security, 7: 889–904. https://doi.org/10.1007/s12571-015-0476-3
22 Kahan, D., Bymolt, R. y Zaal, F. 2018. Thinking outside the plot: Insights on small-scale mechanisation from case studies in East Africa. The Journal of Development Studies, 54(11): 1939–1954. https://doi.org/10.1080/00220388.2017.1329525
23 Daum, T., Huffman, W. y Birner, R. 2018. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Economics Working Paper. Ames (Estados Unidos), Department of Economics, Iowa State University. https://lib.dr.iastate.edu/econ_workingpapers/47
24 FAO. 2019. Mechanization services in rural communities. Enhancing the resilience of smallholder farmers and creating job opportunities. Roma. www.fao.org/3/ca7139en/ca7139en.pdf
25 Alwang, J., Sabry, S., Shideed, K., Swelam, A. y Halila, H. 2018. Economic and food security benefits associated with raised-bed wheat production in Egypt. Food Security: The Science, Sociology and Economics of Food Production and Access to Food, 10(3): 589–601. https://EconPapers.repec.org/RePEc:spr:ssefpa:v:10:y:2018:i:3:d:10.1007_s12571-018-0794-3
26 Swelam, A. 2016. Raised-bed planting in Egypt: an affordable technology to rationalize water use and enhance water productivity. Amman, ICARDA (Centro internacional de investigación agrícola en las zonas secas). https://hdl.handle.net/20.500.11766/5900
27 Sims, B. y Kienzle, J. 2006. Farm power and mechanization for small farms in sub-Saharan Africa. Informe Técnico sobre Ingeniería Agrícola y Alimentaria N.º 3. Roma, FAO. www.fao.org/3/a0651e/a0651e.pdf
28 Flores Rojas, M. 2018. Gender sensitive labour saving technology. Drum seeder: saving time, effort and money. A case study from the Lao People’s Democratic Republic. Bangkok, FAO. www.fao.org/3/i9464en/i9464en.pdf
29 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-10 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
30 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.
31 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.
32 Eastwood, C.R. y Renwick, A. 2020. Innovation uncertainty impacts the adoption of smarter farming approaches. Frontiers in Sustainable Food Systems, 4: 24. www.readcube.com/articles/10.3389%2Ffsufs.2020.00024
33 Hansen, B.G. 2015. Robotic milking-farmer experiences and adoption rate in Jæren, Norway. Journal of Rural Studies, 41: 109–117. https://doi.org/10.1016/j.jrurstud.2015.08.004
34 Steeneveld, W., Tauer, L.W., Hogeveen, H. y Oude Lansink, A.G.J.M. 2012. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. Journal of Dairy Science, 95(12): 7391–7398. https://doi.org/10.3168/jds.2012-5482
35 Drach, U., Halachmi, I., Pnini, T., Izhaki, I. y Degani, A. 2017. Automatic herding reduces labour and increases milking frequency in robotic milking. Biosystems Engineering, 155: 134–141.
36 Lowenberg-DeBoer, J. 1999. GPS based guidance systems for farmers. Purdue Agricultural Economics Report, págs. 8–9. Universidad Purdue. https://ag.purdue.edu/commercialag/home/paer-article/gps-based-guidance-systems-for-farmers
37 IoF. 2020. Internet of Food and Farm (IoF) 2020. www.valoritalia.it/wp-content/uploads/2019/08/IOF2020-Booklet-UseCases-2019-vDEF.pdf
38 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf
39 de Brauw, A. y Bulte, E. 2021. African Farmers, Value Chains and Agricultural Development: An Economic and Institutional Perspective. Palgrave Studies in Agricultural Economics and Food Policy. Cham, Springer International Publishing. https://link.springer.com/10.1007/978-3-030-88693-6
40 Daum, T. y Birner, R. 2017. The neglected governance challenges of agricultural mechanisation in Africa – insights from Ghana. Food Security, 9(5): 959–979. https://doi.org/10.1007/s12571-017-0716-9
41 Cramb, R. y Thepent, V. 2020. Evolution of agricultural mechanization in Thailand. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 165-201. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134091/filename/134311.pdf
42 Justice, S. y Biggs, S. 2020. The spread of smaller engines and markets in machinery services in rural areas of South Asia. Journal of Rural Studies, 73: 10–20. https://doi.org/10.1016/j.jrurstud.2019.11.013
43 Feder, G., Just, R.E. y Zilberman, D. 1985. Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2): 255–298. www.jstor.org/stable/1153228
44 Binswanger, H. y Donovan, G. 1987. Agricultural mechanization: issues and options. Estudio de políticas del Banco Mundial. Washington D. C., Banco Mundial.
45 Elverdin, P., Piñeiro, V. y Robles, M. 2018. Agricultural mechanization in Latin America. Documento de debate del IFPRI n.º 1740. IFPRI.
46 Takeshima, H. 2016. Market imperfections for tractor service provision in Nigeria: International perspectives and empirical evidence. Documento de trabajo del NSSP n.º 32. Washington D. C., IFPRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130446
47 Diao, X., Cossar, F., Houssou, N. y Kolavalli, S. 2014. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy, 48: 168–181. https://doi.org/10.1016/j.foodpol.2014.05.013
48 Takeshima, H. y Lawal, A. 2020. Evolution of agricultural mechanization in Nigeria. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 423-456. Washington D. C., IFPRI.
49 Shockley, J., Dillon, C., Lowenberg-DeBoer, J. y Mark, T. 2021. How will regulation influence commercial viability of autonomous equipment in US production agriculture? Applied Economics Perspectives and Policy, 44(2): 865–878. https://doi.org/10.1002/aepp.13178
50 Daum, T., Adegbola, Y.P., Kamau, G., Kergna, A.O., Daudu, C., Zossou, R.C., Crinot, G.F. et al. 2020. Perceived effects of farm tractors in four African countries, highlighted by participatory impact diagrams. Agronomy for Sustainable Development, 40: 47. https://doi.org/10.1007/s13593-020-00651-2
51 Daum, T. y Birner, R. 2020. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Global Food Security, 26: 100393. https://doi.org/10.1016/j.gfs.2020.100393
52 Kansanga, M., Andersen, P., Kpienbaareh, D., Mason-Renton, S., Atuoye, K., Sano, Y., Antabe, R. y Luginaah, I. 2019. Traditional agriculture in transition: examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. International Journal of Sustainable Development and World Ecology, 26(1): 11–24.
53 Keller, T., Sandin, M., Colombi, T., Horn, R. y Or, D. 2019. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research, 194: 104293. https://doi.org/10.1016/j.still.2019.104293
54 Dahlin, A.S. y Rusinamhodzi, L. 2019. Yield and labor relations of sustainable intensification options for smallholder farmers in sub-Saharan Africa. A meta-analysis. Agronomy for Sustainable Development, 39: 32. https://doi.org/10.1007/s13593-019-0575-1
55 FAO. 2021. El estado mundial de la agricultura y la alimentación 2021. Lograr que los sistemas agroalimentarios sean más resilientes a las perturbaciones y tensiones. Roma. https://doi.org/10.4060/cb4476es
56 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.
57 Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. y Bernoux, M. 2015. Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 203: 127–139. https://doi.org/10.1016/j.agee.2015.01.027
58 Giller, K.E., Witter, E., Corbeels, M. y Tittonell, P. 2009. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1): 23–34. https://doi.org/10.1016/j.fcr.2009.06.017
59 CSAM. 2022. Climate resilience practice. En: CSAM. Beijing. [Consultado el 24 de junio de 2022]. www.un-csam.org/KI-climate
60 Winkler, B., Lemke, S., Ritter, J. y Lewandowski, I. 2017. Integrated assessment of renewable energy potential: Approach and application in rural South Africa. Environmental Innovation and Societal Transitions, 24: 17–31. https://doi.org/10.1016/j.eist.2016.10.002
61 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5
62 Lowenberg-DeBoer, J. 2019. Making Technology Pay on Your Farm. Future Farm Technology Expo. Birmingham (Reino Unido).
63 Shockley, J.M., Dillon, C.R. y Shearer, S.A. 2019. An economic feasibility assessment of autonomous field machinery in grain crop production. Precision Agriculture, 20: 1068–1085. https://doi.org/10.1007/s11119-019-09638-w
64 Al-Amin, A.K.M.A., Lowenberg-DeBoer, J., Franklin, K. y Behrendt, K. 2021. Economic implications of field size for autonomous arable crop equipment. Land, Farm and Agribusiness Management Department, Universidad Harper Adams, Newport (Reino Unido).
65 Baudron, F., Nazare, R. y Matangi, D. 2019. The role of mechanization in transformation of smallholder agriculture in Southern Africa: Experience from Zimbabwe. En: R. Sikora, E. Terry, P. Vlek y J. Chitja, (coords.). Transforming agriculture in Southern Africa, págs. 152-159. Londres, Routledge. www.taylorfrancis.com/chapters/oa-edit/10.4324/9780429401701-21/role-mechanization-transformation-smallholder-agriculture-southern-africa-fr%C3%A9d%C3%A9ric-baudron-raymond-nazare-dorcas-matangi
66 Justice, S., Flores Rojas, M. y Basnyat, M. 2022. Empowering women farmers – A mechanization catalogue for practitioners. Roma, FAO. www.fao.org/3/cb8681en/cb8681en.pdf
67 APNI. 2020. Proceedings for the 1st African Conference on Precision Agriculture, Benguérir (Marruecos), 8–10 de diciembre de 2020. En: APNI. www.apni.net/2021/03/18/new-publication-proceedings-for-1st-african-conference-on-precision-agriculture
68 Onyango, C.M., Nyaga, J.M., Wetterlind, J., Söderström, M. y Piikki, K. 2021. Precision agriculture for resource use efficiency in smallholder farming systems in sub-Saharan Africa: A systematic review. Sustainability, 13(3): 1158. https://doi.org/10.3390/su13031158
69 Nyaga, J.M., Onyango, C.M., Wetterlind, J. y Söderström, M. 2021. Precision agriculture research in sub-Saharan Africa countries: a systematic map. Precision Agriculture, 22: 1217–1236. https://doi.org/10.1007/s11119-020-09780-w
70 Pouya, M.B., Diebre, R., Rambaldi, G., Zomboudry, G., Barry, F., Sedogo, M. y Lompo, F. 2020. Analyse comparative de l’agriculture de précision incluant l’utilisation de la technologie drone et de l’agriculture classique en matière de production de riz et de revenu des agriculteurs au Burkina Faso. Wageningen (Países Bajos), CTA. https://cgspace.cgiar.org/handle/10568/108460
71 Annor-Frempong, F. y Akaba, S. 2020. Socio-economic impact and acceptance study of drone-applied pesticide on maize in Ghana. Wageningen (Países Bajos), CTA. https://cgspace.cgiar.org/handle/10568/108594
72 Niyitanga, F., Kazungu, J. y Mamy, I.M. 2020. Willingness to pay and cost-benefit analyses for farmers acting on real-time, actionable UAS-based advice when growing wheat or potato in Gataraga sector, Musanze district, Rwanda. Wageningen (Países Bajos), CTA. https://cgspace.cgiar.org/handle/10568/108602
73 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf
74 Yawson, G. y Frimpong-Wiafe, B. 2018. The socio-economic benefits and impact study on the application of drones, sensor technology and intelligent systems in commercial scale agricultural establishments in Africa. International Journal of Agriculture and Economic Development, 6(2): 18–36. www.academia.edu/40998630/The_Socio-Economic_Benefits_and_Impact_Study_on_the_Application_of_Drones_Sensor_Technology_and_Intelligent_Systems_in_Commercial-Scale_Agricultural_Establishment_In_Africa
75 Ayamga, M., Tekinerdogan, B. y Kassahun, A. 2021. Exploring the challenges posed by regulations for the use of drones in agriculture in the African context. Land, 10(2): 164. https://doi.org/10.3390/land10020164
76 Carvalho, F.K., Chechetto, R.G., Mota, A.A.B. y Antuniassi, U.R. 2020. Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2): 83–88. http://dx.doi.org/10.1564/v31_apr_07
77 Sissoko, A. 2020. Malian architect fights climate change with digital greenhouse. En: Reuters. [Consultado el 23 de junio de 2022]. www.reuters.com/article/us-climate-change-mali-agriculture-idUSKBN20713N
78 Elsäßer, R., Hänsel, G. y Feldt, T. 2021. Digitalizing the African livestock sector: Status quo and future trends for sustainable value chain development. Bonn (Alemania), GIZ. www.giz.de/de/downloads/giz2021_en_Digitalizing%20the%20African%20livestock%20sector.pdf
79 Okinda, B. 2020. Pastoralists turn to apps to find grazing fields. En: Nation. [Consultado el 1 de junio de 2022]. https://nation.africa/kenya/healthy-nation/pastoralists-turn-to-apps-to-find-grazing-fields-12554
80 Daum, T., Villalba, R., Anidi, O., Mayienga, S.M., Gupta, S. y Birner, R. 2021. Uber for tractors? Opportunities and challenges of digital tools for tractor hire in India and Nigeria. World Development, 144: 105480. https://doi.org/10.1016/j.worlddev.2021.105480
81 Tarannum, N., Rhaman, Md.K., Khan, S.A. y Shakil, S.R. 2015. A brief overview and systematic approach for using agricultural robot in developing countries. Journal of Modern Science and Technology, 3(1): 88–101. https://zantworldpress.com/wp-content/uploads/2019/12/Paper-8.pdf
82 Reddy, N., Reddy, A.V., Pranavadithya, S. y Kumar, J. 2016. A critical review on agricultural robots. International Journal of Mechanical Engineering and Technology, 7(4): 183–188. https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_7_ISSUE_4/IJMET_07_04_018.pdf
83 Autor, D.H. 2015. Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3): 3–30. www.aeaweb.org/articles?id=10.1257/jep.29.3.3
84 Aune, J.B., Coulibaly, A. y Giller, K.E. 2017. Precision farming for increased land and labour productivity in semi-arid West Africa. A review. Agronomy for Sustainable Development, 37: 16. https://doi.org/10.1007/s13593-017-0424-z
85 Nouhoheflin, T., Coulibaly, J.Y., D’Alessandro, S., Aitchédji, C.C., Damisa, M., Baributsa, D. y Lowenberg-DeBoer, J. 2017. Management lessons learned in supply chain development: the experience of PICS bags in West and Central Africa. International Food and Agribusiness Management Review, 20(3): 427–438. https://doi.org/10.22434/IFAMR2016.0167
86 Micle, D.E., Deiac, F., Olar, A., Drența, R.F., Florean, C., Coman, I.G. y Arion, F.H. 2021. Research on innovative business plan. Smart cattle farming using artificial intelligent robotic process automation. Agriculture, 11(5): 430. https://doi.org/10.3390/agriculture11050430
87 Gorbunova, A.V., Kostin, V.E., Pashkevich, I.L., Rybanov, A.A., Savchits, A.V., Silaev, A.A., Silaeva, E.Y. y Judaev, Y.V. 2020. Prospects and opportunities for the introduction of digital technologies into aquaculture governance system. IOP Conference Series: Earth and Environmental Science, 422(1): 012125. https://iopscience.iop.org/article/10.1088/1755-1315/422/1/012125
88 Saha, S., Hasan Rajib, R. y Kabir, S. 2018. IoT based automated fish farm aquaculture monitoring system. 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), págs. 201–206.
89 Neethirajan, S. y Kemp, B. 2021. Digital Livestock Farming. Sensing and Bio-Sensing Research, 32: 100408. https://doi.org/10.1016/j.sbsr.2021.100408
90 FAO, FIDA, OMS, PMA y UNICEF. 2022. El estado de la seguridad alimentaria y la nutrición en el mundo 2022. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma, FAO. https://doi.org/10.4060/cc0639es
Capítulo 4
1 FAO. 2021. Engaging with small and medium agrifood enterprises to guide policy making. A qualitative research methodological guide. Roma. www.fao.org/3/cb4179en/cb4179en.pdf
2 FAO. 2022. Cross cutting theme on inclusivity. Marco estratégico de la FAO para 2022–2025. Roma Documento interno.
3 Charlton, D., Hill, A.E. y Taylor, E.J. 2022. Automation and social impacts: winners and losers. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 22-09 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
4 Morton, J.F. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50): 19680–19685. www.pnas.org/doi/pdf/10.1073/pnas.0701855104
5 Davidova, S., Fredriksson, L., Gorton, M., Mishev, P. y Petrovici, D. 2012. Subsistence farming, incomes, and agricultural livelihoods in the new Member States of the European Union. Environment and Planning C: Government and Policy, 30(2): 209–227.
6 Sibhatu, K.T., Krishna, V.V. y Qaim, M. 2015. Production diversity and dietary diversity in smallholder farm households. Proceedings of the National Academy of Sciences, 112(34): 10657–10662. https://doi.org/10.1073/pnas.1510982112
7 Sibhatu, K.T. y Qaim, M. 2017. Rural food security, subsistence agriculture, and seasonality. PLOS ONE, 12(10): e0186406. https://doi.org/10.1371/journal.pone.0186406
8 Frelat, R., Lopez-Ridaura, S., Giller, K.E., Herrero, M., Douxchamps, S., Djurfeldt, A.A., Erenstein, O. et al. 2016. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences, 113(2): 458–463. https://doi.org/10.1073/pnas.1518384112
9 Hall, R., Scoones, I. y Tsikata, D. 2017. Plantations, outgrowers and commercial farming in Africa: agricultural commercialisation and implications for agrarian change. The Journal of Peasant Studies, 44(3): 515–537. https://doi.org/10.1080/03066150.2016.1263187
10 Barnett, T. 1996. Subsistence agriculture. En: T. Barnett, E. Blas y A. Whiteside, (coords.). AIDS Brief for sectoral planners and managers, págs. 6-10. Ginebra, OMS. https://corpora.tika.apache.org/base/docs/govdocs1/153/153175.pdf
11 Mendoza, E.E., Rigor, A.C., Mordido, C.C. y Marajas, A.A. 1982. Grain quality deterioration in on-farm level of operations. Proceedings of 5th Annual Grains Postharvest Technology Workshop, Los Baños, 1982. Manila, South East Asia Cooperative Postharvest Research and Development Programme.
12 Proctor, D.L. 1994. Grain storage techniques: Evolution and trends in developing countries. Boletín del Servicio Agrícola de la FAO n.º 10. Roma, FAO.
13 de la Peña, C. 2013. Thinking through the tomato harvester. En: Boom California. [Consultado el 25 de julio de 2022]. https://boomcalifornia.org/2013/06/24/thinking-through-the-tomato-harvester
14 Gazzola, P., Grechi, D., Martinelli, I. y Pezzetti, R. 2022. The innovation of the cashierless store: a preliminary analysis in Italy. Sustainability, 14(4): 2034. https://doi.org/10.3390/su14042034
15 Rudd, J. 2019. Checking out productivity in grocery stores. Beyond the Numbers: Productivity, 8(15). (U.S. Bureau of Labor Statistics, diciembre de 2019). www.bls.gov/opub/btn/volume-8/checking-out-productivity-in-grocery-stores.htm
16 Reinartz, W., Wiegand, N. e Imschloss, M. 2019. The impact of digital transformation on the retailing value chain. International Journal of Research in Marketing, 36(3): 350–366. https://doi.org/10.1016/j.ijresmar.2018.12.002
17 Spruit, D. y Almenar, E. 2021. First market study in e-commerce food packaging: Resources, performance, and trends. Food Packaging and Shelf Life, 29: 100698.
18 Zhang, Y. y Huang, L. 2015. China’s e-commerce development path and mode innovation of agricultural product based on business model canvas method. WHICEB 2015 Proceedings, 9. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1076&context=whiceb2015
19 Zeng, Y., Jia, F., Wan, L. y Guo, H. 2017. E-commerce in agri-food sector: a systematic literature review. International Food and Agribusiness Management Review, 20(4): 439–460.
20 Cai, Y., Lang, Y., Zheng, S. y Zhang, Y. 2015. Research on the influence of e-commerce platform to agricultural logistics: An empirical analysis based on agricultural product marketing. International Journal of Security and Its Applications, 9(10): 287–296. http://article.nadiapub.com/IJSIA/vol9_no10/26.pdf
21 FAO e Instituto Internacional de Investigación de Cultivos para las Zonas Tropicales Semiáridas (ICRISAT). 2022. Digital agriculture in action: selected case studies from India. Country Investment Highlights n.º 17. Roma, FAO e ICRISAT. www.fao.org/3/cc0017en/cc0017en.pdf
22 FAO y Universidad de Zhejiang. 2021. Rural e-commerce development: experience from China. Informe sobre agricultura digital. Roma, FAO. www.fao.org/3/cb4960en/cb4960en.pdf
23 FAO. 2015. Entendiendo el empleo rural decente. Roma. https://www.fao.org/3/bc270s/bc270s.pdf
24 Takeshima, H. y Vos, R. 2022. Agricultural mechanisation and child labour in developing countries. Estudio de antecedentes. Roma, FAO. www.fao.org/3/cb8550en/cb8550en.pdf
25 Deichmann, U., Goyal, A. y Mishra, D. 2016. Will digital technologies transform agriculture in developing countries? Policy Research Working Paper n.º 7669. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/24507
26 Nakasone, E. y Torero, M. 2016. A text message away: ICTs as a tool to improve food security. Agricultural Economics, 47: 49–59. https://mpra.ub.uni-muenchen.de/75854/1/MPRA_paper_75854.pdf
27 Sekabira, H. y Qaim, M. 2017. Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. Food Policy, 73: 95–103.
28 Santos Valle, S. y Kienzle, J. 2020. Agricultura 4.0 – Robótica agrícola y equipos automatizados para la producción agrícola sostenible. Gestión integrada de cultivos N. 24. Roma, FAO. https://www.fao.org/3/cb2186es/CB2186ES.pdf
29 Bonacich, E. y De Lara, J.D. 2009. Economic crisis and the logistics industry: Financial insecurity for warehouse workers in the inland empire. Documento de trabajo del IRLE n.º 2009–13. UCLA, Los Angeles (Estados Unidos). https://escholarship.org/uc/item/8rn2h9ch
30 Gittleman, M. y Monaco, K. 2020. Truck-driving jobs: Are they headed for rapid elimination? ILR Review, 73(1): 3–24.
31 England, P. 2010. The gender revolution: Uneven and stalled. Gender and Society, 24(2): 149–166.
32 Scott, A. y Davis-Sramek, B. 2021. Driving in a man’s world: Intra-occupational gender segregation in the trucking industry. Documento de trabajo. www.researchgate.net/publication/349104605_Driving_in_a_Man%27s_World_Intra-occupational_Gender_Segregation_in_the_Trucking_Industry
33 U.S. Bureau of Labor Statistics. 2022. Labor force statistics from the current population survey. En: U.S. Bureau of Labor Statistics. [Consultado el 18 de marzo de 2022]. www.bls.gov/cps/cpsaat11.htm
34 Rapsomanikis, G. 2015. The economic lives of smallholder farmers: An analysis based on household data from nine countries. Roma, FAO. www.fao.org/3/i5251e/i5251e.pdf
35 Adu-Baffour, F., Daum, T. y Birner, R. 2019. Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia. Food Policy, 84: 133145. https://doi.org/10.1016/j.foodpol.2019.03.007
36 Ogutu, S.O., Ochieng, D.O. y Qaim, M. 2020. Supermarket contracts and smallholder farmers: Implications for income and multidimensional poverty. Food Policy, 95: 101940. https://doi.org/10.1016/j.foodpol.2020.101940
37 Chege, C.G.K., Andersson, C.I.M. y Qaim, M. 2015. Impacts of supermarkets on farm household nutrition in Kenya. World Development, 72: 394–407. https://doi.org/10.1016/j.worlddev.2015.03.016
38 Baudron, F., Misiko, M., Getnet, B., Nazare, R., Sariah, J. y Kaumbutho, P. 2019. A farm-level assessment of labor and mechanization in Eastern and Southern Africa. Agronomy for Sustainable Development, 39(2): 17. https://doi.org/10.1007/s13593-019-0563-5
39 Guilhoto, J.J.M., Barros, A., Marjotta-Maistro, M. e Istake, M. 2002. Mechanization process of the sugar cane harvest and its direct and indirect impact over the employment in Brazil and in its 5 macro regions. Documento del MPRA n.º 38070. https://mpra.ub.uni-muenchen.de/38070/1/MPRA_paper_38070.pdf
40 Charlton, D. y Kostandini, G. 2021. Can technology compensate for a labor shortage? Effects of 287(g) immigration policies on the U.S. dairy industry. American Journal of Agricultural Economics, 103(1): 70–89. https://doi.org/10.1111/ajae.12125
41 Lowenberg-DeBoer, J., Yuelu Huang, I., Grigoriadis, V. y Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278–299. https://doi.org/10.1007/s11119-019-09667-5
42 Ortega, A.C., de Jesus, C.M. y Mouro, M. de C. 2009. Mecanização e emprego na cafeicultura do Cerrado Mineiro [Mecanización y empleo en la caficultura de Cerrado Mineiro]. Revista Da ABET, 8(2). https://periodicos.ufpb.br/ojs2/index.php/abet/article/view/15268/8674
43 Posadas, B.C., Knight, P.R., Coker, R.Y., Coker, C.H., Langlois, S.A. y Fain, G. 2008. Socioeconomic impact of automation on horticulture production firms in the Northern Gulf of Mexico region. HortTechnology, 18(4): 697–704. https://doi.org/10.21273/HORTTECH.18.4.697
44 Charlton, D. y Taylor, J.E. 2020. Rural school access and the agricultural transformation. Agricultural Economics, 51(5): 641–654. https://doi.org/10.1111/agec.12583
45 Taylor, J.E. y Charlton, D. 2018. The farm labor problem: A global perspective. Amsterdam, Elsevier Academic Press.
46 Lachia, N., Pichon, L. y Tisseyre, B. 2019. A collective framework to assess the adoption of precision agriculture in France: description and preliminary results after two years. En: J.V. Stafford, ed. Precision agriculture ’19. págs. 851–857. https://doi.org/10.3920/978-90-8686-888-9_105
47 Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 19-08 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
48 Ma, M., Saitone, T.L., Volpe, R.J., Sexton, R.J. y Saksena, M. 2019. Market concentration, market shares, and retail food prices: Evidence from the U.S. Women, Infants, and Children Program. Applied Economic Perspectives and Policy, 41(3): 542–562. https://doi.org/10.1093/aepp/ppy016
49 Torero, M. 2019. Robotics and AI in food security and innovation: Why they matter and how to harness their power. En: J. von Braun, M.S. Archer, G.M. Reichberg y M. Sánchez Sorondo, (coords.). Robotics, AI, and humanity: Science, ethics, and policy, págs. 99-107. Springer.
50 Banco Mundial. 2020. Poverty and shared prosperity 2020: Reversals of fortune. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/handle/10986/34496
51 FAO. 2022. Inclusion of persons with disabilities in FAO’s work: Information Note. Roma. (no publicado).
52 Filipski, M., Aboudrare, A., Lybbert, T.J. y Taylor, J.E. 2017. Spice price spikes: Simulating impacts of saffron price volatility in a gendered local economy-wide model. World Development, 91: 84–99. https://arefiles.ucdavis.edu/uploads/filer_public/e3/9d/e39d6c38-56a6-4f56-8831-8947ef0648e2/2017_filipski_et_al_wd_spice_price_spikes.pdf
53 Diiro, G.M., Fisher, M., Kassie, M., Muriithi, B.W. y Muricho, G. 2021. How does adoption of labor saving agricultural technologies affect intrahousehold resource allocations? The case of push-pull technology in Western Kenya. Food Policy, 102: 102114. http://oar.icrisat.org/11845/1/Impact%20of%20Push%20Pull%20Technology%20on%20Intra-Household%20Labour%20Allocation%20in%20Kenya.pdf
54 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.
55 Vemireddy, V. y Choudhary, A. 2021. A systematic review of labor-saving technologies: Implications for women in agriculture. Global Food Security, 29: 100541.
56 GIZ (Sociedad Alemana de Cooperación Internacional). 2020. Gender-transformative change in practice: 6 case studies. Agricultural Technical Vocational Education and Training for Women (ATVET4W). Pretoria. www.giz.de/en/downloads/giz2020_en_GTC%20in%20Practice_6%20Case%20Studies_Interactive.pdf
57 Majumder, J. y Shah, P. 2017. Mapping the role of women in Indian agriculture. Annals of Anthropological Practice, 41(2): 46–54. https://doi.org/10.1111/napa.12112
58 Theis, S., Sultana, N. y Krupnik, T.J. 2018. Overcoming gender gaps in rural mechanization: Lessons from reaper-harvester service provision in Bangladesh. GCAN Project Note 8. CSISA Research Note 9. Washington D. C., IFPRI. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/132358
59 Flores Rojas, M. 2018. Gender sensitive labour saving technology. Drum seeder: saving time, effort and money. A case study from the Lao People’s Democratic Republic. Bangkok, FAO. www.fao.org/3/i9464en/i9464en.pdf
60 FAO. 2019. Fostering the uptake of labour-saving technologies: How to develop effective strategies to benefit rural women. Roma. www.fao.org/3/CA2731EN/ca2731en.pdf
61 Daum, T., Adegbola, P.Y., Adegbola, C., Daudu, C., Issa, F., Kamau, G., Kergna, A.O. et al. 2022. Mechanization, digitalization, and rural youth - Stakeholder perceptions on three mega-topics for agricultural transformation in four African countries. Global Food Security, 32: 100616. https://doi.org/10.1016/j.gfs.2022.100616
62 Kim, J. 2019. Innovative technology in the agricultural sectors: Opportunities for green jobs or exacerbation of rural youth unemployment? Proceedings of the Future of Work in Agriculture Conference. Washington D. C. https://farmlabor.ucdavis.edu/sites/g/files/dgvnsk5936/files/inline-files/Jeongha%20Kim%3B%20Ag%20Tech.pdf
63 Khanna, M. 2021. Digital transformation of the agricultural sector: Pathways, drivers and policy implications. Applied Economic Perspectives and Policy, 43(4): 1221–1242. https://doi.org/10.1002/aepp.13103
Capítulo 5
1 Rose, D.C., Lyon, J., de Boon, A., Hanheide, M. y Pearson, S. 2021. Responsible development of autonomous robotics in agriculture. Nature Food, 2: 306–309. https://doi.org/10.1038/s43016-021-00287-9
2 Klerkx, L. y Rose, D. 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, 24: 100347. https://doi.org/10.1016/j.gfs.2019.100347
3 Ag-Incentives. 2022. En: Ag-Incentives. [Consultado el 4 de mayo de 2022]. http://ag-incentives.org
4 FAO, FIDA, OMS, PMA y UNICEF. 2022. El estado de la seguridad alimentaria y la nutrición en el mundo 2022. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma, FAO. https://doi.org/10.4060/cc0639es
5 Daum, T. y Birner, R. 2017. The neglected governance challenges of agricultural mechanisation in Africa – insights from Ghana. Food Security, 9(5): 959–979. https://doi.org/10.1007/s12571-017-0716-9
6 Cramb, R. y Thepent, V. 2020. Evolution of agricultural mechanization in Thailand. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 165-201. Washington D. C., IFPRI. https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/134091/filename/134311.pdf
7 Justice, S. y Biggs, S. 2020. The spread of smaller engines and markets in machinery services in rural areas of South Asia. Journal of Rural Studies, 73: 10–20. https://doi.org/10.1016/j.jrurstud.2019.11.013
8 Corporación Financiera Internacional (IFC). 2019. The market opportunity for Productive Use Leveraging Solar Energy (PULSE) in sub-Saharan Africa. Washington D. C. www.lightingglobal.org/wp-content/uploads/2019/09/PULSE-Report.pdf
9 Rose, D. 2022. Agricultural automation: the past, present and future of adoption. El estado mundial de la agricultura y la alimentación 2022, documento de antecedentes. Documento interno.
10 Ministerio de Transporte y Comunicaciones, Finlandia. 2011. Communications Market Act. www.finlex.fi/en/laki/kaannokset/2003/en20030393.pdf
11 Comisión Europea. 2020. Facing the challenges of broadband deployment in rural and remote areas: A handbook for project promoters and policy makers. www.byanatsforum.se/wp-content/uploads/2020/05/Broadband-handbook-2020pdf.pdf
12 Van Loon, J., Woltering, L., Krupnik, T.J., Baudron, F., Boa, M. y Govaerts, B. 2020. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agricultural Systems, 180: 102792. https://doi.org/10.1016/j.agsy.2020.102792
13 Diao, X., Takeshima, H. y Zhang, X. 2020. An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134095
14 Kwet, M. 2019. Digital colonialism is threatening the Global South. En: Aljazeera. [Consultado el 25 de julio de 2022]. www.aljazeera.com/opinions/2019/3/13/digital-colonialism-is-threatening-the-global-south
15 Ávila Pinto, R. 2018. ¿Soberanía digital o colonialismo digital?. Revista internacional de derechos humanos, 15(27): 15-27. https://sur.conectas.org/en/digital-sovereignty-or-digital-colonialism/
16 Unión Africana. 2020. The digital transformation strategy for Africa (2020-2030). Addis Abeba. https://au.int/sites/default/files/documents/38507-doc-dts-english.pdf
17 Smart Africa. 2022. AgriTech blueprint for Africa. https://smart.africa/board/login/uploads/71613-continental-agritech-blueprint-eng.pdf
18 FAO y UIT. 2017. E-agriculture strategy guide: A summary. Bangkok. www.fao.org/3/i6909e/i6909e.pdf
19 Ströh de Martínez, C., Feddersen, M. y Speicher, A. 2016. Food security in sub-Saharan Africa: A fresh look on agricultural mechanisation. How adapted financial solutions can make a difference. Estudio n.º 91. Bonn (Alemania), German Development Institute. www.die-gdi.de/uploads/media/Study_91.pdf
20 Bhattarai, M., Singh, G., Takeshima, H. y Shekhawat, R.S. 2020. Farm machinery use and the agricultural machinery industries in India: Status, evolution, implications, and lessons learned. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 97-138. Washington D. C., IFPRI. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/134090
21 FAO y CUA. 2018. Sustainable agricultural mechanization: A framework for Africa. Addis Abeba. www.fao.org/3/CA1136EN/ca1136en.pdf
22 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.
23 Win, M.T., Belton, B. y Zhang, X. 2020. Myanmar’s rapid agricultural mechanization: Demand and supply evidence. En: X. Diao, H. Takeshima y X. Zhang, (coords.). An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? págs. 263-284. Washington D. C., IFPRI. https://doi.org/10.2499/9780896293809_08
24 Meyer, R. 2011. Subsidies as an instrument in agriculture finance: a review. Washington D. C., Banco Mundial. https://openknowledge.worldbank.org/bitstream/handle/10986/12696/707300ESW0P1120ies0as0an0Instrument.pdf?sequence=1&isAllowed=y
25 Houssou, N., Diao, X., Cossar, F., Kolavalli, S., Jimah, K. y Aboagye, P.O. 2013. Agricultural mechanization in Ghana: Is specialization in agricultural mechanization a viable business model? American Journal of Agricultural Economics, 95(5): 1237–1244. https://doi.org/10.1093/ajae/aat026
26 Daum, T., Huffman, W. y Birner, R. 2018. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Economics Working Paper. Ames (Estados Unidos), Department of Economics, Iowa State University. https://lib.dr.iastate.edu/econ_workingpapers/47
27 Grain Producers Australia (GPA), Tractor and Machinery Association (TMA) y Society of Precision Agriculture Australia (SPAA). 2021. Code of practice. Agricultural Mobile Field Machinery with Autonomous Functions in Australia. www.graincentral.com/wp-content/uploads/2021/08/Code-of-Practice.pdf
28 Lowenberg-DeBoer, J., Behrendt, K., Ehlers, M.-H., Dillon, C., Gabriel, A., Huang, I.Y., Kumwenda, I. et al. 2021. Lessons to be learned in adoption of autonomous equipment for field crops. Applied Economic Perspectives and Policy, 44(2): 848–864. https://doi.org/10.1002/aepp.13177
29 Justice, S., Flores Rojas, M. y Basnyat, M. 2022. Empowering women farmers – A mechanization catalogue for practitioners. Roma, FAO. www.fao.org/3/cb8681en/cb8681en.pdf
30 Flores Rojas, M. 2018. Gender sensitive labour saving technology. Drum seeder: saving time, effort and money. A case study from the Lao People’s Democratic Republic. Bangkok, FAO. www.fao.org/3/i9464en/i9464en.pdf
31 Comité de Seguridad Alimentaria Mundial (CSA). 2014. Principios para la inversion responsable en la agricultura y los sistemas alimentarios. Roma. https://www.fao.org/3/au866s/au866s.pdf
32 Alves, B.J.R., Madari, B.E. y Boddey, R.M. 2017. Integrated crop–livestock–forestry systems: prospects for a sustainable agricultural intensification. Nutrient Cycling in Agroecosystems, 108: 1–4. https://doi.org/10.1007/s10705-017-9851-0
33 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.
34 Northrup, D.L., Basso, B., Wang, M.Q., Morgan, C.L.S. y Benfey, P.N. 2021. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row–crop production. Proceedings of the National Academy of Sciences, 118(28): e2022666118.
35 FAO. 2020. Agricultura de conservación. En: FAO. Roma. [Consultado el 1 de agosto de 2022]. https://www.fao.org/conservation-agriculture/es
36 Jaleta, M., Baudron, F., Krivokapic-Skoko, B. y Erenstein, O. 2019. Agricultural mechanization and reduced tillage: antagonism or synergy? International Journal of Agricultural Sustainability, 17(3): 219–230. https://doi.org/10.1080/14735903.2019.1613742
37 Giller, K.E., Witter, E., Corbeels, M. y Tittonell, P. 2009. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1): 23–34. https://doi.org/10.1016/j.fcr.2009.06.017
38 Baudron, F., Nazare, R. y Matangi, D. 2019. The role of mechanization in transformation of smallholder agriculture in Southern Africa: Experience from Zimbabwe. En: R. Sikora, E. Terry, P. Vlek y J. Chitja, (coords.). Transforming agriculture in Southern Africa, págs. 152-159. Londres, Routledge. www.taylorfrancis.com/chapters/oa-edit/10.4324/9780429401701-21/role-mechanization-transformation-smallholder-agriculture-southern-africa-fr%C3%A9d%C3%A9ric-baudron-raymond-nazare-dorcas-matangi
39 FAO. 2022. Conducta empresarial responsable en la agricultura. En: FAO. Roma. [Consultado el 29 de junio de 2022]. https://www.fao.org/responsible-business-conduct-in-agriculture/es/
40 Comisión Europea. 2022. Economía justa y sostenible: la Comisión establece normas para que las empresas respeten los derechos humanos y el medio ambiente en las cadenas de suministro mundiales. Comunicado de prensa. Bruselas. https://ec.europa.eu/commission/presscorner/detail/es/ip_22_1145
41 Torero, M. 2019. Robotics and AI in food security and innovation: Why they matter and how to harness their power. En: J. von Braun, M.S. Archer, G.M. Reichberg y M. Sánchez Sorondo, (coords.). Robotics, AI, and humanity: Science, ethics, and policy, págs. 99-107. Springer.
42 Adu-Baffour, F., Daum, T. y Birner, R. 2019. Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia. Food Policy, 84: 133–145. https://doi.org/10.1016/j.foodpol.2019.03.007
43 Daum, T., Capezzone, F. y Birner, R. 2021. Using smartphone app collected data to explore the link between mechanization and intra-household allocation of time in Zambia. Agriculture and Human Values, 38: 411–429. https://doi.org/10.1007/s10460-020-10160-3
44 Sims, B., Hilmi, M. y Kienzle, J. 2016. Agricultural mechanization. A key input for sub-Saharan African smallholders. Manejo integrado de cultivos n.º 23. Roma, FAO. www.fao.org/3/i6044e/i6044e.pdf
45 Tsan, M., Totapally, S., Hailu, M. y Addom, B. 2019. The digitalisation of African agriculture report 2018-2019. Wageninghen (Países Bajos). CTA. www.cta.int/en/digitalisation-agriculture-africa
46 Trendov, N.M., Varas, S. y Zeng, M. 2019. Digital technologies in agriculture and rural areas – Status report. Roma, FAO. www.fao.org/3/ca4985en/CA4985EN.pdf
47 Charlton, D., Hill, A.E. y Taylor, E.J. 2022. Automation and social impacts: winners and losers. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Documento de trabajo n.º 19-09 de la División de Economía del Desarrollo Agrícola de la FAO. Roma, FAO.
48 Mapiye, O., Makombe, G., Molotsi, A., Dzama, K. y Mapiye, C. 2021. Towards a revolutionized agricultural extension system for the sustainability of smallholder livestock production in developing countries: The potential role of ICTs. Sustainability, 13(11): 5868. https://doi.org/10.3390/su13115868
49 Bhattacharyya, T., Wani, S.P. y Tiwary, P. 2021. Empowerment of stakeholders for scaling-up: digital technologies for agricultural extension. En: S.P. Wani, K.V. Raju y T. Bhattacharyya, (coords.). Scaling-up solutions for farmers, págs. 121-147. Cham, Springer International Publishing. https://link.springer.com/10.1007/978-3-030-77935-1_3
Anexo 1
1 McCampbell, M. 2022. Agricultural digitalization and automation in low- and middle-income countries: Evidence from ten case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 25 sobre Economía del Desarrollo Agrícola. Roma, FAO.
2 Ceccarelli, T., Chauhan, A., Rambaldi, G., Kumar, I., Cappello, C., Janssen, S. y McCampbell, M. 2022. Leveraging automation and digitalization for precision agriculture: Evidence from the case studies. Documento de antecedentes para El estado mundial de la agricultura y la alimentación 2022. Estudio técnico de la FAO n.º 24 sobre Economía del Desarrollo Agrícola. Roma, FAO.